
INTERNATIONAL JOURNAL OF

(IJNCAA)

Volume 8, Issue 1
2018

www.sdiwc.net

ISSN 2220-9085(ONLINE)
ISSN 2412-3587(PRINT)

New Computer
Architectures and
their Applications

Editor-in-Chief

Maytham Safar, Kuwait University, Kuwait
Rohaya Latip, University Putra Malaysia, Malaysia

Editorial Board

Ali Sher, American University of Ras Al Khaimah, UAE
Altaf Mukati, Bahria University, Pakistan
Andre Leon S. Gradvohl, State University of Campinas, Brazil
Azizah Abd Manaf, Universiti Teknologi Malaysia, Malaysia
Carl D. Latino, Oklahoma State University, United States
Duc T. Pham, University of Birmingham, United Kingdom
Durga Prasad Sharma, University of Rajasthan, India
E.George Dharma Prakash Raj, Bharathidasan University, India
Elboukhari Mohamed, University Mohamed First, Morocco
Eric Atwell, University of Leeds, United Kingdom
Eyas El-Qawasmeh, King Saud University, Saudi Arabia
Ezendu Ariwa, London Metropolitan University, United Kingdom
Genge Bela, University of Targu Mures, Romania
Guo Bin, Institute Telecom & Management SudParis, France
Isamu Shioya, Hosei University, Japan
Jacek Stando, Technical University of Lodz, Poland
Jan Platos, VSB-Technical University of Ostrava, Czech Republic
Jose Filho, University of Grenoble, France
Juan Martinez, Gran Mariscal de Ayacucho University, Venezuela
Kayhan Ghafoor, University of Koya, Iraq
Khaled A. Mahdi, Kuwait University, Kuwait
Ladislav Burita, University of Defence, Czech Republic
Lenuta Alboaie, Alexandru Ioan Cuza University, Romania
Lotfi Bouzguenda, Higher Institute of Computer Science and Multimedia of Sfax, Tunisia

Maitham Safar, Kuwait University, Kuwait
Majid Haghparast, Islamic Azad University, Shahre-Rey Branch, Iran
Martin J. Dudziak, Stratford University, USA
Mirel Cosulschi, University of Craiova, Romania
Mohammed Allam, Naif Arab Universitgy for Security Sciences, Saudi Arabia
Monica Vladoiu, PG University of Ploiesti, Romania
Nan Zhang, George Washington University, USA
Noraziah Ahmad, Universiti Malaysia Pahang, Malaysia
Padmavathamma Mokkala, Sri Venkateswara University, India
Pasquale De Meo, University of Applied Sciences of Porto, Italy
Paulino Leite da Silva, ISCAP-IPP University, Portugal
Piet Kommers, University of Twente, The Netherlands
Radhamani Govindaraju, Damodaran College of Science, India
Talib Mohammad, Bahir Dar University, Ethiopia
Tutut Herawan, University Malaysia Pahang, Malaysia
Velayutham Pavanasam, Adhiparasakthi Engineering College, India
Viacheslav Wolfengagen, JurInfoR-MSU Institute, Russia
Waralak V. Siricharoen, University of the Thai Chamber of Commerce, Thailand
Wojciech Zabierowski, Technical University of Lodz, Poland
Yoshiro Imai, Kagawa University, Japan
Zanifa Omary, Dublin Institute of Technology, Ireland
Zuqing Zhu, University of Science and Technology of China, China

International Journal of
NEW COMPUTER ARCHITECTURES AND THEIR APPLICATIONS

Publisher
The Society of Digital Information and Wireless Communications
20/F, Tower 5, China Hong Kong City, 33 Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong

Further Information
Website: http://sdiwc.net/ijncaa, Email: ijncaa@sdiwc.net,
Tel.: (202)-657-4603 - Inside USA; 001(202)-657-4603 - Outside USA.

Overview
The SDIWC International Journal of New Computer Architectures and
Their Applications (IJNCAA) is a refereed online journal designed to
address the following topics: new computer architectures, digital
resources, and mobile devices, including cell phones. In our opinion, cell
phones in their current state are really computers, and the gap between
these devices and the capabilities of the computers will soon disappear.
Original unpublished manuscripts are solicited in the areas such as
computer architectures, parallel and distributed systems,
microprocessors and microsystems, storage management,
communications management, reliability, and VLSI.

One of the most important aims of this journal is to increase the usage
and impact of knowledge as well as increasing the visibility and ease of
use of scientific materials, IJNCAA does NOT CHARGE authors for any
publication fee for online publishing of their materials in the journal and
does NOT CHARGE readers or their institutions for accessing the
published materials.

Permissions
International Journal of New Computer Architectures and their
Applications (IJNCAA) is an open access journal which means that all
content is freely available without charge to the user or his/her
institution. Users are allowed to read, download, copy, distribute, print,
search, or link to the full texts of the articles in this journal without
asking prior permission from the publisher or the author. This is in
accordance with the BOAI definition of open access.

Disclaimer
Statements of fact and opinion in the articles in the International Journal
of New Computer Architectures and their Applications (IJNCAA) are those
of the respective authors and contributors and not of the International
Journal of New Computer Architectures and their Applications (IJNCAA)
or The Society of Digital Information and Wireless Communications
(SDIWC). Neither The Society of Digital Information and Wireless
Communications nor International Journal of New Computer
Architectures and their Applications (IJNCAA) make any representation,
express or implied, in respect of the accuracy of the material in this
journal and cannot accept any legal responsibility or liability as to the
errors or omissions that may be made. The reader should make his/her
own evaluation as to the appropriateness or otherwise of any
experimental technique described.

Copyright © 2018 sdiwc.net, All Rights Reserved

The issue date is March 2018.

http://sdiwc.net/ijncaa
mailto:ijncaa@sdiwc.net

 IJNCAA

Volume 8, Issue No. 1 2018

ISSN 2220-9085 (Online)
ISSN 2412-3587 (Print)

CONTENTS
ORIGINAL ARTICLES

ACCELERATION OF CANNY EDGE DETECTION ALGORITHM USING PARALLEL CLUSTERS 1
Author/s: Njood S. AlAssmi, Soha S. Zaghloul

MEASURING THE PERFORMANCE OF DATA PLACEMENT STRUCTURES FOR MAPREDUCE-BASED
DATA WAREHOUSING SYSTEMS ……………………………………………………………………………………….……………. 11
Author/s: S. Kami Makki, M. Rakibul Hasan

COMPARISON OF PARALLEL SIMULATED ANNEALING ON SMP AND PARALLEL CLUSTERS FOR
PLANNING A DRONE’S ROUTE FOR MILITARY IMAGE ACQUISITION .………………………………………………. 21
Author/s: Eman Alsafi, Soha S. Zaghloul

A FINGER-MOUNTED HAPTIC DEVICE WITH PLANE INTERFACE ….……….………………………….………………. 33
Author/s: Makoto Yoda, Hiroki Imamura

A 3-DIMENSIONAL OBJECT RECOGNITION METHOD USING RELATIONSHIPS BETWEEN FEATURE
POINTS, AND INVARIANCE OF LOCAL HUE HISTOGRAM ……………………………………………………………….… 41
Author/s: Tomohiro Kanda, Kazuo Ikeshiro and Hiroki Imamura

ABSTRACT

Image processing is a computational operation that

requires many CPU cycles for simple image

transformation. It takes every pixel of an image to

perform a transformation to a new image. The image can

be divided into smaller chunks, with same

transformation operations being implemented on each.

Thus, image processing is a good candidate for running

on a parallel processor to improve the speed of

computation when there are multiple images to be

processed. In fact, this research focuses on Canny edge

detection as a case study of probing parallelism. This

work presents the design and implementation of

sequential and parallel edge detection algorithms that are

capable of producing high-quality results and performing

at high speed. Therefore, this research aims to improve

the Canny edge detection algorithm in terms of speed

and scalability with different sizes of images. The

algorithm is implemented using parallel clusters on

KACST’s SANAM supercomputer. It is found that there

is a valuable gained speedup with respect to the

sequential version.In addition, it is found that more

parallelism is explored in larger image sizes with Canny

edge detector.

KEYWORDS

Canny Edge Detection, Sequential Implementation,

Parallel Processing, Parallel Cluster, SANAM.

1 INTRODUCTION

The importance of image detection algorithms is

increasing with the advance of technology due to

the recent expansion of images in industry. The

tools that acquire images became handy to an ample

number of users. These are interested in assessing

the quality of the acquired images. Image edge

detection is one of the most essential methods in

image processing for image quality assessment,

image analysis, image pattern recognition, and

computer vision. Actually, the importance of image

detection comes from the fact that it is the first step

to be conducted on images.

In the literature, many filters are used to conduct the

image edge detection. These include Prewitt,

Canny, Roberts, and Sobel. In [1], the researchers

proved that although the Sobel operator is the

simplest amongst the previously mentioned ones;

however, it is sensitive to noise. On the other hand,

the Canny operator applies Gaussian filter to

remove any noise in the image. Therefore, better

results are guaranteed. In addition, [2] found that

almost 90% of the edges are correctly detected

using Canny operator.

However, the Canny edge detection algorithm

suffers from complex computations and therefore, is

time consuming. Given an image of size mxn, the

time complexity of the Canny algorithm is found to

be O(mn log mn). In order to make the algorithm

produce its results in real time, parallelism is

needed.

There are two main parallel programming models;

namely, the shared memory processor (SMP) and

the parallel clusters - also known as message-

passing processors (MPP). This classification is

based on the way the memory is shared between the

multiprocessors [3]. In SMP, the processors

communicate with each other through a common

memory. On the other hand, MPP is a distributed

memory parallel architecture. Communication

between processors is conducted through message

passing. A hybrid architecture of both SMP and

MPP is also available.

Acceleration of Canny Edge Detection Algorithm Using Parallel Clusters
Njood S.Alassmi and Soha S. Zaghloul, PhD.

College of Computer & Information Sciences, Department of Computer Science, King Saud University, Riyadh

435920199@student.ksu.edu.sa, smekki@ksu.edu.sa .

1

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

mailto:435920199@student.ksu.edu.sa
mailto:smekki@ksu.edu.sa

The aim of this research is tomaximize the speedup,

the efficiency, and the scalability of the parallel

program. Also, the accuracy of the detected edges

should be at least the same as the sequential version.

The layout of this research is as follows: Section 2

exposes similar work in the literature. Section 3 and

Section 4 detail the sequential and parallel versions

of Canny algorithm respectively. Section 5 explains

the performance metrics to be measured in the

experiments. Results are shown and analyzed in

Section 6. Section 7 concludes the research and

gives a hint about the future work.

2 REVIEW OF RELATED STUDIES

This research focuses on Canny edge detection as a

case study to implement the parallelism concept. In

order to implement the Canny edge detection

algorithm, a series of steps must be followed. The

first is to filter out any noise in the original image

before attempting to detect any edges. This can be

done by applying the Gaussian filter that can be

computed using a simple mask. After smoothing the

image and removing the noise, the next step is to

find the edge strength by measuring the gradient of

the image. Subsequently, the direction of the edge

should be computed using the gradient in the x and

y directions. After the edge directions are known,

non-maximum suppression should be applied,

which is used to trace along the edge in the edge

direction and suppress any pixel value. This results

in a thin line in the output image. The final stage is

edge tracking by hysteresis; the final edges are

determined by suppressing all edges that are not

associated with the definite edge [4]. Y. Kong et al.

[5] implemented the Canny edge detection method

and found that almost 90% of the edges are

correctly detected. However, disadvantages include

intensive and complex computations, ensuring that

it is time consuming. The overall time complexity is

found to be O (m*n log m*n), where m and n are

the width and length of the image in terms of pixels.

With the prevalence of parallelism, image edge

detection algorithms are implemented in various

parallel environments, including GPUs, SMPs, and

MPPs. In [6] and [7], the authors proved the

efficacy of the GPU in conducting millions of pixel

calculations involved in image processing in

parallel. In addition, [8] examined the edge

detection in both sequential and parallel algorithms

in order to measure the speedup. The results

indicate that the parallel implementation is about

262 times faster than the sequential implementation.

In [9], the authors proposed a parallel Canny

algorithm for the embedded CPU and GPU

heterogeneous. The results showed that the

proposed parallel Canny algorithm achieved nearly

50 times speedup on the embedded systems. They

used differently sized images for the tests. For

512×512 images, the runtime of a Canny algorithm

in sequential implementation is found to be over

1,5898 milliseconds. Otherwise, Canny improved

the runtime to a level of 3,310 milliseconds by

using embedded CPUs and GPUs.

In [10], a parallel version of the Canny algorithm is

applied on a SMP environment. The maximum

gained speedup is around 1.7 when using three

threads for an image size of 2000x2000 pixels.

In [11]-[13], the edge detection algorithm is applied

on parallel clusters. In [11], the authors used 4

parallel clusters, and achieved a gained speedup

mostly above 0.7 for a 2Kx2K image. In [12], the

authors applied K-means clustering. It is found that

the algorithm is more accurate in edge recognition;

however, it takes more time (3.32 seconds as

opposed to 1.28 seconds for Canny). Finally, in

[13], the authors used 10 parallel clusters and the

execution time is found to be 0.0311 seconds for an

image size of 2.5K x 2.5 K.

3 SEQUENTIAL ALGORITHM

The Canny edge detection algorithm is proved to

provide the optimal edge detector [14].The

algorithm goes through four steps before reaching

the final result. The input image is read into an array

of size m×n where m and n are the width and length

of the image respectively in terms of number of

pixels. The algorithm starts by storing the 2-D 2

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

image in a 1-D array to simplify processing in later

phases. Then, the algorithm visits every pixel of the

image and makes the modifications as detailed

below. The algorithm goes through a series of steps

[15]:

1. Noise Removal: The first step is to filter any

noise in the original image before attempting to

detect edges. This is done using Gaussian filter

computed by a simple mask and exclusively used

in the Canny algorithm.

2. Gradients Calculation: After eliminating the

noise and smoothing the image, gradients of the

image are taken for each edge, gradient

magnitude (M) represents the edge intensity.

3. Thresholding:

Two thresholds, upper and lower, are used to

detect image edges. This allows for greater

flexibility than using a single threshold approach.

4. Edges Classification:

The thresholding is used to detect the final edges

in an image by using the two thresholding values

of v_low and v_high. In this step, the pixels are

classified into three categories in terms of the

value of the magnitude M. If a pixel gradient is

higher than the high threshold (M >v_high), the

pixel is accepted as a strong edge. If (v_low ≤ M

<v_high), the pixel is classified as a weak edge

and waits for thejudgement of the edge points. If

(M <v_low), the pixel is classified as a non-edge,

and therefore, rejected.The diagram in Fig.1

shows the main steps of the approach for Canny

edge detection.

The diagram in Fig.1 depicts the previously detailed

steps of the approach for Canny edge detection. A

major disadvantage of Canny is its intensive and

complex computations making it time consuming.

In order to measure the overall program complexity,

the complexity of each step is first calculated

independently. Steps 1 to 3 are implemented by

image convolution. For an mxn image size, the time

complexity is therefore O (mn log mn) for the first

three steps. The final step of thresholding is

implemented by the final step of thresholding is

implemented by selecting all the high values and

removing the low values. This can be done in time

O (mn) [15]. Therefore, by taking the highest

complexity, it is found that the overall time

complexity is O (mn log mn).

Figure 1. The flow chart of the sequential version for Canny

Edge Detection steps.

4PARALLEL ALGORITHM ON CLUSTERS

Clustering is a technique to configure multiple

machines belonging to a general network for

parallel purposes. A cluster consists therefore of a

set of nodes interconnected by high technology

network.

The algorithm for parallel clusters is divided into

three main parts: the partitioning of the image, the

implementation of the Canny filter, and finally, the

merging of sub-images.

- Image Partitioning 3

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

The first step to make use of data parallelism on

clusters, is to partition the image. This is explained

as follows: the image is divided into chunks; each

chunk is to be processed independently. In this

experiment, the partitioning is conducted more than

once to conclude the relationship between the

execution and the number of partitions. The aim is

to find the number of partitions that yield the

highest speed-up.

Fig.2 explains the image partitioning by deciding

the chunk size in terms of number of rows and

columns. The image is partitioned to equal-sized

chunks. It is assumed that the size of the image is

divisible by the number of chunks, and therefore,

there are no left-overs. For example, if the numbers

of rows and columns are set to three, the algorithm

divided the original image into nine chunks. Then,

each sub-image is saved and assigned to a node.The

partitioning process is conducted in parallel. In

other words, all sub-images are produced and

distributed simultaneously.

Canny edge detection is then applied on each sub-

image independently and simultaneously. Thus, all

sub-images are processed in parallel.

Figure 2. The Pseudo-code of the the image partitioning.

-Image Merging

As soon as a sub-image is processed; it is sent to a

specified node for merging. This results in the

original image after being subject to the Canny

operator. Fig. 3 illustrates the pseudo-code for

merging the sub-images. First, the same chunk size

- in terms of numbers of rows and columns - as

previously determined in the partitioning step is

used. Then, all sub-image files are sent to a specific

node that is responsible to execute the merging

process. Finally, all sub-images are read in order, to

get the final original image after applying the Canny

edge detection.

Figure 3. The Pseudo-code of the image Merging

partitioning.

- Applying Canny Filter

The parallel edge detection algorithm follows the

data parallelism which is most suitable to almost all

image processing applications [1]. Parallel image

processing is suitable for the clusters environment if

there are little sequential dependencies.

Consequently, there is minimum message passing

involved between the computing processors [16].

Each node applies the sequential version of the

Canny algorithm on different partitions

simultaneously. The diagram in Fig. 4 depicts the

previously detailed steps of the approach for edge

detection cluster.

Figure 4.The architecture of parallel cluster. 4

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

5 PERFORMANCE METRICS

The performance of the parallel algorithm is

measured by comparing it to the sequential

algorithm. Three main metrics are used to measure

such improvement; namely, the speedup, the

efficiency, and the scalability. In addition, the

experiments target to find the number of partitions

that give the highest speed up in the parallel clusters

environment. In addition, the accuracy of the edge

detection is of major concern. These are detailed in

the following sections

- Speed up

The speedup (S) is defined as the ratio of the

execution time of the serial implementation (Tseq)

over the execution time of the parallel

implementation(Tpar). Let T(N, 1) be the time

required for the best serial algorithm to solve a

problem of size N on one processor; and T(N, K) be

the time for a given parallel algorithm to solve the

same problem of the same size N on K processors.

Thus, speedup is defined as [12]:

S (N, K) =

(1)

-Efficiency

The Efficiency (E) is a metric that identifies how

close a program is to the ideal speedup. In other

words, it measures the extent to which the program

uses the hardware resources efficiently. E is a

fraction between 0 and 1. A program whose E is

closer to 1 makes better resources utilization. As the

program’s efficiency is closer to 1, as it is closer to

the ideal status. Efficiency is therefore measured

using the following formula [13]:

E (N, K) =

=

 (2)

-Scalability

The scalability of a program measures its ability to

handle larger amounts of data. A program’s size-up

is the size of the parallel version running on K

processors relative to the size of the sequential

version running on one processor for a given

running time T. This is expressed in the following

formula [13]:

Size-up (T, K) =

(3)

6 EXPERIMENTAL RESULTS

In this section, we undergo a set of experiments on

the parallel version of the Canny filter. The

experiments’ environment is detailed in Section 6.1.

Section 6.2 explains the followed methodology in

conducting all experiments. Section 6.3 investigates

the optimum number of partitions that gives the
5

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

least execution time. Section 6.4 explores the

speedup of the parallel program. Section 6.5 and

Section 6.6 examine the efficiency and scalability

respectively. Section 6.7 demonstrates the validity

of the parallel program in edge detection. Finally,

Section 6.8 compares our results with previous

similar works.

6.1 Experiment Environment

In this research, the Canny image edge detector is

implemented in two versions: the sequential, the

and the parallel clusters. Both versions are

implemented on the Saudi SANAM supercomputer.

SANAM belongs to King Abdel-Aziz City for

Science and Technology (KACST). It is ranked

second in the Green500 worldwide list of the most

energy-efficient computers, as per the listing of

November 2012. The KACST’s supercomputer

comprises standard servers connected via the high-

speed network InfiniBand. It consists of 210 servers

with 3,360 processor kernels [17]. In terms of

computing speed, SANAM is about 40% faster than

the German supercomputer “LOEWE-CSC”. In

addition, it requires only one-third of the power per

computing operation. This is achieved by using a

larger number of high-performance graphic chips in

conjunction with software optimizations, as well as

by using energy-efficient storage chips.

SANAM works under the Linux operating system.

On the other hand, it uses Slurm: a highly scalable

cluster workload manager and job scheduling

system. It is available as an open-source basis and

can deliver fault-tolerant cluster workload

management for Linux clusters of various sizes

[19]. A server includes two Intel Xeon E5−2650

CPUs (8 Hyper-Threading-enabled cores per

processor). Each of the 256 server nodes has two

AMD FirePro S10000 dual GPUs. Every node

contains 128 GiB of main memory and has an on-

board InfiniBand HCA [18].

6.2 Methodology

The measurement of the run time is a basic step in

this research for both sequential and parallel codes.

This is essential since the speedup is measured in

terms of the execution times of both versions.

However, practically speaking, the execution time

of a program is rarely the same for multiple

successive runs. This is because the underlying

operating system is active all the time. Since it is

impossible to control the OS activity, then a

program is run multiple times (from 7 to 10 times),

and the minimum value is recorded for the

experiment. Taking the minimum value corresponds

to the least interference of the operating system

activities during the program run.

 6.3 Optimum Number of Partitions

On the other hand, Table 1 depicts the execution

time of the parallel version run on 10 nodes with

different number of partitions. The parallel version

is run on the same images used with the sequential

version.

The table proves experimentally that for each image

size, the execution time decreases with the increase

of the number of partition. However, there is a

different turning point for each image size: these are

50 partitions for the 1024x1024 image, and 60

partitions to the other two image sizes. At these

turning points, the execution time begins to increase

again. Fig. 5 depicts this relationship.

This is due to the increasing efforts to

partition/merge larger number of sub-images. In

addition, the limitation of the available hardware

resources with respect to the number of partitions

affects the execution time.

It is also noticed that the execution time increases

with the increase of the image size for the same

number of partitions. This is explained to the fact

that the chunk sizes are equal for the three sizes;

therefore, the number of sub-images increases with

the increase of the image size.

6

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 5.Relation of Execution Time with Number

of Partitions.

6.4 Measuring Speedup

In this set of experiments, our aim is to test the

performance of the parallel algorithm on Clusters.

The sequential program is run on a single node;

whereas the parallel version is destined to run on 10

nodes. In the parallel version, the same program

runs with different sets of data on each node.

Experiments are applied on three image sizes to

measure the running time according to the

methodology previously explained in section 6.2.

The results of the sequential run are shown in Table

2.

It is noticed from Table 2, that the execution time is

directly proportional with the image size. These

results are expected since more processing is needed

for larger images.

The minimum execution times for the parallel

version are taken for the three image sizes. These

correspond to number of partitions equal to 40, 50

and 50 for 1024x1024, 2000x2000 and 2500x2500

pixel images respectively. By applying formula (1),

the speedup is found to be 1.97, 3.71, and 4.87

respectively for the three image sizes. More

comprehensive results on all numbers of partitions

are illustrated in Fig. 6.

Figure 6.The speedup of SANAM Canny edge detection

for the different number of partitioning.

From the graph, it may be concluded that the

parallel version reduces the execution time of the

sequential Canny filter. In addition, it is noticed that

it is more beneficial to use the parallel version in

case of larger images since it yields the maximum

speed-up.

6.5 Efficiency

Table 3 and Fig. 7 depict the results of the

efficiency experiments numerically and graphically

respectively. Obviously, the efficiency increases

with the increase of the number of partitions till a

peak at which it starts to decrease. The maximum

obtained efficiencies are 0.22, 0.37 and 0.49 for the

three images respectively.

Figure 7.Relationship of Eefficiency of the parallel

Canny with Number of Partitions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 20 30 40 50 60 70

Ex
ec

u
ti

o
n

 T
im

e(
m

se
c)

Number of Partitions

The execution time vs. number of partitions

1024x1024 pixels 2000x2000 pixels 2500x2500 pixels

0

1

2

3

4

5

6

1024x1024 pixels 2000x2000 pixels 2500x2500 pixels

Sp
ee

d
 U

p

Image size

The Speedup vs. Number of Partitions

10

20

30

40

50

60

70

Sequent
ial

0

0.5

1

1.5

1024x1024 pixels 2000x2000 pixels 2500x2500 pixels

Ef
fi

ci
en

cy

The efficiency for the different partitioning.
Seque
ntial

10

20

30

40

50

60

7

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

6.6 Scalability Measurement

The scalability of a parallel program is performed as

follows: The sequential program is run many times

with differenct image sizes till the run crashes. The

last size before the crash is recorded as Nseq. This

represents the largest problem size that can be

handled by the sequential program. The same step is

repeated for the parallel program. Npar represents

the largest size that can be handled by the program.

Then, the scalability factor, or the sizeup, is

calculated according to formula (3) above.

Since the sequential program runs on a single node,

and the parallel version on ten nodes, Nseq and

Npar are denoted as N1 and N10 respectively.

Fig. 8displays the execution time of different image

sizes till the program crashes. The blue and red lines

in the graph represent the results of the sequential

and the parallel versions respectively.

From the graph, the program crashes at sizes equal

5Kx5K and 9Kx9K for the sequential and parallel

programs respectively. Therefore, the sizeup is

calculated as follows:

Scalability factor (10 nodes) =

 =

 = 1.8

A shared memory processor (SMP) environment

lacks scalability [10]. However, this limitation is

when using SANAM clusters, which can deal with

the images of larger sizes.

Figure 8.Relationship of Exectution time with

Image Size.

6.7 Edges Accuracy

In this section, the accuracy of the parallel program

is investigated. The importance of such experiment

is to ensure the validity of the parallel program. Fig.

9 shows the original images in (a); the resulting

detected edges using sequential program and the

Cluster programs are shown in (b) and (c)

respectively. Obviously, the edges are more precise

in the images resulting from the parallel program

compared to their counterparts produced from the

sequential program.

(a)

(b) (c)

0

1

2

3

4

5

Ti
m

e
(s

ec
)

Image size

Scalability Factor for 10 Nodes

Sequential

Cluster

8

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 9. The edge detection results of the three

images by using sequential and Cluster versions.

6.8 Comparison with Similar Work

In this section, the speedup results are compared to

previous similar work. Our comparison is limited to

those studies that used the same sizes of images as

our experiments for more accurate conclusions.

In [11], they used an image 1024x1024 pixels in

their experiment by using only 4 clusters. Our

program outperforms by 81.98%. In [12], the

experience is conducted on an image of size

2000x2000 pixels. SANAM gave a better result rate

by 81.13%. Finally, in [13], they applied the

approximation experiment using 10 clusters. The

results are almost the same, slightly in favor of

SANAM’s result with a percentage close to 0.81%

The comparisons are summarized in Fig. 10.

Figure 10.Comparison with Similar Work.

7 CONCLUSION

This researchimplements the Canny edge detection

algorithm on parallel clusters. Ten nodes are used

on KACST’s SANAM supercomputer.

The image is partitioned, the Canny filter is applied

on each sub-image simultaneously, and then the

sub-images are re-collected and merged to give the

edges of the big image.

Experiments target to find the optimum number of

partitions. Also, the speedup, the efficiency, and the

scalability of the parallel program are investigated.

In addition, the accuracy of the detected images is

examined. It is found that the speedup, the

efficiency, and the scalability are drastically

increased. In addition, the edges are more precise as

compared to the results of the sequential program.

Our work is compared to previous similar work, and

it is found that it gives the highest speedup.

ACKNOWLEDMENT

We would like to extend our gratitude to King

Abdel-Aziz City for Science and Technology

(KACST) in Riyadh for allowing us to use their

SANAM supercomputer at all times. Not only this,

but the staff was also of great support and helpful;

replying to our posed questions promptly albeit their

heavy duty load.

REFERENCES

[1] M. Raman R., and H. Aggarwal. “Study and comparison of

various image edge detection techniques”. International

Journal of Image Processing (IJIP), Vol. 3, No. 1, 2009.

[2] A.-A.-N., Y. Kong, and M. N. Hasan, “Performance

analysis of Canny's edge detection method for modified

threshold algorithms,” 2015 International Conference on

Electrical & Electronic Engineering (ICEEE), 2015.

[3] B. Parhami. “Introduction to Parallel Processing:

Algorithms and Architectures”. Boston, MA: Springer US,

2002.

[4] M. Raman R., and H. Aggarwal. "Study and comparison of

various image edge detection techniques," International

journal of image processing (IJIP) Vol.3 no.1, 2009.

[5] A.-A.-N., Y. Kong, and M. N. Hasan, “Performance

analysis of Canny's edge detection method for modified

threshold algorithms,” 2015 International Conference on

Electrical & Electronic Engineering (ICEEE), 2015.

[6] M. R. Vahidi, M. M. RiahiKashani and A. Bagheri, “An

efficient gradient based algorithm for improving performance

of image edge detection,” International Journal of Computer

Applications, 103(4), 2014.

[7] A.-A.-N., Y. Kong, and M. N. Hasan, “Performance

analysis of Canny's edge detection method for modified

threshold algorithms,” 2015 International Conference on

Electrical & Electronic Engineering (ICEEE), 2015.

0.7
0.4

4.86 4.9

3.71

2.22

0

1

2

3

4

5

6

2500X2500 2000x2000 1024x1024

Sp
e

e
d

-u
p

Image size
Cluster(4PC)[11] Cluster(4PC)[12]

Beowulf Cluster[13] SANAM Cluster

9

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

[8] A. Jain, A. Namdev and M. Chawla, "Parallel edge

detection by SOBEL algorithm using CUDA C," 2016 IEEE

Students' Conference on Electrical, Electronics and Computer

Science (SCEECS), pp. 1-6, 2016.

[9] D. Yuefan. “Applied Parallel Computing,” Singapore, US:

Imperial College Press, 2012.

[10] NjoodAlAssemi, Soha S. Zaghloul, Phd. Speeding Up

Canny Edge Detection Using Shared Memory Processing.

International Journal of New Computer Architectures and their

Applications (IJNCAA). Vol. 7, No. 3, September 2017, pp.

68 – 76.

[11] N. E. A. Khalid, N. M. Noor, S. A. Ahmad, M. H. Rosli,

and M. N. Taib, “Parallel Laplacian Edge Detection

Performance Analysis on Green Cluster Architecture,”

Communications in Computer and Information Science Digital

Enterprise and Information Systems, pp. 308–316, 2011.

[12] W. Ju, J. Liu and S. Jin, "An improved clustering based

on edge detection method," 2016 35th Chinese Control

Conference (CCC), Chengdu, pp. 4026-4030, 2016.

[13] Haron N., Amir R., Aziz I.A., Jung L.T., Shukri S.R.,

“Parallelization of Edge Detection Algorithm using MPI on

Beowulf Cluster,” Innovations in Computing Sciences and

Software Engineering, Springer, 2010.

[14] A. Muntasa, “Hybrid Method Based Retinal Optic Disc

Detection,” International Journal of New Computer

Architectures and their Applications, vol. 5, no. 3, pp. 102–

106, 2015.

[15] G. M. H. Amer and A. M. Abushaala, "Edge detection

methods," 2015 2nd World Symposium on Web Applications

and Networking (WSWAN), Sousse, pp. 1-7, 2015.

[16] A. Kaminsky, “BIG CPU, BIG DATA: Solving the

World’s Toughest Computational Problems with Parallel

Computing” 2nd ed, Boston, MA: Course Technology,

Cengage Learning, 2015.

[17] KACST The Saudi Supercomputer "SANAM" is the

World's 2nd Leader in Energy Efficiency. [Online]. Available:

https://www.kacst.edu.sa/eng/about/news/Pages/news3841117

-3854.aspx . [Accessed: 28-Feb-2017].

[18] D. Rohr ndS.Kalcher., "An Energy-Efficient Multi-

GPU Supercomputer," 2014 IEEE Intl Conf on High

Performance Computing and Communications, 2014 IEEE

6th Intl Symp on Cyberspace Safety and Security, 2014

IEEE 11th Intl Conf on Embedded Software and Syst

(HPCC, CSS, ICESS), Paris, pp. 42-45, 2014.

[19] “Slurm Workload Manager,” Slurm Workload

Manager. [Online]. Available: https://slurm.schedmd.com/.

[Accessed: 05-Dec-2017].

Appendix

Table 1: Results of parallel execution time in SANAM.

Number of Nodes = 10 Nodes, Time= milliseconds.

Image size

Partition

1024x1024

pixels

2000x2000

pixels

2500x2500

pixels

10 200 255 279

20 196 233 252

30 177 225 236

40 160 206 222

50 180 190 215

60 240 263 303

70 290 375 360

Table 2: Results of sequential execution time in SANAM.

Number of Nodes = 1 Node

Image size 1024x1024

pixels

2000x2000

pixels

2500x2500

pixels

Time

(milliseconds)

355 704 1045

Table 3: Efficiency of Parallel Program for Various

Number of Partitions.

Number of Nodes = 10 Nodes

Image size

Partition

1024x1024

pixels

2000x2000

pixels

2500x2500

pixels

10 0.178 0.276 0.375

20 0.181 0.302 0.414

30 0.201 0.313 0.466

40 0.222 0.341 0.470

50 0.197 0.371 0.490

60 0.148 0.267 0.344

70 0.122 0.187 0.290

10

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 1-10

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

https://www.kacst.edu.sa/eng/about/news/Pages/news3841117%20-3854.aspx
https://www.kacst.edu.sa/eng/about/news/Pages/news3841117%20-3854.aspx
https://slurm.schedmd.com/

Measuring the Performance of Data Placement Structures for

MapReduce-based Data Warehousing Systems

S. Kami Makki and M. Rakibul Hasan

Department of Computer Science

Lamar University

Texas, USA

kmakki@lamar.edu, mhasan4@lamar.edu

Abstract - The exponential growth of data

requires systems that are able to provide a

scalable and fault-tolerant infrastructure for

storage and processing of vast amount of data

efficiently. Hive is a MapReduce-based data

warehouse for data aggregation and query

analysis. This data warehousing system can

arrange millions of rows of data into tables, and

its data placement structures play a significant

role for increasing the performance of this data

warehouse. Hive also provides SQL-like language

called HiveQL, which is able to compile

MapReduce jobs into queries on Hadoop. In this

paper, we measure the efficiency of these data

placement structures (Record Columnar File

(RCFile) and Optimize Record Columnar File

(ORCFile)) in terms of data loading, storage and

query processing using MapReduce framework.

The experimental results showed the effectiveness

of these data placement structures for Hive data

warehousing systems.

Index Terms - Big Data; Hive; MapReduce;

ORCFile; RCFile

1. INTRODUCTION

We are in the phase of fast technological

advancement, where every sectors of any

business is generating an unprecedented

amount of data through its daily processes.

Digitalization of every device and escalating

the number of Internet users help to grow the

data exponentially which makes the

traditional data processing technology

obsolete. According to ACI in 2012, 2.5

Exabyte's of data were generated in every day

[3], and the total volume of data in the world

is doubled every two years [10]. Statistics

show that two billion people connected to the

Internet in 2015, which is 100 times more

than 1999 [8].

Therefore, the stunning growth in the

number of users as well as variety of different

devices that easily can connect to Internet

generate huge and complex data or Big data.

The authors in [1] defined the characteristics

of Big data by the volume, variety, velocity

and value. The Volume indicates the amount

of data which is generated by the users, where

this data has unknown value and low density.

The Velocity refers to the rate of speed at

which the data are generated and evaluated in

real time manner to meet the users’ demand

and challenges. The Variety refers to the

massive amount of data which is accumulated

with huge speed, and can be of different types

and nature such as structured, semi-structured

and unstructured data. The Veracity indicates

the quality of captured data, which totally

depends on the source of data.

MapReduce framework provides a fault-

tolerant infrastructure for processing of Big

Data on large clusters. The MapReduce-based

warehouse systems (such as Hive) are playing

an important role for the effectiveness of web

service providers and performance of social

network websites. Hive stores large amount

of data using distributed clusters [5], and

efficient data placement structures are much

needed factor for proper data organization.

Hive uses two types of file format structures

to store the data, such as RCFile (Record

Columnar File) and ORCFile (Optimize Record

Columnar File).

11

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

In this research, we investigate the

effectiveness of RCFile and ORCFile of Hive

data warehousing system. The goal of this

research was to find out the most useful data

placement structures that satisfy the

requirements such as fast data loading, fast

query processing, highly efficient storage

space utilization, and strong adaptability to

highly dynamic workload patterns. The rest of

the paper has been organized as follow.

Section 2, provides the background

information on Big Data Technology, the

Hadoop system architecture and Hive. In

Section 3 we explore different data placement

structures for Hive data warehousing system.

Section 4 presents the performance evaluation

of the RCFile and ORCFile for data loading,

query processing and data storage. Finally

Section 5 presents the conclusion.

2. BIG DATA TECHNOLOGY

2.1 Hadoop

Hadoop is a Java based open source system

developed by Apache Software Foundation,

which can store, process, and analyze a large

volume of datasets in parallel on clusters of

computers. Hadoop can scale up easily from a

single server to hundred servers, where each

server provides local computation and storage

capability. Hadoop has four core modules:

MapReduce, HDFS (Distributed storage),

Yarn framework, and common utilities.

MapReduce is a programming model to

process a large volume of datasets in parallel

on clusters of computers [13]. MapReduce

uses two methods: Map and Reduce. The

Map method takes the raw data as input and

breaks the data into numbers of smaller data

sets. Each data set in a Map method receives

a key/value pair and produces intermediate

key/value pairs, and stores the output of a

temporary storage system for further

processing. The Reduce method combines all

the intermediate key/value pairs based on the

intermediate key and generates new sets of

output. Besides Map and Reduce methods,

shuffling is another process to transfer the

data from Map processes to Reducers. The

MapReduce tasks are executed in the local

disk to avoid the network congestions, and

the results will be sent to the appropriate

servers [16, 17].

Hadoop has a file system named Hadoop

Distributed File System (HDFS). The HDFS

has master-slave architecture, which

introduces master as NameNode, and slaves

as a number of DataNodes [16]. NameNode

controls the file system namespace and stores

the metadata across the clusters. Metadata

contains the information about where and

which DataNode has stored which data files.

The data files are broken into multiple pieces

of blocks, and the size of each block is 128

MB by default. NameNode is responsible for

namespace operation such as opening,

closing, renaming files directories, and

mapping blocks to DataNodes [4]. It does not

control the block operation since DataNodes

arrange the blocks whenever the system

starts. Hadoop provides two mechanisms to

make a NameNode consistent and protect it

from the single point of failure. The first one

is creating backup files of metadata to

multiple file systems, and the other one

maintains a secondary NameNode in a

different machine. The secondary NameNode

periodically merges the namespace images

and keeps an updated copy in its own spaces.

It provides a backup NameNode when

original NameNode fails. Figure 1 shows the

architecture of HDFS. A DataNode also

stores data in different blocks in HDFS and

allows read /write operations by clients [4].

DataNodes are responsible for performing

block creation, deletion and replication

according to the instructions by the

NameNode. The NameNode and DataNodes

are communicating by heartbeat messages

every 3 seconds. A DataNode is considered to

12

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

be dead if it does not receive a message

within a few seconds.

Figure 1. HDFS architecture [2]

2.2 Hive Data Warehousing System

The Apache Hive was developed by

Facebook to manage its growing volume of

data that Facebook produces everyday from

its social networking activities [16]. Hive is

included in Hadoop as a data warehouse.

Hive supports SQL like scripts called

HiveQL, to run a query on a large volume of

data using MapReduce. Hive maintains

metastore to contain schema and statistics for

data exploration, query optimization and

query compilation.

In Hive, data are organized in three formats,

which are tables, partitions, and buckets. The

tables are much like to the relational

databases system. The second format is the

partitions, which divides the data tables into

subdirectories, which are defined by the data

type characteristics. The last of data format is

buckets, which can store data in both

partitions and table's directory that depends

on whether the table is partitioned or not

[12,14]. Figure 2 shows the architecture and

integration of Hive and Hadoop.

The External Interfaces supports different

types of interfaces to initiate the works

between users and HDFS, such as Command

Line Interfaces (CLI), Web Interfaces, and

programming interfaces (JDBC, ODBC).The

Thrift Server supports cross-language

services, which works with clients API to

execute query statement. Metastore helps

Hive to store the system catalog and

metadata, where they contain details

information about tables, columns, and

partitions and so on [12]. Driver maintains

sessions and statistics of HiveQL statement,

which moves to Hadoop through Hive. Query

Compiler compiles user defined HiveQLs into

MapReduce tasks. Execution Engine is

responsible for executing the tasks produced

by compiler and MapReduce, which

maintains the dependency order to

communicate with the Hadoop modules.

Figure 2. Architecture and integration of Hive

and Hadoop

3. DATA PLACEMENT STRUCTURES

3.1 Record Columnar File (RCFile)

RCFile (Record Columnar File) is a data

placement structure for MapReduce-based

data warehouse systems (HIVE) which can

organize a large volume of data on HDFS

clusters. The RCFile is a combination of

multiple features such as data storage format,

data compression and data optimization

techniques [2]. In data storage format, tables

are stored first horizontally, and then

vertically to organize each column

independently in the clusters. RCFile supports

column-wise data compression technique

(lazy decompression) within each row group

that helps to avoid unnecessary column reads

13

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

during query execution. Furthermore, RCFile

allows to select flexible row group size and

arrange the same row data in the same node

that increases the performance of data

compression and query execution [5]. Figure

3 shows the layout strucure of a RCFile.

Figure 3. RCFile layout structure

A row group in RCFile has three

components, which are synch marker,

metadata header and column store. Synch

marker is the beginning placement and helps

to isolate the two-row groups in an HDFS

block. Metadata stores the information of all

row groups, such as how many row groups

are placed, the size of each column as well as

the size of each field in a column. The last

one is column store, which helps to arrange

all the fields in the same column together.

3.1.1 RCFile Data Compression

In RCFile, metadata header and table data

sections are compressed separately. The

metadata header section uses RLE (Run

Length Encoding) algorithm to compress as a

whole unit and the data table section

compress each column independently [5].The

RLE can find long run repeated values

because all the values in a column are stored

in continuously. For each column, RCFile

supports separate algorithm to compress data

in each table section. RCFile does not

support random writing operation rather than

it provides an interface for appending to the

end of the file. RCFile maintains a memory

column holder for writing data in each

column. Before writing data to the disks,

RCFile uses two parameters to control the

memory buffer. The first parameter is to

control the number of records, and the second

parameter is to control the size of the memory

buffer.

3.1.2 RCFile Lazy Decompression

In MapReduce framework for each HDFS

block, a mapper is worked sequentially to

process each row group. For reading, RCFile

does not read the whole file rather than it

reads only metadata and the corresponding

columns to avoid the reading of unnecessary

columns in the row group. Then the metadata

header and compressed columns are loaded

into the memory for decompression. RCFile

uses lazy decompression technique that

remains in memory until the other row groups

are processed. Lazy decompression becomes

useful when there is a where condition in a

query, because if some row groups do not

satisfy the where condition then those row

groups do not need to be decompressed. For

example, consider a table (T) with the

following columns (col1, col2, col3,

col4,col5, …) and if there is a query such

as “select col1, col3 from T where

col2 = 2”. Then the RCFile only reads the

metadata header in the row group and

decompresses only those row groups that

match the where condition (i.e. col2 = 2) of

the above query, not other row groups that do

not match the where condition, and therefore

it saves time.

3.2 Optimize Record Columnar File (ORCFile)

3.2.1 ORCFile Structure

ORCFile is a data placement structure

similar to RCFile for Apache Hive for

14

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

organizing and storing large data. ORCFile

maintains one file for collections of rows,

which is arranged in a columnar format that

allows parallel processing of row collections

in clusters [11]. ORCFile structure has three

parts; these are stripes, file footer and

postscripts. Figure 4 shows the structure of

ORCFile [9].

Stripes hold the groups of row data and file

footer maintains a list of stripes in the file,

which contains the information of a number

of rows per stripe and column's data type that

includes aggregate functions such as count,

min, max and sum. Each stripe size is 256

MB by default, which is suitable for a

sequential read on HDFS. The larger block

sizes will reduce the load of NameNode

because the users can read more data from a

single file.The last part is postscripts, which

maintains compression parameter and the size

of the compressed footer.

Figure 4. ORCFile structure

The stripes have divided further into three

parts, which are index data, row data and

stripe footer. Index data maintains the

information of min, max values and the row

positions for each column. These row

positions are very efficient to find the specific

compression and decompression blocks by

providing the offset of indexes, where indexes

are used to select the stripes and row groups.

The row data stores multiple streams per

column independently and uses them for table

scans. Stripe footer provides directory

services such as encoding types and stream

locations.

3.2.2 Data Write and Compression

The ORCFile writer does not shrink the

tables or whole stripes at a time rather than it

applies data encoding and compression

techniques [7]. To write data into HDFS,

ORC uses memory manager to buffer the

whole stripe in the memory. Due to large

stripe size, ORCFile uses multiple writers

concurrently to write data in a single

MapReduce task, where memory manager

controls the memory consumption of writers

[6].

It supports two types of compression

techniques. The first one is automatically

used as type-specific encoding methods for

columns with various data types and the

second one is optional compression codecs

set by users called generic compression. A

column in a stripe can contain multiple

streams, where each stream can be divided

into four primitive types. These primitive

types are bytes, run length bytes, integers, and

bit field streams. Each stream uses the own

encoding technique, which depends on the

streams’ data types. For example, integer

columns data type are serialized into two

streams, which are bit stream and data stream.

For one bit or small integers, the variable

length encoding is used, and for the long data

streams of integers, the run length encoding

technique is used. Besides using these type-

specific encoding, users can also compress an

ORCFile by general purpose codecs such as

ZLIB, Snappy, and LZO [9] or others.

3.2.3 Data Read, Lazy Decompression

and Lazy Decoding

In an ORCFile, the performance of data

read is enhanced by lazy decompression

technique [15]. Without lazy decompression

and lazy decoding, a query seeks all the

15

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

stripes to bring out a specific column, which

will take a long time to finish the MapReduce

tasks. This decoding technique is used index

stride that already existed in ORCFile format.

The index stride helps the reader to skip

unnecessary stripes and only decompress and

decodes the target columns needed by the

query. The footer in the ORCFile has all the

stripes that contain the streams location.

Thus, the users query only read the stripe lists

to find the appropriate stripe location.

4. Performance Evaluation of RCFile and

ORCFile

4.1 Experimental Setup

The effectiveness of distributed systems

depends on how one can perform the read and

write operations, where the format of stored

data is an important metric for completing

these operations successfully. In this paper,

we choose the following three aspects (data

storage space, data loading time, and query

execution time) to determine the best data

structure between RCFile and ORCFile.

In this work, we have set up a virtual

Hadoop cluster, which consists of three

nodes. This cluster works as a master-slave

architecture, where master node maintains the

workspace to distribute, store and replicate

data to slave nodes. We have installed virtual

box software in each machine to configure

Hadoop environment. The operating system

in each virtual box was Ubuntu 14.04.2 LTS

64-bit. The host windows machine has 8 GB

memory with 3 GHz Intel Core i7 CPU,

where each node in the virtual box has shared

8 GB memory with 60 GB disk.

In our experiments, we used Hadoop 2.7.1

and Hive data warehouse 1.2.1. The

MapReduce was chosen as an execution

engine since it is the default data processing

engine used by Hive. The HDFS block size

was set to 128 MB, and its replication factor

was set to three. For these experiments, we

have used 6 GB dataset, which contained

movie reviews (5 million reviews) from

Amazon. The dataset consisted of eight

columns: Productid, Userid, Profilename,

Helpfulness, Score, Time, Summary, and

Text. All of them were string data type.

4.2 Performance Analysis

4.2.1 Data Storage Space

We have configured Hive with RCFile and

ORCFile to measure the compression

efficiency. Figure 5 shows their storage sizes

with compression and without compression.

We have used LZ4 compression technique to

compress the data using RCFile and ORCFile.

The figure shows both file formats have

reduced the size of data set significantly. The

RCFile reduces the data size from 6 GB to

3.29 GB, where ORCFile reduces even more

to 2.01 GB. That is because ORCFile uses

larger data blocks than RCFile.

Therefore, each block can arrange more

data in column format which allows

compressing each column independently.

Without compression, there is not much

difference between a text file and RCFile, but

ORCFile can decrease the file size

significantly compare with other file formats

because ORCFile uses a default compression

technique (ZLIB). So, the ORCFile provides

better storage efficiency than RCFile, whether

using compression technique or not.

4.2.2 Data Loading Time

To demonstrate the data loading time of

RCFile and ORCFile, we have measured both

MapReduce time and the total time to finish

the job. Figure 6 shows the data loading time

after compression, where it shows that

ORCFile take more time to load data than

RCFile. We have taken another result shown

in Figure 7, which shows the loading time for

these two files before using compression

technique.

16

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 5. Data storage space of RCFile and

ORCFile

4.2.3 Data Loading Time

To demonstrate the data loading time of

RCFile and ORCFile, we have measured both

MapReduce time and the total time to finish

the job. Figure 6 shows the data loading time

after compression, where it shows that

ORCFile take more time to load data than

RCFile. We have taken another result shown

in Figure 7, which shows the loading time for

these two files before using compression

technique.

Figure 6. Data loading time with compression

4.2.4 Query Execution Time

For measuring the query execution time we

used four queries as follow:

Query 1: select productid from

movie_rc;

Query 2: select reviewsummary from

movie_rc where Profilename =

"review/profileName: Jessica Lux" and

userid = "review/userId:

A2EBLL2OYEQJN9";

Query 3: select productid, userid,

profilename from movie_rc where Score

= "review/score: 50";

Query 4: select t1.productid,

t2.userid from movie_rct1 right outer

join movie_rc1 t2 on (t1.productid =

t2.productid) where t1.profilename =

"review/profileName: Jessica Lux";

Figure 7. Data loading time without

compression

Figure 8. Query execution time with

compression

17

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 8 shows the query execution time

after data is compressed and Figure 9 shows

the query execution time where data

compression technique have been used. In

both cases, ORCFile outperforms the RCFile

significantly because the lazy decompression

technique, which helps the ORCFile to skip a

larger block of data if it does not match a

query.

Figure 9. Query execution time without

compression

4.3 RCFile and ORCFile with Different

Row Group Size

Both RCFile and ORCFile allow the user to

set flexible data block sizes because large

data block can have better compression

efficiency than a small one, where small data

block may have better read or query

performance than a large one. Furthermore, a

large data block consumes more memory and

can affect MapReduce tasks. In this

experiment, we have used the same movie

review database as above, and size of the

dataset is 1.2 GB.

4.3.1 Data Storage Space

In this section, we have used different row

group sizes for RCFile and different stripe

sizes for ORCFile to demonstrate how they

affect the storage space. Figure 10 shows the

data storage efficiency of RCFile of different

row group sizes (from 512 KB to 48 MB).

Figure 11 demonstrates the data storage

efficiency of ORCFile of different stripe sizes

(from 4 MB to 256 MB).

Figure 10. RCFile storage space with different

row group sizes

Figure 11. ORCFile storage space with

different stripe sizes.

Figures 10 and 11 show that the larger

block sizes can be compressed more than

smaller block sizes. As a result, this reduces

the storage space for both file formats.

However, in the RCFile, when the row group

size is larger than 4 MB, the storage space

stays almost constant. As shown in Figure 11,

compression is more in ORCFile when the

stripe sizes are larger than 48 MB. So, the

18

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

ORCFile provides better storage space than

the RCFile with larger data blocks.

4.3.2 Query Execution Time

In this experiment, we have evaluated the

performance of lazy decompression technique

for both RCFile and ORCFile. Figure 12 and

13 show the query execution time for RCFile

and ORCFile. We have designed a query as

below with different characteristic according

to the where condition of a query.

Query 1: select review summary from
movie_rc where PROFILENAME =

"review/profileName: Jessica Lux";

Figure 12. Query execution times of different

data block sizes of RCFile

Figure 12 and 13 demonstrate that, when

row group sizes are large, RCFile shows

lower performance than ORCFile for query

execution. The ORCFile has the better query

performance when data block size is large

(256 MB), because the ORCFile can skip

large data block if it does not match the query

based on lazy decompression technique.

5. CONCLUSION

There are four essential requirements for data

placement structures, which are: to reduce the

data loading time and storage space as well as

enhancing the query performance and

adaptivity of dynamic workload pattern. Our

experimental findings showed that both file

formats have significant characteristics which

satisfy all four requirements of data

placement structures mentioned above.

Between RCFile and ORCFile, the RCFile

has a major inherent advantage in data

loading time over ORCFiles. Since the

RCFile has small row-group size than the

ORCFile, which effectively reduces the data

loading time. However, in the case of storage

space and query execution time, the ORCFile

outperform the RCFile. Though both data

placement structures (i.e. RCFile and

ORCFile) use column-wise compression, the

large row-group size inside each stripe in

ORCFile can hold and compress more data at

a single time and reduces more storage space

for ORCFile than RCFile. We have also

observed that ORCFile can skip large

numbers of unnecessary columns during a

query, which significantly improves query

performance. Thus, the ORCFile contains

most of the performance benefits features and

will play important role for data placement

structures in MapReduce-based data

warehouse systems on Hadoop.

Figure 13. Query execution times of different

data block sizes of ORCFile.

6. REFERENCES

[1] An Enterprise Architect ’ s Guide to Big Data.

19

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

ORACLE ENTERPRISE ARCHITECTURE

WHITE PAPER.

[2] RC/ORC File Format.http://datametica.com/

rcorc-file-format/

[3] The Data Explosion in 2014 Minute by Minute

– Infographic. Retrieved January 8, 2017,

from http://aci.info/2014/07/12/the-data-

explosion-in-2014-minute-by-minute-

infographic/

[4] HDFS Architecturehttps://hadoop.apache.org/

docs/ stable/hadoop-project-dist/hadoophdfs/

HdfsDesign. html

[5] He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N.,

Zhang, X., & Xu, Z. (2011). RCFile: A fast

and space-efficient data placement structure

in MapReduce-based warehouse systems.

Proceedings - International Conference on

Data Engineering, 1199–1208.

http://doi.org/10.1109/ICDE.2011.57679 33

[6] Huai, Y., Chauhan, A., Gates, A., Hagleitner,

G., Hanson, E. N., Malley, O. O., … Zhang,

X. (2014). Major Technical Advancements in

Apache Hive. SIGMOD ’14 - Proceedings of

the 2014 ACM SIGMOD International

Conference on Management of Data, 1235–

1246. http://doi.org/10.1145/2588555.

2595630

[7] Huai, Y., Ma, S., Lee, R., O’Malley, O., &

Zhang, X. (2013). Understanding insights into

the basic structure and essential issues of table

placement methods in clusters. Proceedings

of the VLDB Endowment, 6(14), 1750–1761.

http://doi.org/10.147 78/2556549.2556559

[8] Internet live user. http://www.internetlivestats.

com/internet-users/

[9] LanguageManual ORC https://cwiki.apache.

org/confluence/display/Hive/Language Manu

a l+ ORC#LanguageManualORC-orc-spec

[10] Big Data Solutions http://www.nttdata.com/

global/ en/services/bds/index.html

[11] ORC: An Intelligent Big Data file format for

Hadoop and Hive http://www.semantikoz.

com/blog/orc-intelligentbig-data-file-format-

hadoop-hive/

[12] Thusoo, A., Sarma, J., & Jain, Zheng S.,

Prasad C., Zhang N., Antony S., Liu H, and

Murthy R., (2010). Hive-a petabyte scale

data warehouse using hadoop. IEEE 26th

International Conference on Data

Engineering (ICDE 2010), pp. 996–1005.

http://doi. org/10.1109/ICDE.2010.5447738

[13] Hadoop - MapReduce. http://www.tutorial

spoint. com/hadoop/hadoop_mapreduce.htm

[14] Hive Introduction http://www.tutorialspoint.

com/hive/hive_introduction.htm

[15] Vagata, P., & Wilfong, K. (2014). Scaling

the Facebook data warehouse to 300 PB.

Retrieved January 11, 2016, from

https://code.facebook.com/posts/

229861827208629/scaling-the-facebook-

data-warehouse-to-300

pb/?attachment_canonical_url=

https%3A%2F%2Fcode.facebook.com%2Fp

osts%2F229861827208629%2Fscaling-the-

facebook-data-warehouse-to-300-pb%2F

[16] White, T. (2015). Hadoop: The definitive

guide (Vol. 54). http://doi.org/citeulike-

article-id:4882841

[17] Apache Hadoop https://en.wikipedia.org/

wiki/ Apache_Hadoop

20

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 11-20

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5443872
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5443872

Comparison of Parallel Simulated Annealing on SMP and Parallel Clusters for

Planning a Drone’s Route for Military Image Acquisition

Eman Alsafi and Soha S. Zaghloul, PhD

King Saud University

435204448@student..ksu.edu.sa

smekki@ksu.edu.sa

ABSTRACT

Drones are vastly used in many civil and military

applications. However, there are many factors to be

highly considered in military applications. Such

factors should ensure the sensitivity and the secrecy

of the mission. In order to send a military drone with

the aim of acquiring images from multiple sites, the

mission time should be the least possible. Therefore,

the minimum route plan is required. Simulated

annealing (SA) algorithm is one of the

metaheuristics selected to generate a feasible

solution to solve this problem. However, the

time complexity is too high. Therefore, this

research exploits the parallelism in the simulated

annealing with the aim of accelerating the time to

find a suitable solution. Parallel programming divides

the problem into smaller independent tasks, and then

executes the sub-tasks simultaneously. Two parallel

versions are therefore developed on different

environment: synchronous SA on SMP, and

asynchronous SA Complete Search Space (CSS) on

parallel clusters. Experiments are conducted on

the parallel clusters environment of the SANAM

supercomputer. This research details the CSS,

and compares it with the SMP SA developed in

our previous study. Comparison is made in terms

of speedup, efficiency, scalability, and quality of

solution.

KEYWORDS

Parallel processing; Simulated annealing; Parallel

Simulated Annealing; Shared-memory Processor;

Parallel Cluster; SANAM

1 INTRODUCTION

Recently, drones or Unmanned Aircraft Vehicles

(UAV) became very popular. This refers to their

ability to undergo dangerous missions without

exposing human beings’ lives to any type of

danger. Drones are associated with sensors and

devices such as cameras, computing units,

communication tools, and others. They are

remotely controlled [1,2].

Drones are utilized in diverse military and

civilian applications. Examples include, but are

not limited to, aerial surveillance, image

acquisition, remote sensing, and scientific

research [2]. In addition to saving human lives,

drones complete missions quickly with minimum

cost [1, 3]. On the other hand, the main

restriction imposed on a drone is its limited

energy; and therefore, flight time. Consequently,

one of the main challenges when dealing with

drones is to find an effective route plan in the

minimum possible amount of time [4].

As drones usually follow preloaded instructions

without human intervention, the route plan may

be generated either online during the flight, or

offline before taking off. Moreover, drones route

planning becomes more challenging when there

are several geographical locations to be visited

that are dispersed apart; these are called

waypoints [2]. This research targets for finding a

route plan that allows drones to acquire images

from predefined waypoints in the least possible

amount of time. Each waypoint is to be visited

exactly once. Obviously, this is analogous to the

well-known Travelling Salesman Problem

(TSP). Finding a near-optimum route plan is

necessary to minimize the drone’s power

consumption during the flight to cover the

largest possible geographical area; and therefore,

visit the largest number of targeted waypoints. In

addition, achieving the mission in the minimum

possible time ensures its secrecy.

However, solving TSP problem using a brute-

force approach requires a significant amount of

time to try every possible solution [2] . This

approach is not suitable for the problem in-

hands, since time and secrecy are both important

factors in military applications. Therefore, a

metaheuristics algorithm, the simulated

21

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

mailto:435204448@student..ksu.edu.sa

annealing (SA) algorithm is used. SA is capable

of finding an acceptable local optimum route

plan [5]. Although SA is used to solve several

complex problems, but it requires significant

processing time to find a suitable solution [6].

Therefore, parallel computing is expected to

positively contribute in the solution of this

problem. Parallelism may minimize the

execution time to fulfill the requirements of the

military mission. In addition, it may increase the

chance to provide a better-quality plan.

However, the SA is inherently sequential as each

new solution depends on the previous one.

Therefore, this imposes one of the challenges

associated with parallelizing SA. The

improvement of the parallel computational

power can overcome this challenge. In this

research, we aim to study the parallel SA on

SANAM supercomputer.

The performance of the parallel program is

measured in terms of three metrics; namely, the

speedup, the efficiency, and the scalability [7].

Therefore, the aim of this research is to design a

parallel SA implementation with the purpose of

generating a route plan for military drones

emitted with the intention of acquiring images at

multiple sites. Therefore, the program speedup,

efficiency, and scalability are to be maximized;

while the final distance should be at its

minimum.

The layout of this paper is as follows: Section 2

exposes similar work in the literature. Section 3

explains the design of the asynchronous CSS.

Section 4 reports the experiments’ results. The

paper is then concluded in Section 5 with a hint

to our plan to future work.

2 RELATED WORK

The drone route planning problem in this

research is analogous to the TSP. There are

several algorithms that provide a solution for the

TSP, such as LS, BB, EAs, ACO, and hybrid

algorithms [7]. This chapter exposes the

sequential and parallel solutions to the TSP in

general, and emphasizes on the drone route

planning.

Many sequential algorithms are proposed to

solve the TSP, some of which are based on the

ACO algorithm. The proposed solution in [8]

provides a modification of the traditional ACO

method; this is known as the High Performance

ACO. The traditional ACO algorithm involves a

single ant randomly looking for the path;

whereas the updated algorithm applies the TSP

on a group of ants. The authors provide a

comparison between their proposed algorithm

and the ant colony system algorithm on various

number of nodes. They found that the proposed

algorithm completes the task in less time.

Also, Local search algorithms are widely used to

solve the TSP. The research in [7] provides an

experimental study to test the performance of the

Lin-Kernighan and the Multi-Neighborhood

Search. Results show that the Lin-Kernighan

provides better results than the Multi-

Neighborhood Search in terms of runtime.

On the other hand, several parallel solutions are

proposed in the literature to solve the TSP using

diverse parallel programming platforms. In [9],

the experiment is performed on a standard

multicore CPU. The reported results indicate that

a gained speedup of 7.3 on 8 cores. Thus, the

usage of PSO algorithm is more suitable for real-

time planning for the drone. Moreover, the

experiments also proved that the performance of

the GA is better than the PSO. The same authors

improved their results in [10] by proposing a

parallel hybrid algorithm that exploits the

advantages of both the PSO and the GA to

generate a suitable path plan for fixed-wing

drones. It is found that the gained speedup is

10.7 on a 12-core SMP.

In [2], the authors planned the drone’s path using

parallel ACO solution on both GPU and CUDA

platforms. The generated path guides the drone

in disseminating keys and collecting data from

wireless sensors, which are previously deployed

at minimum cost. The drone launches from a

station, visits all sensors in a limited period of

time, then returns back to the same station it is

emitted from. In their experiment, they

compared the sequential performance with the

parallel implementation performance. They

showed that the speedup is higher when using

GPU platform.

In [5], the authors generate multiple route paths

for several drones simultaneously using

synchronous parallel SA on the GPU.

Experiments’ results prove that the processing

22

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

time is reduced, and a better solution is acquired,

as compared to the CPU implementation.

3 DESIGN AND IMPLEMENTATION

This section discusses the general design of SA.

Then, the implementation of the asynchronous

CSS is then discussed.

3.1 Simulated Annealing Design

Two concepts are to be defined when it comes to

designing an iterative metaheuristics algorithm;

namely, the solution representation and the

objective function. Since SA is classified as a

single-solution based metaheuristics, it requires

the definition of the neighborhood. These are

detailed in the following subsections [11].

3.1.1 Solution Representation

The solution representation of the drone route

planning is a permutation of size n, where n is

the number of the waypoints to be visited exactly

once. Each permutation represents one solution

as shown in Figure 4 as a sequence of nodes,

where each node represents a waypoint and its

index represents the corresponding order. The

number of all permutations that represent the

solution space taking into consideration the fixed

point of start (ground station) is (n-1)!.

Figure 1. The permutation representation of the drone

route plan problem

3.1.2 Neighborhood Solution

The neighborhood of a solution is found by

performing a move operator which leads to a

tiny perturbations to the solution S [11]. As the

drone route plan is represented by a permutation,

a neighborhood is generated by the swap

operator between two elements in the solution.

This is illustrated in Figure 5.

Figure 2. Neighbourhood solution generated by swapping

the order of two waypoints

3.1.3 Objective function

The objective function is used to define the goal

to be achieved by the SA. The goal of the

problem in-hands is looking for the shortest

route plan for a drone such that it visits each

waypoint exactly once. As previously

mentioned, this is similar to the TSP and has a

similar objective function which is shown below:

 () ∑ () () () ()

 (1)

where:

- is a permutation representing a tour of the

drone;

- n is the number of waypoints.

3.2 Sequential simulated annealing

IAs previously mentioned, the SA, like other

single-solution based metaheuristics, includes

two main steps. The first step is to generate the

initial solution, which is constructed by using a

greedy heuristic, such as the nearest neighbor

algorithm or randomly. In the design of the

sequential algorithm of this research, the random

method is used because the greedy heuristics

produces a solution in local optimum, which

may not be able to provide an improved local

optimum solution at the end [11].

The second step, which is the solution

improvement, the design uses the swap operator

between two points to generate a neighbor

solution from the current solution.

In fact, the SA algorithm imitates the process of

the solid hardening, which depends on the initial

temperature value and the cooling rate.

Therefore, the SA implementation consists of

two main loops to provide a suitable solution.

The outer loop, known as the cooling loop, is

responsible for managing the temperature value.

On the other hand, the inner loop, known as the

equilibrium state loop, is responsible for

constructing a neighbor solution from the current

one, evaluating it, and computing the probability

of the acceptance using the following formula:

23

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

 e (− Δ/T) (2)

where:

- Δ is the difference between the cost of the

old and the new solution;

- T is the current temperature

Accordingly, the main parameters that are to be

defined during SA implementation are the initial

temperature, the cooling rate, and the stopping

condition. The latter might be the minimum

temperature or a specific number of iterations. In

this research, the stopping condition is taken

based on a minimum temperature. The other

parameters are determined after several

experiments [6]. The flowchart of the sequential

algorithm is shown in Figure 3.

3.3 Parallel Simulated Annealing

Metaheuristic algorithms are sequential by

nature; SA is no exception. Consequently,

parallelizing the SA entails a challenging

problem [7]. Many approaches are proposed to

parallelize SA algorithm [12]:

- Decompose the search space into smaller

parts, then assign each part to a processor to

find the minimum cost and share its result

with other processors.

- Apply the synchronous approach, where

each processor uses the same initial solution

and performs parallel improvements within

the same temperature. Then at each

temperature value the best solution is shared

between the processors to perform parallel

improvement until the end. Figure 4

illustrates the synchronous approach.

- Apply the asynchronous approach, where

each processor executes SA independently.

The initial solution may be the same or

different across the processors. Finally,

compute a reduce operation to get the best

solution among them. As illustrated in

Figure 5.

The synchronous parallel SA on shared-

memory processor (SMP) is previously studied

in [13]. In this paper, the asynchronous parallel

SA Complete Search Space (CSS) is

investigated. The CSS algorithm starts with

different initial solutions for the complete

search space. The idea is illustrated in Figure 5.

3.3.1 Parallel SA approach on cluster

On the other hand, using the approach in [14] to

implement SA on parallel clusters will increase

the overhead of communication between nodes.

This is explained by the fact that in

synchronous

Figure 3. Flow chart of the SA algorithm

Figure 4. Synchronous SA parallel approach

24

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 5. Asynchronous SA parallel approach

parallel SA, the processors frequently

communicate with each other. Shared memory

processor environment is suitable for such

solution. However, in parallel clusters,

communication is needed between processors

after each inner loop. This is performed through

message passing on parallel clusters. Message

passing imposes an overhead on the program;

and therefore, increases the speedup.

The asynchronous parallel SA CSS is therefore

suggested to minimize the communication

overhead. In this algorithm, each cluster node

works on the complete search space (CSS) as

illustrated in Figure 6. In the start, several initial

solutions are generated and distributed over the

nodes. Then each node applies the sequential

SA. However, data parallelism is applied. At the

end, all nodes send the produced route together

with the final distance. The minimum distance

with its corresponding route are then selected to

be the best route plan.

Figure 6. Flowchart of asynchronous parallel SA for

complete search space approach

3.4 Handling the Drone Energy Constraints

After generating the route plan using SA

algorithm at the ground station, the route is

evaluated in terms of the energy required to

complete the planned mission. If the energy level

is above a predefined threshold, then the drone is

emitted according to the planned route.

Otherwise, the mission is divided into multiple

journeys. The drone is re-charged after the end

of each trip, before starting a new one.

In fact, the drone’s energy is expressed in terms

of its enduring lifetime L. Therefore, the time T

needed to travel the final distance D, as planned

by the SA, is calculated as follows:

T = D / S (3)

 where:

- T is the time required to make the complete

calculated tour, including the return trip to

the ground station;

- D is the final distance as calculated by the

SA algorithm;

- S is the drone’s speed as specified in its

hardware specifications

25

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

If the calculated time T is less than the drone’s

enduring lifetime L, then the drone is safely

launched. Otherwise, the journey is broken into

multiple trips. Figure 7 illustrates the previously

mentioned steps. Therefore, the applied

predefined threshold is the enduring lifetime of

the emitted drone.

Figure 7. Checking drone’s energy

4 EXPERIMENTAL RESULTS

This section details the methodology used in the

conducted experiments. In addition, the obtained

results are discussed, analyzed, and represented

graphically. The first subsection reveals the

deployed environment in terms of software and

hardware specifications. Subsection 4.2 explains

the performance metrics used to measure the

effectiveness of the developed algorithm.

Subsection 4.3 details the general methodology

used to collect the figures of the experiments.

Finally, subsection 4.4 details the results of both

the sequential and parallel CSS algorithm.

4.1 Software and Hardware Specification

This research is implemented on KACT’s Saudi

supercomputer SANAM. KACST is King

Abdel-Aziz City for Science and Technology in

Riyadh, Kingdom of Saudi Arabia. SANAM

includes Intel Xeon E5−2650 CPUs, with 12

cores. The access to SANAM is available

through a group of interactive login nodes,

which are connected to KACST network and

Internet [14, 15]. The program is coded under

Linux Ubuntu 16, with JAVA using the pj2

library for threads management [7], and

NetBeans as programming tool. In addition,

Simple Linux Utility for Resource Management

(SLURM) is used for Linux clusters

management in SANAM. SLURM performs

three main tasks: First, it is responsible for nodes

allocation, management, execution, and

monitoring reserved nodes. Second, it manages

waiting work queues and finally, resolves

conflicting resource orders [16].

In this research, ten nodes are used. This is the

maximum allowed by KACST to the external

users.

4.2 Performance Measurements

The main objectives of this research are to

minimize the execution time, increase resources

utilization, and increase scalability. In addition,

the final distance is to be minimized. Therefore,

speedup, efficiency, scalability, and final

distance are used to evaluate the performance of

the parallel program [7].

4.2.1 Speed up:

Speed up is used to measure the extent of the

time reduction gained from the parallel

implementation as compared to its sequential

counterpart. The gained speed up is calculated as

the ratio of the execution time of the sequential

program Tseq to that of the parallel program

Tpar [7]:

 (4)

4.2.2 Efficiency

The efficiency (E) is used to measure how a

program is close to the ideal speed up. In other

words, it indicates the effectiveness of the

parallel program to use the available resources.

The ideal program efficiency is equal to 1.

However, the actual efficiency is between 0 and

1. As the efficiency is closer to 1, as the program

is making better use of the available hardware

resources. Efficiency is computed as the ratio of

the actual speed up of the parallel program Tpar

to the number of processors K that are used to

26

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

run the parallel program. This is expressed in the

following formula [7] :

 (5)

4.2.3 Scalability

Scalability is the ability of a program to adapt to

the increasing amount of problem size. In order

to measure the scalability of a parallel program,

the sequential version is run multiple times; each

time the problem size is increased. When the

program crashes, and cannot hold any more the

given problem size, the last recorded size is

taken. This is Nseq. The same experiment is

repeated with the parallel version to get Npar.

The scalability is therefore calculated according

to the following formula [7]:

 (6)

It is expected that the problem size increases

with the increase of the number of processors.

4.3 Methodology

The execution time of a parallel program is

hardly the same when run multiple times

successively. This is because the operating

system is conducting its own activities at the

same time as the program runs. Since these

activities differ from a run to another, the

resulting execution time is directly affected. The

interference of the operating system always

increases the resulting execution time. Therefore,

to measure the execution time of a program as

accurate as possible, it is run multiple times –

from 7 to 10 times – and the execution time is

recorded after each run. Then, the minimum of

these recordings is taken since this represents the

less interference from the part of the operating

system.

4.4 Experimental results

The results of both versions of the SA algorithm

are reported in the following subsections. The

parallel platform is an SMP; with a number of

threads ranging from 2 to 8. A set of experiments

is conducted according to the previously detailed

methodology detailed with the aim of measuring

the three main performance metrics: speedup,

efficiency, and scalability in addition to the

quality of the solution. These are exposed in the

following subsections.

4.4.1 Speedup

The first set of experiments aims to explore the

impact of the number of waypoints on the

execution time. Therefore, the program is run

multiple times with various number of

waypoints; namely, 50, 100, 150, and 200. The

experiment is done only for these four problems

sizes as the increments in the execution time is

linear.

Table 1 shows the minimum execution time for

the sequential, SMP -as performed in [14]-, and

CSS. Note that all the parameters of SA; namely,

initial temperature, the cooling rate, and the

stopping condition, are fixed. Worth to mention,

the parameters are chosen after several

experiments to ensure the quality of the final

solution. Figure 8 shows the impact of the

number of waypoints on the execution time.

Figure 8. Relationship of Execution Time with Number of

Waypoints

As seen in the graph depicted in Figure 8, the

execution time of sequential and parallel SA

versions is proportional to the problem size. It is

noted that the execution time of the parallel

cluster CSS is the highest when compared to the

sequential and SMP. This is due to the fact that

in CSS, each node works on the complete search

space. In addition, several initial solutions are to

be produced and propagated to all nodes at the

beginning of the program. Therefore, the

0

1

2

3

4

5

6

7

50 100 150 200

Ex
ec

u
ti

o
n

 t
im

e
 s

Number of waypoints

SEQ

CSS

SMP

27

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

communication between the nodes imposes an

overhead on the execution time.

On the other hand, the execution time of the

parallel SMP is the best. This is explained to the

lack of communication overhead, since data is

shared in the main memory.

The gained speedup is calculated from the values

recorded in Table 1 according to formula 4 The

results are depicted in Figure 9. The highest

speedup is achieved by the SMP version; it is

equal to 6.81for 200 waypoints as compared to a

speedup of 0.57 for the CSS.

Figure 9. Relationship between Speedup and Number of

Waypoints

4.4.2 Efficiency Measurement

The efficiency is calculated for both SMP and

CSS versions according to formula 5 The results

are displayed in Table 2. The corresponding

graph is depicted in Figure 10. It is noticed that

the efficiency is the best with parallel SMP

where all threads in the nodes are utilized.

Although the efficiency is equal to 1 for the

sequential program, but this does not imply that

the program makes full use of the available

hardware resources. However, the actual speed

of the sequential program and the number of

cores are both equal to one.

Figure 10. Relationship of Efficiency with Number of

Waypoints for SMP and CSS

4.4.3 Scalability Measurement

 Here, the largest number of waypoints that can

be handled by each parallel SA version is

divided by that handled by the sequential

program. The results are reported in Table 3,

with calculations deduced from formula 6 Again,

the scalability in parallel SMP is too much better

than that of the CSS. This is explained by the

fact that all threads in the node are utilized in

SMP. Thus, increasing the ability to handle

larger problem sizes than sequential and parallel

CSS. Moreover, the parallel CSS does not

provide any improvement on the sequential SA.

4.4.4 The quality of the route plan

The final distance values are depicted in Table 1

with various SA algorithm versions and

waypoints. The corresponding graph is shown in

Figure 11. It is noticed that the quality of the

route plan is the best with the SMP SA version

as compared to the other program versions.

However, the CSS SA produces very close

distances as compared to the SMP SA. On the

other hand, it gives better distance than the

sequential. This is because the CSS SA uses

more nodes working on different initial

solutions; thus, increasing the chance of

improving the distance.

5 CONCLUSION AND FUTURE WORK

This research targets for generating a minimum

route plan distance for a single drone emitted by

a military organism for image acquisition. The

area in concern may be a sensitive site, a defense

0

1

2

3

4

5

6

7

50 100 150 200

Sp
ee

d
u

p

Number of waypoints

CSS

SMP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200

Ef
fi

ci
en

cy

Number of waypoints

CSS

SMP

28

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 11. Quality of the final distance on parallel SA

and/or attack war front, or an enemy’s territory.

Therefore, the route path should be completed in

the least amount of time.

The SA algorithm is implemented to solve this

problem, which is analogous to the TSP. Since

metaheuristics require an extensively long time

for execution, parallel computing is deployed to

accelerate the SA algorithm.

Therefore, several parallel versions of the SA are

developed. First, the parallel SA is previously

developed [14]. In this paper, another parallel

version is implemented on SANAM

supercomputer. Ten nodes are used to

implement the program using Java programming

language under Linux on SANAM

supercomputer.

The two parallel versions are compared in terms

of speedup, efficiency, scalability, and the final

distance.

The reported results prove that the synchronized

parallel SA on SMP outperforms the CSS for all

number of waypoints in terms of gained

speedup, efficiency, and scalability. On the other

hand, the CSS outperforms the SMP SA in terms

of quality of solution.

In the future, more methods to parallelize SA are

to be investigated.

ACKNOWLEDMENT

We would like to extend our gratitude to King

Abdel-Aziz City for Science and Technology

(KACST) in Riyadh for allowing us to use their

SANAM supercomputer at all times. Not only

this, but the staff was also of great support and

helpful; replying to our posed questions

promptly albeit their heavy duty load.

REFERENCES

[1] N. Özalp and O. K. Sahingoz, "Optimal UAV

path planning in a 3D threat environment by

using parallel evolutionary algorithms," in

Unmanned Aircraft Systems (ICUAS), 2013

International Conference, 2013, pp. 308-317.

[2] M. O. UgurCekmez, "A UAV Path planning with

parallel ACO algorithm on CUDA platform,"

presented at the IEEE Unmanned Aircraft

Systems (ICUAS), FL, USA, 2014.

[3] M. Coeckelbergh, "Drones, information

technology, and distance: mapping the moral

epistemology of remote fighting," Ethics and

information technology, vol. 15, pp. 87-98, Jun

2013.

[4] X.-f. Liu, Z.-w. Guan, Y.-q. Song, and D.-s.

Chen, "An optimization model of UAV route

planning for road segment surveillance," Journal

of Central South University, vol. 21, pp. 2501-

2510, Jun 2014.

[5] T. Turker, G. Yilmaz, and O. K. Sahingoz, "GPU-

Accelerated Flight Route Planning for Multi-

UAV Systems Using Simulated Annealing," in

International Conference on Artificial

Intelligence: Methodology, Systems, and

Applications, 2016, pp. 279-288.

[6] M. Sanjabi, A. Jahanian, S. Amanollahi, and N.

Miralaei, "ParSA: parallel simulated annealing

placement algorithm for multi-core systems," in

Computer Architecture and Digital Systems

(CADS), 2012 16th CSI International Symposium,

2012, pp. 19-24.

[7] A. Kaminsky, "BIG CPU, BIG DATA: Solving

the World's Toughest Computational Problems

with Parallel Computing," 2016.

[8] KACST , The Saudi Supercomputer “SANAM” is

the World„s 2nd Leader in Energy Efficiency",

KACST, 2012. [Online]. Available:

https://www.kacst.edu.sa/eng/about/news/Pages/n

ews3841117-3854.aspx. [Accessed: 25- Apr-

2017].

[9] V. Roberge, M. Tarbouchi, and G. Labonté,

"Comparison of parallel genetic algorithm and

particle swarm optimization for real-time UAV

path planning," IEEE Transactions on Industrial

Informatics, vol. 9, pp. 132-141, May. 2013.

[10] V. Roberge, M. Tarbouchi, and F. ALLAIRE,

"Parallel hybrid metaheuristic on shared memory

system for real-time UAV path planning,"

International Journal of Computational

Intelligence and Applications, vol. 13, p.

1450008, Jun. 2014.

[11] E.-G. Talbi, Metaheuristics: from design to

implementation vol. 74 ,pp 126-133: John Wiley

& Sons, 2009.

[12] A. Ferreiro, J. García, J. G. López-Salas, and C.

Vázquez.:An efficient implementation of parallel

simulated annealing algorithm in GPUs, Journal

of Global Optimization, vol. 57, pp. 863-890,

Nov. 2013.

0

2000

4000

6000

8000

10000

50 100 150 200

D
is

ta
n

ce

Number of waypoints

SEQ

CSS

SMP

29

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

http://www.kacst.edu.sa/eng/about/news/Pages/news3841117-3854.aspx
http://www.kacst.edu.sa/eng/about/news/Pages/news3841117-3854.aspx

[13] S. Zaghloul and E. Alsafi, "Drone route planning

for military image acquisition using parallel

simulated annealing", International Journal of

New Computer Architectures and their

Applications (IJNCAA), vol. 7, no. 3, Sep, 2017.

 [14] D. Rohr, S. Kalcher, M. Bach, A. A. Alaqeeliy,

H. M. Alzaidy, D. Eschweiler, V. Lindenstruth, S.

B. Alkhereyfy, A. Alharthiy, and A. Almubaraky,

"An energy-efficient multi-GPU supercomputer,"

in High Performance Computing and

Communications, 2014 IEEE 6th Intl Symp on

Cyberspace Safety and Security, 2014 IEEE 11th

Intl Conf on Embedded Software and Syst

(HPCC, CSS, ICESS), 2014 IEEE Intl Conf on,

2014, pp. 42-45.

[15] "Intel® ARK (Product Specs). (2017). Intel®

Xeon® Processor E5-2650 v4 (30M Cache, 2.20

GHz) Product Specifications. [online] Available

at: https://ark.intel.com/products/91767/Intel-

Xeon-Processor-E5-2650-v4-30M-Cache-2_20-

GHz [Accessed 13 Dec. 2017].".

[16] Slurm.schedmd.com. (2017). Slurm Workload

Manager. [online] Available at:

https://slurm.schedmd.com/quickstart.html

[Accessed 14 Dec. 2017]."

[17] T. Rauber and G. Rünger, Parallel programming:

For multicore and cluster systems: Springer

Science & Business Media, 2013.

[18] A. Kaminsky, "Building Parallel Programs:

SMPs, Clusters, and Java. Cengage Course

Technology (2010)," ISBN 1-4239-0198-3.

30

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://slurm.schedmd.com/quickstart.html

Table 1 Relationship between the execution time and number of waypoints with the corresponding output distance

#waypoints
Sa

algorithm

version

Execution

time (s)
Distance

50

Sequential 111611 1651

Parallel

cluster CSS
11112 1372

Parallel

SMP
11451 1278

100

Sequential 21165 2111

Parallel

cluster CSS
21533 1511

Parallel

SMP
11541 1162

150

Sequential 31631 3771

Parallel

cluster CSS
41148 2622

Parallel

SMP
11642 2376

200

Sequential 6.072 4976

Parallel

cluster CSS
6.544 4439

Parallel

SMP
0.891 4320

Table 2 Efficiency of sequential, SMP, and CSS versions

#way

point

s

Sa algorithm

version

Executi

on time

(s)

Speed

up

Efficien

cy

50

Sequential 111611 1 1

Parallel

cluster CSS
11112 0.55 0.055

Parallel SMP 11451 2.09 0.17

100

Sequential 21165 1 1

Parallel

cluster CSS
21533 0.9 0.09

Parallel SMP 11541 5.03 0.42

150

Sequential 31631 1 1

Parallel

cluster CSS
41148 0.94 0.09

Parallel SMP 11642 6.3 0.52

200

Sequential 6.072 1 1

Parallel

cluster CSS
6.544 0.93 0.093

Parallel SMP 0.891 6.81 0.57

31

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Table 3 Measure scalability of parallel SA

SA algorithm

version
Size up Scalability

Sequential 3100 --

Parallel cluster CSS 3000 0.97

Parallel SMP 23000 7.4

32

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 21-32

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

A Finger-Mounted Haptic Device with Plane Interface

Makoto Yoda and Hiroki Imamura
Department of Information System Science, Graduate School of Engineering, Soka University

Mailing Address: 1-236, Tangi-machi, Hachioji-shi, Tokyo, Japan, 192-8577
E-mail: e16m5223@soka-u.jp, imamura@soka.ac.jp

ABSTRACT

Recently, several researches of haptic devices have
been conducted. Haptic devices provide users with
sense of touching virtual objects such as Computer
Graphics (CG) by force feedback. Since they provide
force feedback from a single point on an object surface
where users touched, users touch it by point contact.
However, they cannot provide a sense such as humans
touching an object with a finger pad because humans
do not touch by point contact but surface contact. We
focused on this characteristic and developed surface
contact haptic device. To touch a CG object in surface
contact, we use a plane interface. It provides force
feedback to the normal direction by being approxi-
mated to tangent plane on a CG object surface where
users touched and the sense of grabbing it. In the eval-
uation experiments, twelve users evaluated this haptic
device. From results, we see that users could feel sense
of touching in surface contact and grabbing a CG ob-
ject.

KEYWORDS

Haptic device, Surface contact, Plane interface, Force
feedback, Augmented Reality

1 INTRODUCTION

In recent years, researches of human interface us-
ing Augmented Reality (AR) have been con-
ducted [1]. AR is new technology which can over-
lay the information or computer generated virtual
object such as Computer Graphics (CG) into real
world [2]. With the advances in AR interface
technology, haptic devices have been developed
and attracting attentions of researchers. Haptic de-
vices provide users with sense of touching a CG
object by processing force feedback. Therefore,
haptic devices are expected to be used in applica-
tions such as a virtual surgery system [3], a virtual
experience system [4] or a remote control of ro-
bots [5].

Examples of conventional haptic devices include
Falcon [6], PHANToM [7] and Dexmo [8]. Fal-
con and PHANToM are classified into a grounded
type. This type can provide accurate force feed-
back because its fulcrum is fixed on the table. The
operating range of a grounded type is limited.
Dexmo is classified into a finger-mounted type.
Users can feel sense of grabbing CG objects eas-
ily by using this type. In addition, the operating
range of a finger-mounted type is not limited.
These haptic devices have been developed as a
point contact haptic device. A point contact type
haptic device provides force feedback from a sin-
gle point on a CG object surface where users
touched. In case of perception of an object shape,
humans perceive an object shape from force feed-
back to the normal direction on touching area [9].
However, in point contact, it is difficult to per-
ceive an object shape because the direction of
force feedback changes according to a finger di-
rection as shown in Figure 1. To perceive CG ob-
ject shape in point contact, users must trace the
surface. To perceive force feedback to the normal
direction, users must be provided force feedback
from a tangent plane on touching area (surface
contact) as shown in Figure 2.

Figure 1. Point contact

Figure 2. Surface contact

 ���
��

	����

���
 ���
�

��
����������

 ���
��

	����

���
 ���
�

������
�������� �������	
�
��
��

33

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

We focused on this characteristic and have devel-
oped a finger mounted type haptic device using
surface contact [10] that is shown in Figure 3.
This haptic device has a plane interface having
four movable points. Figure 4 shows the outline
of this haptic device. Four movable points of the
plane interface operate up and down separately. In
the initial state, the user is not touching a CG ob-
ject. In the operating state, the user is touching a
CG object. The plane interface provides a finger
pad with force feedback to the normal direction
by four movable points operating up and down
and being approximated to tangent plane on the
CG object surface where a finger pad touched.
Thus, users can perceive the shape without tracing
surface.

Figure 3. The developed finger-mounted haptic device

Figure 4. Outline of the developed haptic device

In this paper, we propose an improvement of this
haptic device. This haptic device uses AR marker
to detect a finger position and posture. However,
if a part of the AR marker is hidden, a finger po-
sition and posture are not detected. In addition,
there is the case that the plane interface cannot
provide accurate slope. Therefore, we redesign
controlling a plane interface mechanism to pro-
vide accurate plane interface slope and propose a
novel finger-mounted haptic device using a
method of detecting a finger position and posture
without AR marker.

2 PROPOSED SYSTEM

2.1 Hardware Construction
Figure 5 shows the hardware construction of the
proposed haptic device. This haptic device is
glove type to grab a CG object and composed of
Arduino Uno, two servo motors, acceleration sen-
sor that are shown in Figure 6, 7 and 8, respec-
tively, four springs and a plane interface for each
finger. Figure 9 shows the appearance of the pro-
posed haptic device. We developed it by using 3D
printer.

Figure 5. Hardware construction

Figure 6. Arduino

 Figure 7. Servo motor Figure 8. Acceleration sensor

Figure 9. Appearance of the proposed haptic device

 �	���
����	

��	��	

 �����
��������

�
�
�	

�
�	��

 �����
���������
�
�	

�
�	��

� ����
��

���
��
�������

��
�
����
��
�

� ����
��

	
��
�����
�

�����
����
�
 ��
�
�������
�

�
����
������

��

������� ���

	��

��
�
����
��
�

���
�
�
������
����

���	

�������
 ���	�

�
��	����	�
��	

���	
	��������	����

34

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Two servo motors are mounted back of the hand
as shown in Figure 10. We developed wire wind-
ing mechanism using pulleys to provide accurate
a plane interface slope. A pulley is connected to
two movable points of plane interface with wires.
Arduino Uno is connected to each servo motor
and controls them to operate each pulley. These
pulleys pull up and down each movable point. A
plane interface is controlled and provides a finger
pad with a slope. Each spring adheres to each
movable point as shown in Figure 11.

Figure 10. Back of the proposed haptic device

Figure 11. Fingertip part

2.2 System Overview
In this system, users touch a CG object in the dis-
play with the proposed haptic device and feel
force feedback. Figure 12 shows system overview.
We use PC, display, Creative Senz3D and the pro-
posed haptic device. Users wear the proposed
haptic device and touch a CG object. Figure 13
shows Creative Senz3D. Creative Senz3D is
RGB-D camera whose range of depth sensor is
0.15~1[m]. We use it to draw CG objects and to
detect 3-dementional finger position from it.

Figure 12. System overview

Figure 13. Creative Senz3D

2.3 System Flowchart
Figure 14 shows the system flowchart. This sys-
tem draws a CG object on the desk and calculates
a finger position. When a finger is close to a CG
object, this system calculates a tangent plane
slope angles on the surface which the finger is
close to. By using tangent plane slope angles and
finger slope angles, this system calculates motor
rotation angles and send these angles to Arduino
Uno by serial communication. Arduino Uno con-
trols motors. A plane interface is controlled and
provide a finger pad with force feedback. Users
feel touching a CG object. The followings are the
explanation of the processing in this system.

Figure 14. Flowchart

�
����

�����	�

�

 � �
�
��

�	������
3��

������������������������
 ������������
�����

����
���������������������������

���

����

����

���

��

��

���

�������������������������

���������������������������������������

����������������������

�������������������������

��� ���� 	 �
����

35

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

In the calibration of the haptic device, Arduino
Uno controls motors to make a plane interface in-
itial position. In this time, a finger pad is not
touching a plane interface.	
In the drawing AR object, this system draws a CG
object on the desk. To draw a CG object, this sys-
tem detects a plane by using depth information
from Senz3D. Figure 15 is the image including a
plane (desk). Users set a point as an origin on the
plane using mouse cursor. This system sets other
two points on the plane and calculates vectors
𝑨 𝐴#, 𝐴%, 𝐴& and 𝑩 𝐵#, 𝐵%, 𝐵& from a set point
to other points. By using these vectors, this sys-
tem calculates the normal vector 𝑵 𝑁#,𝑁%, 𝑁&
from outer product

𝑩×𝑨 =
𝐵%𝐴& − 𝐵&𝐴%
𝐵&𝐴# − 𝐵#𝐴&
𝐵#𝐴% − 𝐵%𝐴#

=
𝑁#
𝑁%
𝑁&

. (1)

Figure 15. The image including a plane

Next, this system calculates a transformation ma-
trix to convert the coordinates system whose
origin is a set point to Senz3D coordinates system.
By using the z-axis direction vector of Senz3D
𝑺 0, 0, 1 and the normal vector N, this system
calculates a rotation angle 𝜃 and a rotation axis
𝒏 𝑛#, 𝑛%	, 𝑛& from inner product and outer prod-
uct

𝜃 = cos89 𝑺∙𝑵
𝑺 ;

, (2)

𝒏 = 𝑺×𝑵 =
𝑛#
𝑛%
𝑛&

. (3)

By using 𝜃 and n, this system calculates quater-
nion q and a transformation matrix R

𝒒 =
=>
=?
=@
A

=

BCD E
F G>

BCD E
F G?

BCD E
F G@

HIB E
F

, (4)

 R =

1 − 2𝑞%L − 2𝑞&L 2𝑞#𝑞% − 2𝑡𝑞& 2𝑞#𝑞& − 2𝑡𝑞% 𝑝#
2𝑞#𝑞% − 2𝑡𝑞& 1 − 2𝑞#L − 2𝑞&L 2𝑞%𝑞& − 2𝑡𝑞# 𝑝%
2𝑞#𝑞& − 2𝑡𝑞% 2𝑞%𝑞& − 2𝑡𝑞# 1 − 2𝑞#L − 2𝑞%L 𝑝&

0 0 0 1

		(5)

where 𝑝#, 𝑝% and 𝑝& are coordinates of a set point
from Senz3D. This system draws CG objects
(Sphere or Sin-Cos curve) on the coordinate sys-
tem whose origin is a set point as shown in Fig.
16 and 17 by using this transformation matrix R
and OpenGL.

Figure 16. Sphere CG object

Figure 17. Sin-Cos curve CG object

In the detecting a finger position, this system uses
a color information on the image. We make the
fingertip a specific color as shown in Figure 18.
This system extracts a specific color area and cal-
culates three-dimensional coordinates 𝑆#, 𝑆%, 𝑆&
of the extraction region from Senz3D. By using
this coordinates and R, this system calculates a
finger position F 𝐹#, 𝐹%, 𝐹& from a set point

𝑭 =

𝐹#
𝐹%
𝐹&
1

= 𝑹89
𝑆#
𝑆%
𝑆&
1

. (6)

������

���� 	����

�

36

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 18. Extraction color information

In the detecting a finger posture, this system cal-
culates 𝐹S that denotes the roll angle and 𝐹T that
denotes the pitch angle of each finger by using ac-
celeration sensor. Figure 19 shows vectors A, B
and C that are gravity accelerations of X, Y and Z-
axis respectively. From these vectors, this system
calculates

𝐹S = tan89 𝑨
𝑩

, (7)

𝐹T = tan89 𝑪
𝑩

, (8)

Figure 19. Detecting a finger position

In the judgement of contact, this system calculates
z-coordinate on a CG object surface. The follow-
ing is equation of Sphere and Sin-Cos curve.

𝑥L + 𝑦L + 𝑧L = 𝑟L, (9)

𝐴 sin 𝑥 cos 𝑦 = 𝑧 (10)

where r is radius of Sphere CG object and A is an
amplitude of Sin-Cos curve CG object. Using (9),
(10), 𝐹# and 𝐹% , this system calculates z-coordi-
nate on CG object surface. When 𝐹& is under this
z-coordinate on a CG object surface, judgement is
contact and this system defines the finger position
as a contact point.
In the calculation of the motor rotation angle, this
system calculates the normal vector on the contact
point in the same way as the process of drawing
AR object. As shown in Figure 20, by using the

contact point and other two points on a CG object
surface, this system calculates the normal vector

𝑵 = 𝑨×𝑩 =
𝑁#
𝑁%
𝑁&

 (11)

where A and B are the vectors from the contact to
other points

Figure 20. Calculation of the normal vector

From the normal vectors, to calculate the angles
of tangent plane slope on the contact point, this
system calculates

𝜃# = cos89 ;>

;>F_;@F
, (12)

𝜃% = cos89 ;?

;?F_;@F
, (13)

where 𝜃# is the angle between x-axis and the nor-
mal vector in X-Z plane, 𝜃% is the angle between
y-axis and the normal vector in Y-Z plane that is
shown in Figure 21.

Figure 21. Calculation of 𝜃# and 𝜃%

�������	
� ���	
�

 �
	����	�����	��
����	�	���
�
�

Z

X

!"

Y

!#

�

�

�

�0�2�����

�-�0�����

Z

Y

X

	�
���� �

B

A

� ���
	������
��	

���	����������������
� ���
	������
��	

��������	�����N
!"
!#
!$

��
��
������
�N
!"
!#
!$

Z

X
Y

%# %"

� ���	���

37

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 22 shows the calculation of the angle of
tangent plane slope on touching point in X-Z
plane and Y-Z plane, respectively. Since the nor-
mal vector is vertical to the tangent plane, this
system calculates the roll angle 𝑇S and the pitch
angle 𝑇T of tangent plane slope

𝑇T = 90∘ − 𝜃%, (14)

𝑇S = 90∘ − 𝜃#. (15)

Figure 22. Calculation of the tangent plane slope angles

Using the angle of tangent plane slope and the an-
gle of a finger, the system calculates the differ-
ence roll angle 𝐷S and the pitch angle 𝐷T between
a finger and tangent plane

𝐷T = 𝑇T − 𝐹T , (16)

𝐷S = 𝑇S − 𝐹S . (17)

These difference angles are the roll and pitch an-
gle of a plane interface slope as shown in Figure
23.

Figure 23. Calculation of plane interface slope angles

Figure 24 shows the state transition of a plane in-
terface. A plane interface operates as shown in
this figure. Using a plane interface slope angles,
the system calculates the operation length L1 and
L2 of each movable point

L1 =
d L BCD

ef
F _BCD gh

L BCD ijDkl
Fmno

ef
F pmno eh

lkqrm eh

, (18)

L2=

d L BCD
ef
F

8BCD gh

L BCD ijDkl
F mno

ef
F kmno eh

lkqrm eh

										(𝐷T ≥ 𝐷S)

−
d LBCD

ef
F

8BCD gh

L BCD ijDkl 8
F mno

ef
F kmno eh

lkqrm eh

			(𝐷T < 𝐷S)
 (19)

where A is the length of one side on a plane inter-
face as operation length of each movable point.
Figure 25 shows L1 and L2.

Figure 24. The state transition of a plane interface

Figure 25. Operation length

Using the operation length of movable point L1
and L2, the system calculates motor rotation an-
gles

𝐴1 = 2 sin89 w9
Lx

, (20)

𝐴2 = 2 sin89 wL
Lx

 (21)

where R is the radius of a pulley. As shown in Fig-
ure 26, this system calculates the motor rotation
angles so that the length of circular arc is equiva-
lent to the operation length. Each pulley is con-
nected to two movable points with wires. This
system sends this motor rotation angles to Ar-
duino Uno by Serial communication.

Z

X

���
����	����

!"

#$

���
	�������	

� ����	��

Z

Y

���
����	����

!%

#&

���
	�������	

� ����	��

Y

Z

	���

�Y-Z ���
�

!"
#"

$"

	���

�X-Z ���
�

Z

���������

X

!%
#%

$%

���������

!"

�
 ���	����� ���
	�������
�� �	����� ��

�
 ���	����� ���
	������	�	�	
��� ���

!#

L1
L2

�
 ���	����� ���
	������	�	�	
��� ���

�
 ���	����� ���
	�������
�� �	����� ��

A

38

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 26. Calculation of the motor rotation angles

In the controlling the motors, Arduino Uno re-
ceives motor rotation angles and controls motors.
Motors controls each pulley. These pulleys pull
up each movable point with wires. A plane inter-
face provides a finger pad with force feedback.
Figure 27 shows that a plane interface is provid-
ing a finger pad with force feedback when users
touched Sphere CG object in Y-Z plane and X-Z
plane. Figure 28 shows that a plane interface is
providing a finger pad with force feedback when
users touched Sin-cos curve CG object in Y-Z
plane and X-Z plane.

Figure 27. Touching Sphere CG object

Figure 28. Touching Sin-Cos curve CG object

3 EVALUATION EXPERIMENTS

3.1 Overview of Experiments
We had evaluation experiments to compare previ-
ous haptic device and the proposed haptic device.
Sphere CG object is used to evaluate whether us-
ers can perceive sense of touching and grabbing a
CG object or not. Twelve people used previous
haptic device and the proposed haptic device. Af-
ter that, they evaluated following items with a 5-
grade score.
Q1. You feel sense of touching a CG object.
Q2. You feel partial shape of a CG object surface.
Q3. You feel sense of touching a CG object with

two fingers.
Q4. This system can detect a finger position nat-

urally.
Evaluation values are from 1 to 5 (1: “Strongly
Disagree”, 2: “Disagree”, 3: “Neutral”, 4:
“Agree”, 5: “Strongly Agree”).

3.2 Results
Table 1 shows the results. This result shows aver-
age scores and standard deviations. All standard
deviations are lower than 1.0. Thus, we consider
that there is no variance of responding values. In
addition, all average scores of the proposed haptic
device are higher than that of the previous haptic
device.

Table 1. Results
 Average score Standard deviation

No. Previous Proposed Previous Proposed
Q1 4.17 4.67 0.90 0.62
Q2 2.92 4.58 0.64 0.49
Q3 2.92 4.58 0.95 0.49
Q4 2.50 4.58 0.65 0.49

3.3 Discussions
From the results of Q1, we see that the both haptic
devices can provide users sense of touching a CG
object because the both average scores are higher
than 4.0. In Q2, the average score of the previous
haptic device is lower than 3.0 because there is the
case that the plane interface cannot provide accu-
rate slope. Thus, we see that the previous haptic
device cannot provide sense of the partial shape
of a CG object well. From the results of Q3 and
Q4, we see that the previous haptic device cannot
provide sense of touching a CG object with index
finger and thumb well because two AR markers
cannot be recognized at the same time. On the

L1 �� L2

�	����
����

���	

 ���	����	�
��	

������	������

R

A1 �� A2

 ���	�

 ��
��

X

Z

����������
����	�

��������������	�

 ��	�����
��	�

Y

Z

 ��
���

�������
�������	�

 ��	�����
��	�

��������������	�

Z

Y

�-�� �������
�
 ���
�
��

�-��
����	�
����
��	�

����
��

�
	��

X

Z

�-�� �������
�
 ���
�
��

�-��
�� ����
��

�
	��

��	�
��-��
��	�

39

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

other hand, from the results of Q1 to Q4, we see
that the proposed haptic device can provide sense
of touching a CG object and a partial shape of it
more naturally than the previous haptic device be-
cause these average scores are higher than 4.5.
From these results, we see that the plane interface
can provide accurate slope by using redesigned
wire winding mechanism. In addition, we see that
the finger recognition ratio is greatly improved by
using a color and a depth information.

4 CONCLUSION and FUTURE WORKS

The purpose of this paper is an improvement of a
finger-mounted haptic device using surface con-
tact. This haptic device has a plane interface hav-
ing four movable points. The plane interface pro-
vides a finger pad with force feedback to the nor-
mal direction by being approximated to tangent
plane on a CG object surface where finger pads
touched. To draw AR object, we use depth infor-
mation of Senz3D. To detect a finger position
without AR marker, we use a color information
and depth information of Senz3D. After the eval-
uation experiments, we see that the proposed hap-
tic device can provide force feedback to the nor-
mal direction on the touching area of a CG object
surface and grabbing a CG object. In addition,
from the comparison results, we see that the per-
formance of the proposed haptic device has been
greatly improved than the previous haptic device.
In the future, we want to develop a haptic device
to deal with non-rigid object.

REFERENCES

1. Jinha Lee and Cati Boulanger, “Direct, Spatial, and

Dexterous Interaction with See-through 3D Desktop”,
In Proceedings of ACM SIGGRAPH 2012 posters,
Emerging Technologies (2012)

2. R. Silva, J. C. Oliveira and G. A. Giraldi, “Introduction
to Augmented Reality”, In National Laboratory for Sci-
entific Communication, LNCC Research Report, 25
(2003) 

3. Naoki SUZUKI, Asaki HATTORI, Takeshi EZUMI,
Takahiro KU- MANO, Akio IKEMOTO, Yoshitaka
ADACHI, and Akihiro TAKATSU, “Development of
virtual surgery system with sense of touch”, In Trans-
action of the Virtual Reality Society of Japan, Vol. 3,
No. 4, pp. 237- 243 (1998)

4. Kevin Huang, Ellen Yi-Luen Do, and Thad Sterner,
“Piano Touch: A Wearable Haptic Piano Instruction
System for Passive Learning of Piano Skills”, In Pro-
ceedings of 12th IEEE Symposium on Wearable Com-
puters (2008)

5. I. Ivanisevic, and V. J. Lumelsky, “Configuration space
as a means for augmenting human performance in tele-
operation tasks”, In IEEE Trans. On SMC, Part B, Vol.
30, No. 3, pp. 471-484 (2000)

6. Novint Technologies, Inc., “Haptic Device Abstraction
Layer programmer’s guide”, In Version 1.1.9 Beta
(2007)  

7. J. K. Salisbury, and M. A. Srinivasan, “Phantom-Based
Haptic Interaction with Virtual Objects”, In IEEE
Computer Graphics and Applications, Vol. 17, No. 5,
pp. 6-10 (1997)  

8. Xiaochi Gu, Yifei Zhang, Weize Sun, Yuanzhe Bian,
Dao Zhou and Per Ola Kristensson, “Dexmo: An Inex-
pensive and Lightweight Mechanical Exoskeleton for
Motion Capture and Force Feedback in VR”, In Pro-
ceedings of 2016 CHI Conference on Human Factors
in Computing Systems (2016)

9. Lederman S. J, “Tactile roughness of grooved surfaces:
The touching process and effects of macro- and micro
surface structure”, In Perception & Psychophysics, Vol.
16, No. 2, pp. 385-395 (1974)  

10. Makoto Yoda and Hiroki Imamura, “Development of
A Finger Mounted Type Haptic Device Using A Plane
Approximated to Tangent Plane”, In Proceedings of 9th
International Conference on Advances in Computer-
Human Interactions (2016)

40

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 33-40

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

A 3-Dimensional Object Recognition Method Using Relationships between Feature

Points, and Invariance of Local Hue Histogram

Tomohiro Kanda, Kazuo Ikeshiro and Hiroki Imamura

Department of Information Systems Science, Graduate School of Engineering, Soka University

1-236, Tangi-machi, Hachiouji-shi, Tokyo, Japan 192-8577

e16m5206@soka-u.jp, ikeshiro@soka.ac.jp, imamura@soka.ac.jp

ABSTRACT

In recent years, there is concern about the lack of

labor power such as household chores and nursing

care at home due to advancement of the declining

birthrate and an aging population. Accordingly, the

Life Support Robots aiming at livelihood support of

people are attracting attention. In the Life Support

Robot, the process of identifying objects is one of the

most important tasks, and a lot of studies have been

performed in order to solve it. However, there are

still many subjects that must be solved for practical

use. Therefore, this paper presents a novel

technology focusing on the recognition process for

Life Support Robot. This technology describes useful

features in 3D object by using relationships between

feature points, and invariance of local hue histogram,

furthermore this technology performs matching by

them. Thereby, this technology is demonstrated to

improve the recognition accuracy in challenging

object recognition scenarios such as occlusion.

KEYWORDS

Life Support Robot, Cognitive system, 3D object,

List matching, 2-dimensional projection, Hue

histogram

1 INTRODUCTION

1.1 Background of This Study

In recent years, the declining birthrate and an

aging population are developing, and there is

concern about the lack of labor power such as

household chores and nursing care at home.

Accordingly, application of robot technology to

the living field is expected. In the living field,

robots that support the lives of people are

collectively referred to as Life Support Robots

[1][2][3]. This robot is required to perform

various tasks to support the human. Especially,

objects recognition task is important when

people request the robots to transport and

rearrange objects. We consider that there are six

necessary properties to recognize in domestic

environment as follows.

1. Robustness against occlusion

2. Fast recognition

3. Pose estimation with high accuracy

4. Coping with erroneous correspondences

5. Recognizing objects in a noisy environment

6. Recognizing objects which have same shape

but have different texture

Firstly, the robots need the robust recognition for

occlusion because occlusion frequently occurs

between different objects in domestic

environment. Secondly, the robots need to

recognize a target object fast to achieve required

tasks fast. Thirdly, the robots need to estimate a

pose of a target object with high accuracy to

manipulate a target object. Fourthly, the robots

need to cope with erroneous correspondence to

accurately recognize objects which have the

same feature in a local region but which are not

same. For example, a cube and a rectangular

parallelepiped they both have same feature

points in their vertex, however aspect ratio is

totally different. Fifthly, a target object contains

some noises with high probability when

recognizing from cameras and sensors, so the

robots need the robust recognition for noise.

Finally, the robots need to accurately recognize

objects which have same shape but which have

different texture.

As conventional object recognition method using

3-dimensional information, there is model-based

recognition method such as the previous research

by Kudo et al [4]. The previous research uses

SHOT (Signature of Histogram of Orientations)

descriptor as feature descriptor [5]. SHOT

descriptor is expressed by a histogram with 352

dimensions which is described by the

relationships between the reference point and

surrounding points. As above, SHOT enables

highly accurate pose estimation, and highly

41

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

mailto:e16m5206@soka-u.jp
mailto:ikeshiro@soka.ac.jp

accurate object recognition in noisy environment

by high dimensional feature description.

Furthermore, the previous research uses some

matched points by SHOT descriptor as feature

points. Then the previous research generates a

list by listing relationships of distances and

angles between feature points, and matches lists.

Thereby, the previous research can cope with

erroneous correspondences.

However, the previous research erroneously

recognizes objects which have same shape but

which have different textures as shown in Figure

1 because the previous research uses only shape

information of an object.

Table 1 shows properties of the previous

research. As we mentioned, the previous

research does not satisfy all the properties.

To satisfy all the properties for recognition, it is

necessary to use not only shape information of

an object but also texture information of an

object.

As general object recognition method using

texture information, Template Matching is

widely known [6]. Template Matching calculates

whether a pattern similar to the template exists in

the image region by comparing pixels as shown

in Figure 2.

Therefore, Template Matching may

misrecognize objects when changes such as the

scale change and the rotation change are applied

to a target object. Since recognition environment

is unspecified when recognizing an object in

domestic environment, changes are applied to a

target object with high probability. Therefore,

we think that a recognition method which has

robustness against those changes is indispensable

in this research.

As object recognition method which has

robustness against above changes, SIFT (Scale

Invariant Feature Transform) is widely known

[7]. SIFT uses the points which have extreme

values in DoG image as feature points.

Furthermore, SIFT descriptor is expressed by a

gradient histogram based on the direction of the

feature point as shown in Figure 3.

Thereby, SIFT can correctly recognize objects

even when the scale change, the rotation change

and the illumination change occurs. However,

SIFT descriptor is easily effected because

perspective projection adds distortion to an

image. Furthermore, objects which have few

textures have hardly a local luminance gradient,

therefore SIFT is difficult to describe features.

On the other hand, there is Color Indexing as a

robust method for perspective projection [8].

Color Indexing uses 3-dimensional color

histogram based on the RGB values in an image

as feature descriptor. Figure 4 shows an example

of 3-dimensional color histogram. As shown in

Figure 4, a size of the square in 3-dimensional

color histogram expresses the frequency of each

color.

Figure 1. An example of objects which have same

shape but which have different texture.

Figure 2. An example of matching by using Template

Matching.

(a) Template image and input image (b) Mat of similarity

Figure 3. SIFT feature description.

(a) Image gradients (b) Kyepoint

descriptor
(c) Histogram

(128 bins)

Table 1. Properties of the previous research and the proposed method.

42

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

The values of 3-dimensional color histogram has

a characteristic which is hardly effected from the

scale change, the rotation change and perspective

projection. Therefore, Color Indexing can

correctly recognize objects even when the scale

change, the rotation change and perspective

projection occur. However, the RGB color

system which is used for Color Indexing is easily

affected by lighting.

Table 2 shows properties of these methods. As

we mentioned, two of the method do not satisfy

all the properties.

Therefore, to compensate for the defect of SIFT

and Color Indexing, we have developed the

previous research using texture information for

the object recognition [9]. The previous research

using texture information focuses on the

invariance of the positions of the unevenness of

the hue histogram. Figure 5 shows the invariance

of the positions of the unevenness of the hue

histogram for each change.

As shown in Figure 5, the positions of the

unevenness of the hue histogram have a

characteristic, which they do not change even

when the scale change, the rotation change, the

illumination change and the perspective

projection occur. Furthermore, even when the

occlusion occurs, the unevenness is seen in other

places, but the positions of the original

unevenness do not change. For these reasons, the

previous research using texture information uses

the positions of the unevenness of the hue

histogram as feature descriptor. In addition, the

previous research using texture information

divides an image into plural regions and

generates a hue histogram for each divided

region. Thereby, even if objects have similar hue

values, the previous research using texture

information can accurately recognize ones. From

above, we adopt the previous research using

texture information as an object recognition

method using texture information.

1.2 Purpose of This Study

To satisfy the six properties for recognition as

shown in Table 1, we propose a 3-dimensional

object recognition method using relationships

between feature points, and invariance of local

hue histogram. As our approaches, firstly, the

proposed method extracts correspondence points

by matching lists which consist of relationships

of distances and angles between feature points.

Secondly, the proposed method estimates a pose

of a target object with high accuracy and

performs registration between objects. Thirdly,

the proposed method projects objects after

registration to 2-dimensional plane. Fourthly, the

proposed method divides the 2-dimensional

planes into plural regions and generates a hue

histogram for each divided region. Finally, the

proposed method extracts the position of

unevenness from the generated hue histograms

as invariant feature, and matches based on

Figure 4. An example of 3-D color histogram.

Figure 5. The invariance of the positions of the

unevenness of the hue histogram for each change.

Table 2. Properties of conventional methods and the previous research using textures.

43

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

extracted invariant features. Thereby, the

proposed method can accurately recognize

objects which have same shape but which have

different textures.

2 PROPOSED METHOD

2.1 Flow of the Proposed Method

In this section, we describe about an overview of

the proposed method based on its processing

flow. Figure 6 shows the flow of the proposed

method.

As shown in Figure 6, the proposed method

consists of candidate regions extraction process

and recognition process. We represent each

process in the next sections.

2.2 Input Point Cloud Data

Firstly, the proposed method inputs a teaching

data and a scene data as shown in Figure 7. Here,

the teaching data has shape information and

texture information for the entire circumference

of the object.

2.3 Object Region Extraction

To extract useful information from a huge

amount of 3-dimensional data, the proposed

method segments object regions in scene data. In

this paper, we assume that the target object is on

a table or a floor in domestic environment as

shown in Figure 7 (b). Therefore, the proposed

method firstly detects the plane region by

applying a plane detection method using

RANSAC [10] and excludes it. Secondly, the

proposed method uses the clustering method to

cluster each object as shown in Figure 8.

2.4 SHOT Descriptor Description

To extract feature points, the proposed method

uses SHOT (Signature of Histogram of

Orientations) descriptor as feature descriptor.

SHOT descriptor is expressed by a histogram

with 352 dimensions which is described by the

relationships between the reference point and

surrounding points. Therefore, the surface

features of the three-dimensional model can be

described with unique and repeatability by using

SHOT descriptor. In this section, we explain

about how to describe the SHOT descriptor

according to Figure 9.

As shown in Figure 9, SHOT descriptor is

defined by the normal direction histogram of the

peripheral point group. Firstly, surround the

reference point with a sphere. This sphere is the

Figure 6. Flow of the proposed method.

(a) Candidate regions

extraction process
(b) Recognition process

Figure 7. Overview of the input data.

(a) Teaching data (b) Scene data

Figure 8. The result of deleting a plane and classifying

each object.

Figure 9. SHOT feature description.

(a) Signature structure

for SHOT
(b) Histogram (352 bins)

44

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

range of points used for description. Furthermore,

this sphere is divided into 32 rooms by dividing

it into 2 rooms in the 𝑧 axis direction, 2 rooms

spherically on the center and outside, and 8

rooms for 𝑥𝑦 plane. Finally, in each room, the

inner product of the normal 𝑛𝑖 of the point

existing in the room and the norm 𝑟 of the

reference point is calculated. If the normal is

normalized, the inner product can be expressed

by cos 𝜃 of 𝑟 and 𝑛𝑖 . Since cos 𝜃 takes value

from 0 to 1 (−90 ≤ θ ≤ 90), it is divided into

bin number and converted into a histogram.

2.5 Feature Points Extraction

The SHOT descriptor is represented by a vector

of high dimensions. KNN search is used to

match this feature. If the ratio of the distance to

the first node and the distance to the second node

obtained by KNN search is equal to or greater

than a certain value, we consider that it is

available for discrimination as a feature quantity

and save the matching. Conversely, if there is

not much difference between the distances of the

first node and the second node, it is considered

to be unstable to use for matching, and it is

excluded. Furthermore, the most desirable

matching point is searched out from the saved

point group. In this research, the matched points

are registered as feature points.

2.6 List Generating

In the list generating process, the proposed

method generates the list of distances and angles

between extracted feature points as relationships

of these points. To generate the list of

relationships, the proposed method firstly sorts

the extracted feature points in descending order

of the dispersion of SHOT descriptor as shown

in Figure 10.

The dispersion is calculated by the following

equation.

𝜎2 =
1

𝑛
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (1)

Where, 𝜎2 is the dispersion. 𝑛 is the number of

data. 𝑥𝑖 is each data. �̅� is the average value.

Secondly, the proposed method extracts the

combination of three points based on the order of

the aligned feature points as much as possible,

and describes the relationships of them in a list

as shown in Figure 11, Table 3 and Table 4.

2.7 List Matching

In the list matching process, the proposed

method matches the list of the teaching data and

the list of each cluster data. As shown in Figure

11, Table 3 and Table 4, the lists have distances

between the feature points, and an angle as

element. Then, the proposed method matches

between list number 1 of the teaching data and

all the lists of each cluster data. Furthermore, in

the proposed method, if the sum of the difference

of distances between corresponding point ① and

corresponding point ② , and the difference of

Figure 10. An example of sorted feature points in

descending order on dispersion of SHOT.

Figure 11. An example of combination of three

points.

(a) Teaching data (b) Scene data

Table 3. The list of the teaching data.

Table 4. The list of each cluster data.

45

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

distances between corresponding point ① and

corresponding point ③, and the difference of the

angle between the those vectors is minimum and

less than the threshold, a list having it is

registered as corresponding list. At this time, the

feature points of each element of these lists are

associated. Thereby, the proposed method can

eliminate mismatched points which are occurred

while the matching is conducted by SHOT

descriptor.

2.8 Rigid Registration

To estimate the pose of the target object in the

scene data, the proposed method applies the rigid

registration to the teaching data as shown in

Figure 12. Firstly, the proposed method fits the

teaching data to each cluster data in the scene by

calculating the optimum rotation matrix 𝑅 and

the translation vector 𝑡 from associated feature

points. Secondly, the proposed method calculates

a corresponding rate 𝑀 between a fitted teaching

data and each cluster data by using

𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑓(min{𝑑𝑖𝑠𝑡𝑖𝑗|1 ≤ 𝑗 ≤ 𝐿})

𝑁

𝑖=1

,

𝑓(𝑥) = {
1 (𝑥 ≤ 𝑡ℎ𝑐)

0 (𝑥 > 𝑡ℎ𝑐)
, (2)

𝑑𝑖𝑠𝑡𝑖𝑗 = ‖𝑝𝑖 − 𝑞𝑗‖,

𝑀 =
𝑆𝑐𝑜𝑟𝑒

𝐿
∙ 100. (3)

Where, 𝑁 is the number of points of the teaching

data. 𝐿 is the number of points of each cluster

data. 𝑝𝑖 is matched point of the fitted teaching

data. 𝑞𝑗 is matched point of each cluster data in

the scene. The proposed method counts a

number of 𝑝𝑖 which are within a threshold 𝑡ℎ𝑐

which is 1 [mm] of 𝑞𝑗 by the equation (2) as a

score. And then, the proposed method calculates

the corresponding rate 𝑀 based on the score by

equation (3). Finally, the proposed method

selects objects which have the corresponding

rate higher than the threshold value in scene data

as candidate regions as shown in Figure 13.

2.9 2-Dimensional Projection

The proposed method projects the fitted teaching

data and each candidate region onto a 2-

dimensional plane respectively to extract texture

information. It is not necessary to take into

consideration problems related to rotation

change and scale change since the positions of

the teaching data and each candidate region are

matched in rigid registration processing.

Therefore, we use parallel projection as a 2-

dimensional projection method. In Parallel

Projection, a 3-dimensional point cloud of an

object is projected to 2-dimensional plane by

using

𝑥′ = 𝑥

𝑦′ = 𝑦 (4)

𝑧′ = 𝑧 = 𝑐𝑜𝑛𝑠𝑡

As shown in Figure 14. Where, (𝑥, 𝑦, 𝑧) is point

before conversion. (𝑥′, 𝑦′, 𝑧′) is after conversion.

Figure 15 shows the result of projecting the

teaching data and a part of the candidate region

to 2-dimensional plane.

Figure 12. Illustration of the rigid registration.

Figure 13. The result of candidate regions extraction.

Figure 14. Parallel Projection.

Figure 15. The result of 2D projection process.

(a) Plane of teaching data. (b) Plane of candidate region.

46

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

2.10 Object Region Division

To generate the local hue histogram, the

proposed method divides the planes of the

teaching data and each candidate regions into

plural regions. Here, we define the number of

division as four as example.

2.11 Hue Histogram Generation

To generate the hue histogram, the proposed

method extracts hue from each divided regions

of the teaching data and each candidate regions.

Then, the proposed method generates local hue

histograms. The hue value of the generated

histogram is represented from 0 to 359. Figure

16 shows the divided regions and local hue

histograms. We define the vertical axis as the

frequency, and the horizontal axis as the hue

value.

Here, we focus item ② of Figure 16. Figure 17

(a) shows an expanded hue histogram of item ②

of Figure 16. In Figure 17 (a), because there are

small irregularities at 100 and 102 of hue value,

the feature descriptor becomes unstable by

extracting the positions of peak and trough of the

hue histogram in this state. Therefore, to

eliminate those small irregularities, the proposed

method smooths the hue histogram by using

Gaussian Filter. Figure 17 (b) shows a smoothed

hue histogram of Figure 17 (a). In Figure 17 (b),

we can see small irregularities of the hue

histogram are omitted, and the characteristic

positions of peak and trough of the hue

histogram are remained.

2.12 Characteristic Position Extraction

In characteristic position extracting process, the

proposed method registers the positions of peak

and trough of the hue histogram as feature

descriptor. The proposed method extracts the

positions of peak from the smoothed hue

histograms of teaching data and each candidate

regions by using

(𝐻𝑥−1 < 𝐻𝑥) ⋀ (𝐻𝑥 > 𝐻𝑥+1), (5)

and the positions of trough from the smoothed

hue histograms of teaching data and each

candidate regions by using

(𝐻𝑥−1 > 𝐻𝑥) ⋀ (𝐻𝑥 < 𝐻𝑥+1), (6)

and registers them as feature descriptor. Where,

𝐻𝑥 is the hue value which is focused on. 𝐻𝑥−1 is

the hue value before one of 𝐻𝑥. 𝐻𝑥+1 is the hue

value after one of 𝐻𝑥 . And then, the extracted

positions of peak and trough of teaching data are

expressed by using

{𝑝1(𝑎)
(𝛼), 𝑝2(𝑎)

(𝛼), ⋯ } ∈ 𝑃(𝑎)
(𝛼), (7)

{𝑡1(𝑎)
(𝛼), 𝑡2(𝑎)

(𝛼), ⋯ } ∈ 𝑇(𝑎)
(𝛼), (8)

Where, 𝑃(𝑎)
(𝛼) is a set of peak position of a

smoothed hue histogram in divided region 𝛼 of 𝑎.

𝑝1(𝑎)
(𝛼), 𝑝2(𝑎)

(𝛼), ⋯ which are each peak

position of a smoothed hue histogram in divided

region 𝛼 of 𝑎. 𝑇(𝑎)
(𝛼) is a set of trough position

of a smoothed hue histogram in a divided area 𝛼

of 𝑎. 𝑡1(𝑎)
(𝛼), 𝑡2(𝑎)

(𝛼), ⋯ which are each trough

position of a smoothed hue histogram in divided

Figure 16. An example of divided regions and local

hue histograms.

F
re

q
u
e
n
c
y

F
re

q
u
e
n
c
y

F
re

q
u
e
n
c
y

F
re

q
u
e
n
c
y

Hue value

Hue value

Hue value

Hue value

0

0

0

0

359

359

359

359

①

②

③

ン

④

Figure 17. Smoothing processing.

Hue value

F
re

q
u
e
n
c
y

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

1
0

8

1
0

9

1
1

0

1
1

1

1
1

2

1
1

3

1
1

4

1
1

5

1
1

6

1
1

7

1
1

8

1
1

9

Hue value

F
re

q
u
e
n
c
y

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

1
0

8

1
0

9

1
1

0

1
1

1

1
1

2

1
1

3

1
1

4

1
1

5

1
1

6

1
1

7

1
1

8

1
1

9

(a) A part of hue histogram.

(b) A part of smoothed hue histogram.

47

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

region 𝛼 of 𝑎. In addition, the extracted positions

of peak and trough of candidate regions are

expressed by using

{ℎ𝑝1
(𝛽), ℎ𝑝2

(𝛽), ⋯ } ∈ ℎ𝑃(𝛽), (9)

{ℎ𝑡1
(𝛽), ℎ𝑡2

(𝛽), ⋯ } ∈ ℎ𝑇(𝛽), (10)

Where, ℎ𝑃(𝛽) is a set of peak position of a

smoothed hue histogram in a divided region 𝛽.

ℎ𝑝1
(𝛽), ℎ𝑝2

(𝛽), ⋯ which are each peak position

of a smoothed hue histogram in a divided region

𝛽 . ℎ𝑇(𝛽) is a set of trough position of a

smoothed hue histogram in a divided region 𝛽.

ℎ𝑡1
(𝛽), ℎ𝑡2

(𝛽), ⋯ which are each trough position

of a smoothed hue histogram in a divided region

𝛽.

2.13 Feature Matching

To recognize teaching data from candidate

regions, the proposed method performs matching

by the positions of peak and trough of the local

hue histograms between teaching data and each

candidate region. Firstly, the proposed method

calculates the difference values between feature

descriptor of teaching data and feature descriptor

of the each candidate region by using

𝐷𝑝1 = min
1≤𝑦≤𝑛

1≤𝛼,𝛽≤𝑖
1≤𝑎≤𝑚

|𝑝1(𝑎)
(𝛼) − ℎ𝑝𝑦

(𝛽)|, (11)

𝐷𝑝2 = min
1≤𝑦≤𝑛

1≤𝛼,𝛽≤𝑖
1≤𝑎≤𝑚

|𝑝2(𝑎)
(𝛼) − ℎ𝑝𝑦

(𝛽)|, (12)

⋮

𝐷𝑡1 = min
1≤𝑧≤𝑙

1≤𝛼,𝛽≤𝑖
1≤𝑎≤𝑚

|𝑡1(𝑎)
(𝛼) − ℎ𝑡𝑧

(𝛽)|, (13)

𝐷𝑡2 = min
1≤𝑧≤𝑙

1≤𝛼,𝛽≤𝑖
1≤𝑎≤𝑚

|𝑡2(𝑎)
(𝛼) − ℎ𝑡𝑧

(𝛽)|, (14)

⋮

𝐷𝑃 = ∑ 𝐷𝑝𝛼
𝑓
𝛼=1 , (15)

𝐷𝑇 = ∑ 𝐷𝑡𝑏
𝑘
𝑏=1 , (16)

𝐷 = 𝐷𝑃 + 𝐷𝑇, (17)

Where, 𝑛 is the number of peak of a smoothed

hue histogram in a divided region 𝛽 . 𝑖 is the

number of division. 𝑚 is the number of teaching

data. 𝑙 is the number of trough of a smoothed

hue histogram in a divided region 𝛽 .

𝐷𝑝1, 𝐷𝑝2, ⋯ which are the smallest difference

values between ℎ𝑃(𝛽) to 𝑝1(𝑎)
(𝛼), 𝑝2(𝑎)

(𝛼), ⋯ .

𝑝1(𝑎)
(𝛼), 𝑝2(𝑎)

(𝛼), ⋯ which are each peak

position of a smoothed hue histogram in a

divided region 𝛼 of 𝑎 . 𝐷𝑡1, 𝐷𝑡2, ⋯ are the

smallest difference values between ℎ𝑇(𝛽) to 〖

𝑡1(𝑎)
(𝛼), 𝑡2(𝑎)

(𝛼), ⋯ . 𝑡1(𝑎)
(𝛼), 𝑡2(𝑎)

(𝛼), ⋯ which

are each trough position of a smoothed hue

histogram in a divided region 𝛼 of 𝑎 . 𝑓 is the

number of peak of a smoothed hue histogram in

a divided region 𝛼 of 𝑎 . 𝑘 is the number of

trough of a smoothed hue histogram in a divided

region 𝛼 of 𝑎. 𝐷𝑃 is the total value of difference

value of peak position. 𝐷𝑇 is the total value of

difference value of trough position. 𝐷 is the total

difference value. As an example, Figure 18

shows the matching based on the positions of

peak and trough of the hue histogram.

As shown in Figure 18, the proposed method

compares the positions of peak and trough of a

smoothed hue histogram of teaching data with

the positions of peak and trough of a smoothed

hue histogram of candidate region, and

calculates difference values. Furthermore, the

proposed method registers a peak and trough

having the smallest difference value as the

nearest peak and trough. Finally, the proposed

method recognizes the object with the smallest 𝐷

in scene data as target object.

3 EXPERIMENT

In this section, to evaluate effectiveness of the

proposed method, we carry out a quantitative

comparison against the previous research about

six properties mentioned in section 1 as follows

1. Robustness against occlusion

2. Fast recognition

3. Pose estimation with high accuracy

4. Coping with erroneous correspondences

5. Recognizing objects in a noisy environment

6. Recognizing objects which have same shape

but have different texture

Figure 18. An example of matching based on the

positions of peak and trough of the hue histogram.

48

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

For the properties 1 to 5, the effectiveness of the

previous research is shown in the paper relating

to the previous research [4]. The proposed

method adopts the previous research in order to

extract candidate regions. Therefore, we only

show the effectiveness for property 6 of the

proposed method in this paper.

3.1 Quantitative Comparison Experiment

Relating to Effectiveness

3.1.1 Experimental Overview

In this experiment, we compared the proposed

method with the previous research quantitatively

to evaluate about a property as follows

6. Recognizing objects which have same shape

but have different texture

We selected 15 objects frequently used in

domestic environment from TUW Object

Instance Recognition Dataset [11] as verification

objects. Figure 19 and Figure 20 show

verification objects.

Object (d) and (j) each have the same shape and

different texture as object (e) and (k),

respectively. These verification objects have

shape information and texture information for

the entire circumference of an object. Thereby,

even if rotation is added to a recognition target

existing in the scene data, it is expected that pose

estimation with high accuracy can be performed.

Therefore, in this experiment, in addition to the

above evaluation for the property 6, we

evaluated the correspondence rate of pose

estimation at each rotation angle. To generate

rotation scene, we rotate each 3-dimensional

object data by 10 degrees up to 90 degrees

around each axis (X axis, Y axis and Z axis) as

shown in Figure 21.

To evaluate effectiveness of each method, we

calculate the recognition rate by using

𝐴 =
𝑐

𝑧
× 100 [%] (18) Figure 19. Verification objects.

(a) Air freshener (b) All (c) Burti

(d) Bottle (Green) (e) Bottle (Blue) (f) Downy

(g) Pack (500ml) (h) Water boiler (i) Cup

(j) Arm & Hammer

(Yellow)
(k) Arm & Hammer

(Blue)
(l) Telephone

Figure 20. Verification objects.

(m) Coca cola

(350ml)
(n) Doll (o) Toy car

Figure 21. The example of rotation scene of the all.

(a) Rotation 10
degrees around x axis

(b) Rotation 40
degrees around x axis

(c) Rotation 70

degrees around x axis

(d) Rotation 10

degrees around y axis
(e) Rotation 40
degrees around y axis

(f) Rotation 70
degrees around y axis

(a) Rotation 10

degrees around z axis
(b) Rotation 40

degrees around z axis
(c) Rotation 70
degrees around z axis

49

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Where, 𝐴 is the recognition rate. 𝑐 is the number

which the each method could correctly recognize

objects. 𝑧 is the number of the verification object.

A method of finding the recognition rate is that

each method extract the most similar object from

scene data which is each verification object with

2.5-dimensional in each verification object, and

when it is equal to the teaching data, it is counted

as correct recognition 𝑐 . Detailed settings for

recognizing a target object of each method are as

follows. In the previous research, to evaluate

pose estimation accuracy of a target object, we

use the corresponding rate 𝑀 mentioned in the

rigid registration process (section 2.8). The

corresponding rate 𝑀 is calculated by using the

equation (2) and (3) with 𝑡ℎ𝑐 which is 1 [mm].

In case that, the corresponding rate 𝑀 is the

highest and is 70 percent or more, the object

having that rate is recognized as a target object.

In the proposed method, to evaluate pose

estimation accuracy of a target object, we use the

corresponding rate 𝑀 as in the previous research.

And then, in case that, the corresponding rate 𝑀

is the highest and is 70 percent or more, an

object having it is recognized as candidate object.

Furthermore, to accurately recognize a target

object from the candidate objects, we use the

difference value 𝐷 mentioned in the feature

matching process (section 2.13). The difference

value 𝐷 is calculated by cumulating the

difference value (𝐷𝑝𝑖, 𝐷𝑡𝑗) for each divided

region. We define the number of division as four

in this experiment. In case that, the difference

value 𝐷 is the lowest, an object having it is

recognized as a target object. Also, the reported

processing time is obtained using Intel(R)

Core(TM) i7 2.20GHz with 8.00 GB of main

memory.

3.1.1 Experimental Overview

Figure 22 shows the recognition rate of the

previous research and the proposed method for

each rotation angle around x axis as

experimental result.

As shown in Figure 22, the proposed method

obtained a high recognition rate which is 100

percent at each rotation angle, whereas the data

of the previous research is a slightly lower

recognition rate than the proposed method’s rate.

The same can be said for Figure 23 and Figure

24.

Furthermore, Table 5 shows a processing time of

the previous research and the proposed method

in each verification object.

Figure 22. The recognition rate for each rotation angle

around x axis.

Figure 23. The recognition rate for each rotation angle

around y axis.

Figure 24. The recognition rate for each rotation angle

around z axis.

Table 5. The average processing time in each verification object.

50

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

As shown in Table 5, the difference between the

processing time of the proposed method and the

processing time of the conventional research was

not as large as 30 ms to 40 ms.

3.1.1 Discussion

In this section, we discuss the results presented

in experimental results (section 3.1.2).

As shown in Figure 22, Figure 23 and Figure 24,

it can be seen that the recognition rate of the

previous research maintains 73 percent at all

rotation angles around each axis. Therefore, we

confirm which object the recognition rate of the

previous research is decreasing. In this

experiment, the recognition rate of the previous

research decreased at the object (d), (e), (j) and

(k). As an example, the corresponding rates for

each scene data when the object (j) is used as

teaching data are shown as follow.

As shown in Table 6, the corresponding rate of

object (j) and (k) were equal. This is because the

previous research uses only shape information of

an object, it is impossible to accurately

distinguish objects having same shape and

different texture like object (j) and (k). On the

other hand, since the proposed method uses not

only shape information of an object but also

texture information of an object, it was able to

perform a robust recognition at all verification

objects as shown Figure 22, Figure 23 and

Figure 24. From these results, the effectiveness

of the proposed method for the property 6 was

shown.

4 CONCLUSION

In this paper, we proposed the 3-dimensional

object recognition method using relationships

between feature points, and invariance of local

hue histogram for the purpose of improving the

recognition technology for the life support robot.

The proposed method has effectiveness for six

properties necessary as follows for recognition in

the domestic environment.

1. Robustness against occlusion

2. Fast recognition

3. Pose estimation with high accuracy

4. Coping with erroneous correspondences

5. Recognizing objects in a noisy environment

6. Recognizing objects which have same shape

but have different texture

From experimental results of quantitative

comparison experiment relating to effectiveness,

we considered that the proposed method can

accurately distinguish objects which have same

shape but have different texture. In addition,

since the difference between the processing time

of the proposed method and the processing time

of the previous research is 30 ms to 40 ms which

is not very large, we considered that the

proposed method can perform recognition with

high speed and high accuracy.

However, since SHOT descriptor used by the

proposed method is difficult to describe features

for objects including a lot of planes like box,

pose estimation on ones may not be performed

well. Therefore, when describing features of an

object, we describe not only the shape feature

but also the texture feature, and estimate the pose

by using them. Thereby, we improve pose

estimation accuracy of the proposed method in a

feature work.

REFERENCES

1. S. Sugano, T. Sugaiwa, and H. Iwata, “Vision System

for Life Support Human-Symbiotic-Robot,” The

Robotics Society of Japan, 27(6), pp. 596-599, 2009.

2. T. Odashima, M. Onishi, K.Tahara, T. Mukai, S.

Hirano, Z. W. Luo, and S. Hosoe, “Development and

Evaluation of a Human-interactive Robot Platform

“RI-MAN”,” The Robotics Society of Japan, 25(4), pp.

554-565, 2007

3. Y. Jia, H. Wang, P. Sturmer, and N. Xi,

“Human/robot interaction for human support system

by using a mobile manipulator,” Robotics and

Biomimetics (ROBIO), pp. 190-195, 2010.

4. H. Kudo, K. Ikeshiro, and H. Imamura, “A 3-

Dimensional Object Recognition Method Using

SHOT and Relationship of Distances and Angles in

Feature Points,” International Journal of New

Computer Architectures and their Applications

Table 6. The corresponding rate for each scene data at 0 degrees.

51

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

(IJNCAA), 7(4), pp. 149-155, 2017.

5. F. Tombari, S. Salti, and L. D. Stefano, “Unique

signatures of histograms for local surface description,”

European conference on computer vision (ECCV), pp.

356-369, 2010.

6. INTELLIGENT SENSING LABORATORY,

http://isl.sist.chukyo-u.ac.jp/Archives/tm.html

7. D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,” International Journal of

Computer Vision, 60(2), pp. 91-110, 2004.

8. M. J. Swain, and D. H. Ballard, “Color Indexing,”

International Journal of Computer Vision, 7(1), pp.

11-32, 1991.

9. T. Kanda, K. Ikeshiro, and H. Imamura, “An Object

Detection Method Using Invariant Feature Based on

Local Hue Histogram in Divided Areas of an Object,”

International Journal of New Computer Architectures

and their Applications (IJNCAA), 7(4), pp. 112-122,

2017.

10. M. A. Fischler and R. C. Bolles, “Random Sample

Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated

Cartography,” Comm. of the ACM, 24(6), pp. 381-

395, 1981.

11. AUTOMATION & CONTROL INSTITUTE (ACIN),

https://repo.acin.tuwien.ac.at/tmp/permanent/dataset_i

ndex.php

52

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(1): 41-52

The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

http://isl.sist.chukyo-u.ac.jp/Archives/tm.html
https://repo.acin.tuwien.ac.at/tmp/permanent/dataset_index.php
https://repo.acin.tuwien.ac.at/tmp/permanent/dataset_index.php

The International Journal of New Computer Architectures and Their Applications aims to provide a
forum for scientists, engineers, and practitioners to present their latest research results, ideas,
developments and applications in the field of computer architectures, information technology, and
mobile technologies. The IJNCAA is published four times a year and accepts three types of papers as
follows:

1. Research papers: that are presenting and discussing the latest, and the most profound
research results in the scope of IJNCAA. Papers should describe new contributions in the
scope of IJNCAA and support claims of novelty with citations to the relevant literature.

2. Technical papers: that are establishing meaningful forum between practitioners and
researchers with useful solutions in various fields of digital security and forensics. It includes
all kinds of practical applications, which covers principles, projects, missions, techniques,
tools, methods, processes etc.

3. Review papers: that are critically analyzing past and current research trends in the field.

Manuscripts submitted to IJNCAA should not be previously published or be under review by any other
publication. Plagiarism is a serious academic offense and will not be tolerated in any sort! Any case of
plagiarism would lead to life-time abundance of all authors for publishing in any of our journals or
conferences.

Original unpublished manuscripts are solicited in the following areas including but not limited to:

 Computer Architectures

 Parallel and Distributed Systems

 Storage Management

 Microprocessors and Microsystems

 Communications Management

 Reliability

 VLSI

International Journal of

NEW COMPUTER ARCHITECTURES AND THEIR APPLICATIONS

