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ABSTRACT

Nowadays, vessels such as cargo vessels, ferries,
and fishing boats are constantly coming and going
on all over the sea. On the other hands, unfortu-
nately, collisions among vessels account for about
one-quarter of the total accidents. In this paper,
small boats such as fishing boats and pleasure boats
that is not required to mount Automatic Identifica-
tion System (AILS) has been focused on. In detail,
a module for LoRa (Long Range) wireless, which
is one of the LPWAN (Low Power, Wide Area Net-
work) standards, and a GPS module are mounted on
a small vessel. Moreover, machine learning is used
to determine by predicting the navigation route, a
system to avoid collisions between ships has been
considered.

KEYWORDS

Route Prediction, Vessel Collision Avoidance, Su-
port Vector Regression

1 INTRODUCTION

Nowadays, only large vessels are obliged
to install Automatic Identification System
(AIS)[1], and small vessels are not obliged to
do so. On the other hands, as a result, 70[%]
of marine accidents in Japan, the most com-
mon accident is a collision accident (accord-
ing to statistics from the Japan Coast Guard

[2]). It is recommended that small vessels be
equipped with a simplified AIS, but a radio li-
cense is required. Therefore, the following sys-
tem as shown as fig.1 to reduce accidents of
small boats will be proposed [3].

First, it will be considered that the small
number of accidents in large vessels is due
to the fact that the coordinates of surround-
ing AIS-equipped vessels can be acquired by
AIS information. From this viewpoint, small
vessels should be equipped with LoRa (Long
Range) systems [4] that is unlicensed Low
Power, Wide Area Network (LPWAN) radio
[5]instead of AIS for the above-mentioned rea-
sons. The coordinate data of the on-board ves-
sel is continuously transmitted, and the coor-
dinate data is received by the cloud server (it
will be performed on the Japan Gigabit Net-
work system [7], fig. 1). The sailing route is
predicted by the server. Next, if it is deter-
mined that the small vessel approaches a radius
of 500[m] from the small vessel, the system
will be determined a danger of collision. The
radio that receives the danger signal sounds an
alarm and informs to the mariners, to avoid a
collision. In view of the above background,
this study will be used the one of the machine
learning method called Support Vector Regres-
sion (SVR) [6], for developing a system for
predicting the sailing route from the coordinate
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Figure 1. A Covered Area the Proposed Systems Followed.

data. However, the LoRa radio on board is not
yet completed and it is difficult to obtain the
coordinate data of small vessels at this time.
From this issue, the AIS data will be applied
for the verification experiment in this study.

The structure of this paper is as follows. Sec-
tion 2 describes the AIS, its received data col-
lection method. Section 3 describes the out-
line of the data to be predicted and describes
the predicted results and considerations. Fi-
nally, section 4 describes the conclusions of
this study and the future works.

2 SUBJECTION AREA AND ITS PROB-
LEM - HOW TO COLLECT AIS DATA

9

The route prediction system for verifica-
tion field work in this study takes the form of
mounting a board computer such as Raspberry
Pi on a vessel. It not only transmits and re-
ceives GPS information to and from other ves-
sels and land-based base stations, but also uses
its own vessel identification and linear predic-
tion for small vessels. However, it is difficult
to predict the route using machine learning in
addition to the above process on a scale such

as a board computer. It will be performed on
the Japan Gigabit Network system [7]. Fig-
ure 1 shows a schematic diagram of communi-
cation between ships and between vessels and
base stations.

When establishing a collision prediction sys-
tem for vessels at sea, if small vessels can be
assigned identification numbers such as MMSI
numbers (marine mobile service identification
codes) for large vessels, identification number
will be assigned each one vessel and route data
will be tied.

2.1 About AIS

AIS is a radio device that uses two waves
of 161.975[MHz] and 162.025[MHZz] of the in-
ternational VHF. Currently, the following ships
are required to be installed under domestic law:

e All vessels engaged in international voy-
ages of 300 gross tons or more.

e All passenger ships engaged in interna-
tional voyages.

o All vessels that are not engaged in inter-
national voyage and have a gross weight
of 500 gross tons or more.
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The information transmitted by the AIS
is divided into three types: static informa-
tion, navigation-related information, and dy-
namic information. The dynamic information
changes during navigation, so it is transmit-
ted every few seconds. The transmission inter-
val becomes narrower as the speed increases.
Since static information and navigation-related
information do not change during navigation,
they are transmitted every few minutes or at
the request from other agency. Each informa-
tion includes MMSI (Maritime Mobile Service
Identity) number is entered as an ID, which
identifies the source vessel.

2.2 Overview of Elasticsearch — Cloud
Server

Elasticsearch is a full-text search engine.
Its main features are its ability to handle big
data, high-speed search performance, and par-
tial match search. AIS sends dynamic informa-
tion every few seconds. Therefore, the amount
of data is inevitably large. On the other hands,
the data used in this study is only dynamic in-
formation and does not need static information
or navigation-related information. For this rea-
son, we constructed a cloud server using Elas-
ticsearch.

2.3 Overview of kibana — Visualizer

Kibana is a tool that is able to visualize the
data stored in Elasticsearch. Currently, the au-
thors visualize the vessel coordinates and its di-
rection on a map using the acquired AIS data.
These are shown in fig. 2. In Kibana, the
user can search in detail from the data stored
in Elasticsearch, and can download the neces-
sary data as a CSV (Comma-separated values)
file.

2.4 AIS Data Collection Method

In this study, to acquire AIS information, a
VHF antenna was installed on the rooftop of
Building 5, Engineering Building, Ehime Uni-
versity in September 2019. In addition, an AIS
receiver was developed using a USB tuner for
PC as a software receiver. Figure 3 shows the

Matsuyarr

Figure 2. A Visualization Result of AIS using Kibana.

flow of AIS data input. The received data is
input to a board computer called Jetson nano
by serial communication. Data demodulation
software is also installed on Jetson nano. The
demodulated data is output to UDP port 10110
by UDP using Python script.

Figure 3. An Installed VHF Antenna to Acquire AIS
Information.

After the data input to the UDP server is
decoded by Python, the data is input to the
Elasticsearch port number 9100 of the server.
When the data is input to Elasticsearch, a time
stamp is added. The time data obtained from
the dynamic information is inaccurate, so that
highly accurate time data can be obtained from
the time stamp.
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Table 1. Learning Parameters of SVR

Property

Value

Regularization parameter C' 1000

Error tolerance ¢
Kernel parameter

0.005
0.05

3 VERIFICATION EXPERIMENT -
VESSEL IDENTIFICATION AND
ROUTE PREDICTION USING SVR

As mentioned above, when constructing a
collision prediction system for vessels on the
sea, in order to predict the route of a small
vessel, the identification of the vessel that is
temporarily navigating based on GPS data to
which no identification number is assigned, is
performed. Therefore, it was necessary to pre-
dict the route based on the results. As a first
step, the following method was applied; In
the proposed prediction system, that won’t use
the data received and stored in advance, but it
would like to adopt a system that learns and
predicts from the coordinates received in real
time. The important points of this system is
that means that it is not necessary to learn the
sailing route in advance. In other words, it can
be said that the advantage is that prediction can
be made without problems even for the vessel
that has received the signal for the first time.
However, the disadvantages of this method are
that it takes a long time to learn and predict
on the spot, and that the accuracy of the out-
put result cannot be guaranteed due to the small
amount of training data. In this paper, we fo-
cused on the emphasis on accuracy.

Especially, in this paper, in creating a pre-
diction model, this paper uses one day of AIS
data received on January 24, 2020. In order
to examine the accuracy of the prediction, the
number of received vessels and the number of
received vessels were small. The authors have
prepared a total of two types of data: ships and
data with missing data in the middle. However,
Kibana does not have a function to search for
the ship with the best data. Was downloaded in
CSV file format, and a program was created to
split the CSV file for each MMSI number us-

ing a Python script. In this experimentation,
prediction is performed using the SVR from
the Python Scikit-learn module. For the pre-
diction program system, when predicting the
ninth data, the first to eighth data are used as
training data. For the prediction of the 10th
data, the 2nd to 9th data are made into learning
data by shifting them one by one into learning
data. In this experiment, we chose the method
because of the data collection period was short.
In addition, if accurate predictions can be made
with the last eight data sets, less training data
is required. This means that the learning time
can be reduced and the real-time performance
can be improved. In addition, table 1 and eq
(1) show the learning parameters and the ker-
nel function for SVR.

K (x,2") = exp (—’ny—x’W) (D

3.1 Accuracy Evaluation Method of the
Prediction Results

The prediction result will be output to the
graph along with the test data of latitude and
longitude. When outputting the graph, time is
plotted on the horizontal axis, however, con-
verted to the elapsed time [s] from 00:00:00
instead of time. The following calculation was
performed to examine the practicality. The pre-
diction error of the intermediate route was con-
firmed. In this case, the mean absolute error
(MAE) between the prediction result and the
test data was calculated. It is difficult to under-
stand the specific size because it is output as
the difference between the two. The formula
for converting the error from the transmission
position to the meter unit was obtained. The
value of the average absolute error was set to
MAE.
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The each latitude and longitude are 360[°],
and the circumference of the Earth is about
40,054,782[m] because of the earth is a perfect
sphere. Therefore, the prediction error will be
given the following:

40054782 "
360

Thus, the error between the predicted result of
the timing received next to the latest data plot-
ted on the graph and the actual coordinates will
be calculated.

error = MAE 2)

3.2 Predicting the Sailing Route of Large
Vessels using SVR (1) — HOKUSYU
MARU NO.2

In this verification, examination of the ves-
sel with the MMSI of 431601109 revealed
that it was a cargo vassel named “HOKUSYU
MARU NO.2. ” Figure 4 shows the routes that
could be received at that time. The amount of
sailing data was about 2,700. Figure

ot = Opeeig oo O0BL

Figure 4. The Sailing Route of HOKUSHU MARU
NO.2.

5 shows the prediction results for the latitude
time for the sailing route prediction results for
HOKUSHU MARU NO.2. In addition, figure
6 shows the graph that plotting the error be-
tween the latitude regression line and the actual
latitude. Moreover, figures 7 and 8 show the
similar graph for the its longitude. The num-
ber of data to be learned was 9 and the num-
ber of data to be predicted was 1200. That is,
the learning was performed 1200 times. As
mentioned in the introduction, we have con-
sidered to create a system that will sound an

latitude
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Figure 5. The Prediction Result of HOKUSHU MARU
NO.2 (Latitude Direction).
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Figure 6. The Prediction Error of HOKUSHU MARU
NO.2 (Latitude Direction).
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Figure 7. The Prediction Result of HOKUSHU MARU
NO.2 (Longitude Direction).
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Figure 8. The Prediction Error of HOKUSHU MARU
NO.2 (Longitude Direction).

alarm when it is within 500[m]. The average
error of the regression line is about 5.768[m],
so when the alarm sounds, the average The de-
viation was about 6.969[m], so the error was
1.1{%]. It can be said that this is sufficiently
accurate.

3.3 Predicting the Sailing Route of Large
Vessels using SVR (2) - YAWATA
MARU NO.15

Next, about one-third of the data size of the
vessel that received the least number of times
have been used for the verification. In this pa-
per, we used the data of a vessel whose MMSI
1s 431012284. It turned out that it was a cargo
ship called “YAWATA MARU NO.15. ” Fig-
ure 9 shows the routes within the range that
could be received. The number of data was
about 2,000. Next, the graphs of the

Figure 9.
NO.15.

The Sailing Route of YAWATA MARU

prediction results and errors are shown in figs.
10 through 13 for the route prediction results
of the YAWATA MARU NO.15 as above. The
number of learning data is 9, and the total of
the predicted data is 400. In the graphs of re-
sult, it can be confirmed that the accuracy in-
creases with time. The average error between
the regression line and the actual route is large
because the error at the beginning of the pre-
diction is large. Therefore, sufficient time has
passed. As the learning progresses, the accu-
racy of below about 1.0[%] error can be guar-
anteed.
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Figure 10. The Prediction Result of YAWATA MARU
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Figure 13. The Prediction Error of YAWATA MARU
NO.15 (Longitude Direction).
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Table 2. Summary of Sailing Route Prediction for HOKUSYU MARU NO.2

Property Value
Average error of latitudinal predicted sailing route 12.239[m]
Maximum error of latitude predicted sailing route 1463.6[m]
Latitude prediction after about 10[s] 33.864
Actual latitude after about 10[s] 33.864
Prediction error of latitude 1.5762[m]
Average error of longitude predicted sailing route 9.8746[m]
Maximum error of longitude predicted sailing route 1715.1[m]
Longitude prediction after about 10[s] 132.70
Actual longitude after about 10[s] 132.70
Prediction error of longitude 2.5961[m]|

Actual average prediction error obtained from latitude / longitude 163.41[m]

Table 3. Summary of Sailing Route Prediction for YAWATA MARU NO.15

Property Value
Average error of latitudinal predicted sailing route 1.8544[m]
Maximum error of latitude predicted sailing route 56.559[m]
Latitude prediction after about 10[s] 33.852
Actual latitude after about 10[s] 33.852
Prediction error of latitude 1.8544[m]
Average error of longitude predicted sailing route 1.8544[m]
Maximum error of longitude predicted sailing route 30.597[m]
Longitude prediction after about 10[s] 132.68
Actual longitude after about 10[s] 132.68
Prediction error of longitude 3.7088[m]

Actual average prediction error obtained from latitude / longitude 5.7697[m]

3.4 Summary of the Verification Experi-
ment

From the verification experiment, highly ac-
curate predictions could be made even with a
small amount of training data. Highly practi-
cal results were obtained unless data was miss-
ing such as future prediction errors were within
10[m] and 2[%]. The above results show that
the accuracy is guaranteed if the data interval is
small, regardless of the number of data. From
the results, that if the interval was enlarge than
about 2 minutes, the error would be too large
to predict.

Next, the prediction error of each latitude
and longitude are shown in the table 2 and 3.
Comparing table 2 and 3, the sailing route pre-
diction results in the future are nearly, how-

ever, the error of the prediction sailing route
was enlarge in both latitude and longitude. It
is concluded that the large variation could not
be accommodated due to the small amount of
data. In addition, it was found that the errors
of the predicted sailing route were large in ta-
ble 3. In other words, we can conclude that the
prediction error would be too large to predict if
the transmit interval time enlarge than about 2
minutes.

4 CONCLUSION

In this paper, the route prediction system us-
ing SVR has been proposed. As result of the
verification experiment, it was found that the
accuracy of the prediction result by SVR was
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not guaranteed unless the coordinate data could
be received for more than 2 minutes. This is
because only the probability and the heading
angle can be known without considering the
speed. From this viewpoint, the LoRa system
must send the coordinate data within 2 minutes
when introducing the system proposed in this
study. In addition, in the Seto Inland Sea, there
are many small islands. As the future study, we
will focused on how to cover these areas where
radio waves cannot be received. In this study,
AIS was applied for predictions using SVR.
The future study is needed because there are is-
sues that have not been studied as to whether it
can be applied to fast-moving ships with small
turns. In detail, the system will be considered
a pair of a state and an action of the vessel for
predict the sailing route [8, 9].
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ABSTRACT

Fine-grained, light-weight multi-threading en-
hances the performance and scalability of
many applications due to its ability to hide
memory and network latency and enhance
load balance, however, it aggravates the soft-
ware scheduling and synchronization over-
head, which impairs the performance and scal-
ability. In this research, we propose an effi-
cient, dynamic hardware scheduler, which con-
sumes much less time and bandwidth than soft-
ware schedulers. The proposed scheduler re-
places the software application programming
interfaces (APIs) and Workers (operating-
system-visible threads) with simple hardware
that can be integrated on-chip with reason-
able silicon area and power budgets. Simula-
tion results show that our proposed hardware
scheduling outperforms software scheduling
by 22.76 times and it exhibits significant scala-
bility improvement when compared with soft-
ware scheduling.

KEYWORDS

Fine-grained, Light-weight, Multi-threading,
Software scheduling, Hardware scheduling

1 INTRODUCTION

Multiple studies conclude that software
scheduling and synchronization overhead
plays a significant role in degrading the
performance and scalability of applications
exploiting fine-grained multi-threading. Soft-
ware scheduling has its shortcomings: First,
the scheduler’s software consumes the system
resources and significant time in making
scheduling decisions and context switches.

Second, the scheduler’s software perturbs the
cache sub-system degrading the executing ap-
plication performance. Third, the scheduler’s
software may lead to page faults, which tangi-
bly degrade the performance [1, 2, 3, 5, 6, 7].
Hardware acceleration has long been known
to enhance performance, therefore, we pro-
pose a novel micro-architecture of hardware
scheduling and synchronization to acceler-
ate scheduling in contemporary computer
systems. The scheduling comprises thread
creation, selection, assignment, and blocking.

2 BACKGROUND AND MOTIVATION

Dividing a problem into fine-grained tasks is
called fine-grained parallelism (FGP). FGP fa-
cilitates harnessing the computational power
of multi-core CPUs and many-core GPUs to
solve algorithms/applications more efficiently
[4]. However, FGP aggravates the overhead of
scheduling and synchronization [5], [8].

Much research is underway to develop efficient
runtime systems to handle FGP (Qthreads,
HPX, Cilk, Cilk+ and Cilk++ [9, 10, 11, 12, 13,
14, 15, 16]). These runtimes manage threads
by software only, inflating the scheduling and
synchronization overhead, thereby exacerbat-
ing network and memory contention. Signif-
icant improvements in the policies and algo-
rithms of these runtimes have been achieved.
However, these improvements are on the soft-
ware side and they do not sufficiently resolve
the performance and scalability challenges [2,
3].

Work done to address thread management
by a combination of software and hardware
techniques exists such as Carbon [5] and
asynchronous direct messages (ADM) [1],
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which claim reasonable performance improve-
ment. However, these techniques still utilize
a software-based Worker (operating-system-
visible task) to manage the scheduling. We
propose implementing the scheduling entirely
in hardware eliminating the Worker task, which
is expected to speed up scheduling and im-
prove scalability. Also, the implementation
of fine-grained synchronization (FGS) in these
runtimes, if any, is handled by software and
mainly depends on polling the status of mem-
ory lines, which burdens the cache subsystem
and memory bandwidth. On the contrary, we
propose using only the hardware to handle the
FGS, thereby, enhancing performance.

The scheduling cost has to come down to help
crossing the boundaries of exascale perfor-
mance. This research is another contribution
toward achieving this goal.

3 RELATED WORK
3.1 Carbon

Kumar et al. propose Carbon [5], a hardware
technique to accelerate dynamic task schedul-
ing, which comprises: 1) Local Task Unit
(LTU), 2) Global Task Unit (GTU), 3) A hard-
ware engine inside the GTU to execute task
stealing. The local task unit (LTU) is a pre-
fetch unit residing in each core (each core has
an LTU). The LTU hosts a single-entry buffer
for each hardware thread, which is used to pre-
fetch light-weight tasks (task’s context is a tu-
ple of four 64-bit values) from the GTU. It
is positioned between the cores and the GTU
to alleviate the impact of latency between the
cores and the GTU as the number of cores
increases. The GTU is integrated with the
cache sub-system as a separate unit so that
both (GTU, cache sub-system) share the die
interconnect with the cores and main mem-
ory. The GTU contains a set of double-ended
queues (DEQUESs). There is one DEQUE for
each hardware thread. Placing all DEQUEs in
the same physical unit (GTU) facilitates task
stealing among the DEQUESs. An on-chip net-
work unit is used to connect the cores to the
GTU and the cache sub-system. A Worker task

(operating-system-visible task) is created per
hardware thread, which handles the schedul-
ing of light-weight tasks to the available hard-
ware threads. A set of dedicated instructions
issued by the Worker is used to enqueue and
dequeue new tasks into the LTU and GTU.
For example, an enqueue instruction is used
to save a newly-created task to the LTU, and
a dequeue instruction is used to assign a task
from the LTU to a hardware thread to start ex-
ecuting. The LTU saves its task to the GTU
if an enqueue instruction is issued and a valid
task exists in the LTU’s buffer. When the
LTU’s buffer becomes empty, the LTU fetches
a new task from the GTU only if the number
of tasks in the GTU’s DEQUE:s is higher than
the number of hardware threads, otherwise,
it does not fetch. A third instruction (called
TQ_ENQUEUE_LOOQOP) can save new tasks in
the GTU directly without writing to the pre-
fetch buffer in the LTU. If the GTU becomes
full, then a user-level software exception saves
some of the tasks (e.g., a third of them, the
actual number of tasks is heuristically deter-
mined) from the GTU to memory subsystem
to create some space for newly-created tasks.
Also, when the number of tasks in the GTU
drops to a certain threshold, a user-level excep-
tion populates the GTU with new tasks from
the memory subsystem if it has some. Work
balance is achieved by a hardware-based work-
stealing engine in the GTU. That is, when the
LTU queue and its relevant GTU’s DEQUEs
become empty and when a dequeue instruction
is issued, then a hardware-based engine steals
tasks from the tail of another DEQUE chosen
randomly.

3.2 Asynchronous direct messages (ADM)

Sanchez et al. present Asynchronous Di-
rect Messages (ADM) [1] to enhance per-
formance of software-based schedulers. The
ADM allows the Workers to communicate ef-
ficiently by using a dedicated hardware unit
inside each core. The ADM shares the sig-
naling interconnect with other units such as
data cache (D$) and instruction cache (I$)
inside each core, and it exploits the coher-
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ence interconnect to secure inter ADM com-
munication. The ADM provides direct ex-
change of asynchronous, short messages (e.g.,
task stealing messages) among the Workers in
the chip-multi-processing (CMP) without go-
ing through the memory hierarchy, and thereby
reducing the contention on memory subsys-
tem. The ADM provides user-level support
to send messages for control purposes from
one Worker to another Worker through a sched-
uler’s thread called the Manager thread. These
messages are used to implement task-stealing
and inter-schedulers coordination without us-
ing the cache subsystem that incurs coher-
ence and synchronization overheads. These
messages are used to achieve load balance
among the work queues. The ADM is lim-
ited to achieving load balance by work steal-
ing only using a dedicated hardware intercon-
nect; the scheduling is executed entirely by
software. This is contrary to our proposed
scheduler which implements the scheduling,
synchronization, and load balance in hardware.

3.3 Fine-grained synchronization (FGS)

Some computer systems attempted to harness
the performance merits of fine-grained syn-
chronization (FGS) typified by the XMT [17,
18, 19], Alewife [20, 21] and M-machine sys-
tems [22, 23]. Table 1 shows how the FGS is
implemented in these machines.

The Cray’s XMT is a scalable multi-threaded
computer built with the Cray’s Threadstorm
processor. This custom processor is designed
to exploit parallelism that is only available
through its unique ability to rapidly context-
switch among many independent hardware ex-
ecution streams. Cray Inc. launched the XMT
computer system in 2006 [24, 25].

The Alewife, developed at MIT in the early
1990s, is a large-scale multiprocessor that inte-
grates both cache-coherent, distributed shared
memory, and user-level message-passing in a
single integrated hardware framework. Each
Alewife node consists of a 33 MHz Spar-
cle integer unit, an off-the-shelf FPU, 64
Kbytes of direct-mapped cache, and 4 Mbytes
of globally-shared main memory. The

Table 1. FGS summary

Conditional load/store instructions

examine the Full/Empty (F/E) bit. If the F/E bit matches an
expected value, then a state hit is detected, otherwise, a state
miss is detected.

Machine | Synchronization

XMT Full/Empty (F/E) bit per double-word in

main memory. On a state miss, hardware retries the
conditional load/store, and if a retry

limit expires, a trap handler blocks the

thread and saves it to main memory. On a

state hit, the conditional load/store

commits.

Alewife Full/Empty (F/E) bit per word in main memory.
On a state miss, a software trap handlers deal with
retrying the conditional load/store, thread
blocking, queueing and scheduling. On a state

hit, the conditional load/store commits.
M-Machine | Ful/Empty (F/E) bit per register in the register file and
F/E bit per double-word in main memory. On
register F/E bit access, the operation stalls

on a state miss and issues when the F/E bit

takes expected value. On main memory access,

a software loop polls the memory F/E bit until it
takes expected value.

nodes communicate via messages on a two-
dimensional mesh network. The current im-
plementation scales directly to 512 nodes. The
Alewife is a research computer system that was
not launched commercially [21, 26, 27].

The M-machine computer system is a non-
commercial, research multi-computer devel-
oped at Stanford and MIT to test architectural
concepts motivated by the constraints of mod-
ern semiconductor technology and the demand
of programming systems. The M-machine
nodes are connected with a 3-D mesh network;
each node is a multi-threaded processor incor-
porating 12 functional units, an on-chip cache,
and a local memory [22].

4 PROPOSED ARCHITECTURE
4.1 Scheduler’s functionality

Figure 1 shows a top-level diagram of the pro-
posed hardware scheduler. Threads are created
by a spawn instruction. When the spawn in-
struction is executed, the hardware reads the
thread’s context registers (a tuple of 8 regis-
ters where each register is 8 bytes) to sam-
ple its content and then saves it in a Last-
In-First-Out (LIFO) residing in the Runnable
Thread Unit (RTU). This LIFO is called the
RTU _LIFO. There is one RTU per core. New
threads are assigned to a LIFO and not to a
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FIFO so that they benefit from the cache lo-
cality established by their ancestors. If the
RTU _LIFO is full, then a software trap, called
the RTU overflow trap, is invoked to save the
thread’s context to a buffer in memory sub-
system called the Runnable Thread Memory
Buffer (RTMB). A running thread with a state
miss is blocked from the hardware thread and
is saved in the Deferred Thread Buffer (DTB)
in an inactive state. The DTB resides in the
deferred thread unit (DTU), which is shared
among the cores. A state miss occurs when-
ever the Full/Empty (F/E) bit does not match
an expected value. The F/E bit is examined by
conditional load/store instructions.

Normal load/store instructions do not examine
the F/E bit. When a thread is blocked on a
state miss, it is blocked by hardware only via
a signal from the cache sub-system (e.g., L2$
as shown in Figure 1), where the state hit/miss
on the line is resolved. This signal triggers
the pipeline to evict the thread and store it in
the DTB, leaving behind an available hardware
thread that can be used by another thread. If
the DTB is full on a state miss, then a software
trap called the Deferred Thread Buffer over-
flow trap is invoked to evict the thread and store
it in a buffer in memory subsystem called the
Deferred Thread Memory Buffer (DTMB).

When the line associated with the blocked
thread becomes ready, the corresponding
thread in the DTB is activated (through a sig-
nal from the cache subsystem where line state
as hit/miss is resolved) so that it arbitrates
through the thread selection and assignment
unit (TSAU), as shown in Figure 1, to gain ac-
cess to any available hardware thread. More
than one thread can be blocked on access to the
same line. These threads are linked together
as a LIFO in the DTB and are issued accord-
ingly. Only the threads whose lines become
ready are scheduled to gain access to the hard-
ware threads, others wait in the DTB until their
data is ready. This enhances the performance
since the cores will only run the threads that
are potentially able to achieve progress.

A hardware-generated thread called the Re-
cruiting Thread (RT) fetches in LIFO order for

increased locality the threads saved in mem-
ory subsystem due to RTU_LIFO full or DTB
full (these are the threads saved in RTMB or
DTMB) and saves them in the RTU_FILLQ.
The RT is generated when the number of
threads in the RTU_LIFO drops below a pro-
grammable threshold and the RTU_FILLQ is
empty and when a flag stored in a register in
the RTU denotes the presence of threads saved
in memory subsystem due to either RTU_LIFO
full or DTB full. This flag is set by either
the RTU overflow trap or the DTB overflow
trap. The RT must run on the core that invoked
it to ensure that the threads fill in an empty
RTU_FILLQ and run in a core whose hard-
ware threads are less likely busy running ear-
lier threads. If a hardware thread is not avail-
able on the core that invoked the RT (status of
each hardware thread whether idle or busy is
signaled to the TSAU by the cores) then the RT
is not allowed to arbitrate to occupy a hardware
thread until it becomes available.

The TSAU, as shown in Figure 1, arbitrates the
requests from the RTU_LIFO, RTU_FILLQ,
and DTB using a round-robin scheme. The
requests from the recruiting threads are given
higher priority than RTU_LIFO, RTU_FILLQ,
and DTB requests and they are only assigned to
the core that issues them. The newly-created
threads are assigned to the hardware threads
according to a fixed priority scheme where
core0 hardware threads have higher priority
than corel hardware threads, corel hardware
threads higher than core2 hardware threads and
so forth. The TSAU assigns one thread per
CPU cycle to an available hardware thread.

It takes a small number of CPU cycles to se-
lect a thread and assign it to a hardware thread,
therefore, hardware thread starvation becomes
unlikely as long as some threads exist in the
queues. A thread awaiting its turn to be as-
signed will not wait so long due to the fast rate
by which the hardware assigns threads to the
available hardware threads.

As the sizes of the RTU_LIFO and DTB in-
crease, they become less likely to fill up, re-
ducing the call on the RTU and DTB over-
flow traps resulting in less RT invocation,
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The DTU is shared among the cores
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Figure 1. Proposed hardware scheduler

which is expected to enhance the perfor-
mance. The maximum sizes of the RTU_LIFO,
RTU _FILLQ, and DTB are dictated by the
silicon and power budgets. For example,
choosing RTU_LIFO, RTU_FILLQ and DTB
with a 1024-entry each demands 64 Kbytes
(this is double the size of a typical Icache or
Dcache size in commercial processors) of sil-
icon area per unit (RTU_LIFO, RTU_FILLQ,
DTB) since each thread context is 64 Bytes.
More on the scheduler’s silicon area is pro-
vided in subsection 4.5. On the other hand,
choosing 64-entry demands 4 Kbytes of silicon
area per unit (RTU_LIFO, RTU_FILLQ, DTB).

The RTU and DTU can be connected to the
load/store pipeline through their own address
space so that they can be accessed by load/store
instructions just like any other resource on the
chip.

4.2 Hardware-based fine-grained synchro-
nization (FGS)

A set of conditional load/store instructions is
used to access a data line that is tagged by a
Full/Empty (F/E) bit. These instructions can
execute in the cache sub-system (typically this
is the cache closest to the main memory called
the first-level cache) as a read-modify-write
(RMW) to resolve the state of the line as a
hit or miss. Resolving the state of the line
in the cache sub-system instead of the main
memory saves the memory bandwidth. On a
state hit, the cache sub-system signals the exe-
cution pipeline to resume executing the thread,
and on a state miss, the cache sub-system sig-
nals the execution pipeline to evict (block) the
thread and store it in the DTB. If the DTB is
full on a state miss, then the cache sub-system
asserts a request to the execution pipeline to in-
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voke the DTB overflow trap to save the thread
in the DTMB shown in Figure 1. Compared
with the XMT, Alewife, M-Machine FGS im-
plementations, our proposed hardware-based
FGS does not waste the memory bandwidth by
polling the line F/E bit on a state miss. On the
contrary, it blocks the thread entirely by hard-
ware in a few CPU clock cycles by saving it
to the DTB rather than using the software as
in the XMT, Alewife, and M-Machine. It al-
lows the blocked thread to arbitrate for a hard-
ware thread only when its respective line state
represented by the F/E bit matches an expected
value. Therefore, when the thread runs again,
it is guaranteed to achieve progress.

4.3 Load balance

All cores and hardware threads in a multi-core
processor must be kept busy doing useful work
to achieve load balance. The hardware sched-
uler uses the following techniques to balance
the load: 1) The TSAU implements the ran-
domized distributed task-stealing technique in
hardware, which has been shown as efficient in
execution time [5]. The scheduler’s runnable
thread unit (RTU) is allocated per core. The
deferred thread unit (DTU) and the thread se-
lection and assignment unit (TSAU) are shared
among the cores. The TSAU receives requests
from the RTUs and DTU to schedule threads.
The TSAU detects the availability of hardware
threads in all cores via a set of signals from
each core to the TSAU signaling the status
of the core’s hardware threads as running or
idle. The TSAU assigns a thread fast (from
any RTU or DTU) to any available hardware
thread in any of the cores reducing the hard-
ware thread idle time, thereby enhancing load
balance. And 2) The RT examines the RTMB
and DTMB to see if there are any threads, and
if so, it loads the threads to the empty sched-
uler’s RTU_FILLQ in the core where the RT
is running, which reduces the TSAU starvation
to new requests. This helps distribute the work
fast to all cores.

4.4 Scheduler’s building units

The hardware scheduler comprises the RTU,
DTU, and TSAU. The RTU comprises the
RTU_LIFO and RTU_FILLQ typically imple-
mented using an SRAM-based memory, a
read/write controller, and a data path unit used
to process input/output packets (a packet com-
prises thread’s context bits and some status
bits such as packet’s valid bit) through latch-
ing/multiplexing/Boolean operations.  The
DTU comprises the deferred thread buffer
(DTB), typically implemented using SRAM-
based memory, a controller used to con-
trol read/write operations to the DTB, and
a data path. The TSAU comprises a con-
troller and a data path. The TSAU controller
implements round-robin and fixed arbitration
schemes while the data path processes data via
latching/multiplexing/Boolean operations.

4.5 Scheduler’s silicon area and power

The scheduler silicon area and power are domi-
nated by the sizes of RTU_LIFO, RTU_FILLQ,
and DTB, which are determined by their num-
ber of entries (each entry is a single task’s con-
text). As the number of entries increases, the
performance improves due to the access count
reduction to the memory subsystem. How-
ever, the required silicon area and power in-
crease. Using 1024 entries for each of these
units dictates utilizing a 1.0625 Mbytes of sil-
icon area for an 8-core processor. In a pro-
cessor with 64 Mbytes of cache similar to the
MS processor from Oracle, the 1.0625 Mbytes
occupies around 1.66% of the cache silicon
area. On the other hand, using 64 entries cuts
down the silicon area from 1.0625 Mbytes to
68 Kbytes. The TSAU controller is an ar-
biter (using round-robin and fixed arbitration
scheme) whose silicon and power requirements
are small. The TSAU data path comprises flops
and multiplexers whose role is to select and
latch a task then assign it to an available hard-
ware thread. A total of 512 flops (used as a flop
station by the TSAU data path output bus to the
cores), 512 9x1 multiplexers, 512 8x1 multi-
plexers, and 512 2x1 multiplexers are used to
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implement the TSAU data path. More flops
may be needed if the clock timing to transmit
the signals from the TSAU to the cores is not
met. The TSAU is realizable with reasonable
silicon area and power budgets. The TSAU oc-
cupies in silicon what is equivalent to 8 Kbytes
of SRAM-based memory based on worst-case
estimation by counting the number of tran-
sistors in the TSAU and comparing it to the
number of transistors in a 6T-SRAM-based 64
Kbytes memory (6T: 6-transistor SRAM mem-
ory cell).

Carbon does not provide information about the
size, silicon, and power budgets of the GTU.
Therefore, we could not numerically compare
our proposed architecture with Carbon. How-
ever, we expect the silicon and power budgets
of RTU_LIFO, RTU_FILLQ, and DTB to be
close to carbon’s GTU due to the similarity
in structure and operation. However, our pro-
posed scheduler adds the TSAU, whose silicon
and power budgets may be offset by that of the
LTU in Carbon.

4.6 Proposed scheduler vs. carbon

Comparing our proposed scheduler with Car-
bon, we find: 1) Carbon blocks threads
by software, whereas our proposed sched-
uler blocks threads by hardware when FGS
state miss (Full/Empty bit does not match an
expected value) is detected, 2) Carbon as-
signs new threads to hardware threads us-
ing a dedicated instruction (dequeue instruc-
tion) whereas our proposed scheduler does the
thread assignment to the hardware threads us-
ing the TSAU (hardware only), 3) Carbon is
a hybrid scheduler that makes use of software
and hardware to do the scheduling; it utilizes
a Worker to manage threads whereas our pro-
posed scheduler utilizes mainly the hardware
to manage threads; the software is only used
when the hardware-based queues require data
backup/restore to/from memory subsystem, 4)
our proposed scheduler implements the FGS in
hardware contrary to Carbon, which does not
dedicate any hardware structure for FGS.

5 EVALUATION FRAMEWORK

We use the register transfer language (RTL)
to simulate our proposed architecture since it
is more accurate than software simulators. At
first, we planned to emulate the RTL on a Xil-
inx FPGA board. However, due to unantic-
ipated resource constraints, we chose to har-
ness performance results based on RTL simu-
lations rather than executing standard bench-
marks on Xilinx FPGA. We chose to modify
Oracle’s open-source T1 RTL to make it sup-
port hardware scheduling and synchronization.
The T1 processor is an in-order execution pro-
cessor comprising 8 cores, and a cross-bar unit
that links the cores to an on-chip L2$ (based
on T1 Terminology, this is the cache higher
than D$ and I$). The TI supports up to 8
cores with each core comprising 4 hardware
threads (total of 8x4 = 32 hardware threads
on processor), which are sufficient to investi-
gate the performance and scalability improve-
ments, if any, of hardware scheduling and syn-
chronization. Each 4 hardware threads share
one execution pipeline that executes an instruc-
tion from each thread every cycle. A thread
that is waiting for a long-latency instruction
(a load instruction, for example) is switched
off (does not issue instructions to the shared
pipeline) until the instruction completes. In the
meantime, the pipeline continues issuing in-
structions from other threads. The T1 architec-
ture exemplifies the use of fine-grained paral-
lelism to tolerate the main memory latency by
running multiple threads simultaneously keep-
ing the pipeline busy even when some threads
are awaiting long latency instructions. The T1
processor supports a register file comprising
256, 8-byte registers that form §-SPARC win-
dows and a set of 8 global registers (g0 to g7).
Since we are only concerned with light-weight
threads, we only use the global registers (g0 to
g7) to a hold thread’s context. Register g0 is al-
ways 0, so on a context switch, it is not saved.
The thread context comprises gl to g7 (each
register is 8 bytes) and another 8-byte regis-
ter representing the program counter and con-
dition code register. The simulation clock fre-
quency used is 1 GHz. We quantify the execu-
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tion time based on the number of clock cycles,
therefore, the clock frequency does not matter.

6 BENCHMARKS

The required simulation time to execute a set
of standard benchmarks on the RTL is very
high. Therefore, we developed a set of T1-
SPARC-Assembly based benchmarks to quan-
tify the performance and scalability of hard-
ware and software scheduling. Following is
a description of these benchmarks: 1] Hard-
ware thread creation and scheduling bench-
mark (HARD-TCSB). The spawned threads
are the scheduler’s workload, so we will re-
fer to the spawned threads as workloads. A
single thread in the HARD-TCSB benchmark
is used to spawn the workloads. The HARD-
TCSB supports these Workloads: a] Workload-
A: each thread comprises multiple setx instruc-
tions (used to set any register in the regis-
ter file to a chosen value), arithmetic/logical
instructions, thread terminate instruction (de-
vised to support the proposed scheduler, it sets
the hardware thread to idle at the end of each
thread to make it available for use by other
threads) and a branch instruction. We define
the work unit by how many times these instruc-
tions are executed inside a single thread. A
work unit at 1 executes these instructions only
one time; a work unit at 10 executes these in-
structions 10 times and so forth. We use work
units 1, 10, and 50 to collect performance data.
The instruction counts for these works units are
10, 100, and 500 instructions, respectively. A
fine-grained thread is a thread with a number
of instructions less than 1000 instructions [23].
Therefore, our choice of the thread’s instruc-
tion count conservatively meets the definition
of a fine-grained thread. b] Workload-B: each
thread comprises two conditional instructions
(load conditional (Idxcfe), store conditional
(stxcef)) accessing the same address, arith-
metic/logical instructions, a branch instruction,
and a thread terminate instruction. Only work
unit 50 is used, which generates 500 instruc-
tions in each spawned thread. Workload-B is
used to study the impact of thread blocking
on scalability. c¢] Workload-C: Workload-C is

similar to Workload-B except we replace the
conditional load/store instructions with non-
conditional (normal) load/store instructions.
Workload-C is used for scalability compari-
son against Workload-B. 2] Software thread
creation and scheduling benchmark (SOFT-
TCSB). This benchmark executes the same in-
structions as in the HARD-TCSB Workload-A
benchmark except software scheduling rather
than hardware scheduling is utilized. The
SOFT-TCSB models the multi-threaded shep-
herds (MTS) scheduling policy since it out-
performed other scheduling policies [11]. We
ran the MTS on the modified T1 processor
supporting 8 cores, with 4 hardware threads
per core. The MTS implements the Shared
Queue Policy and it allocates a LIFO for all
the cores in a processor. A Worker is mapped
to each hardware thread in each core. The
Worker, a POSIX thread (Pthread), processes
the Qthreads waiting in the LIFO; the Qthreads
API is a portable abstraction that provides ba-
sic light-weight thread control and synchro-
nization primitives that enables the develop-
ment of large-scale multi-threading applica-
tions on commodity architectures developed
at Sandia National Labs [9]. Using a LIFO
enhances the cache locality. That is, parent
threads share the data with their children, so
allowing the children to run first using a LIFO
policy increases the chance that the data, per-
taining to the parent threads, is still in the local
caches when the child threads access it. Uti-
lizing one Worker per hardware thread in each
core enhances load balance since they fetch the
Qthreads from the LIFO on demand. Access-
ing the LIFO is controlled by a coarse-grained
(CGS) lock (e.g., semaphore); the Worker can
either succeed or fail when trying to acquire
the lock. On a success, the Worker contin-
ues executing and on a failure, the Worker
is blocked awaiting the CGS lock to become
available. The task placement is local, there-
fore, each processor assigns its newly-created
Qthreads to the corresponding LIFO. Load bal-
ance among processors is achieved by work
stealing from another LIFO. When a Worker
detects that no work is left in its respective
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LIFO, it probes the other LIFOs for work start-
ing with the LIFO that has the nearest ID to
its corresponding LIFO. Work is stolen using a
First-In-First-Out (FIFO) policy from the vic-
tim LIFO. It is expected that the oldest threads
benefit the least from the cache locality in the
relevant processor. Therefore, stealing the old-
est threads from the processor’s LIFO allows
the newer threads to run on the processor that
created them, thereby enhancing cache local-
ity. If a local processor’s Worker accesses the
LIFO and does not find any work, then it con-
tinues polling its LIFO until work becomes
available. The Worker releases the CGS lock
before consecutive accesses to the LIFO to give
a turn to other Workers to access it.

7 RESULTS
7.1 HARD-TCSB benchmark results

Figure 2 shows the results of hardware
scheduling when executing the HARD-TCSB
benchmark, Workload-A, the number of
spawned threads is 1000 (1000 threads are
enough to overflow the RTU’s queue), the size
of the DTB, RTU_LIFO, and RTU_FILLQ is
64 entries each (see subsection 4.5), work units
1, 10 and 50 are used. For work unit 1, the lack
of scalability beyond 8 hardware threads is due
to the parent thread inability to create threads
fast enough (it takes time to compute and pop-
ulate the thread’s context registers due to the
load instructions long memory sub-system ac-
cess latency) to utilize all hardware threads si-
multaneously and keep up with the low average
execution time of each thread (120 CPU clock
cycles since it executes 10 instructions only)
and the fast scheduler. Therefore, a load bal-
ance issue shows up since most of the threads
run only on core( and corel while other cores
remain idle most of the execution time. The
graph shows clear scalability for all workloads
between 4 (core(0 only) and 8 (core( and corel)
hardware threads because core0 and corel run
most of the threads (768 threads run on coreQ
and corel, the remaining 232 threads run on
the other cores). As the work unit increases to
10 units, the scalability improves significantly

due to distributing the workload almost evenly
across all cores (better load balance). The av-
erage execution time of a spawned thread is
around 1000 CPU clock cycles at work unit 10
and each thread executes 100 instructions. The
scalability is visible at work unit 50 where the
average execution time of a spawned thread is
around 4500 CPU clock cycles and each thread
executes 500 instructions. The scalability at
work unit 50 is better than work unit 10 based
on slope comparison.

HARD-TCSB Benchmark, 1000 Threads, RTU_LIFO=RTU_FILLQ=DTB Size=64
Entries, Work Units = 1, 10, 50, Workload-A

1.20E+05 T T
B Work unit=1 —+—

Work unit = 10 ---%---
Work unit = 50 ---%---

1.00E+05 - .
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4.00E+04 |-

Execution Time in CPU Clock Cycles

2.00E+04 | e [
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Number of Hardware Threads

Figure 2. Scalability of HARD-TCSB benchmark,
Workload-A, 1000 threads spawned, RTU_LIFO =
RTU_FILLQ = 64 entries, DTB = 64 entries, work units
=1, 10 and 50. The Y-axis is scaled down by a factor of
10 for work units 10 and 50.

As the work unit increases, the number of
times the RTU_LIFO becomes full also in-
creases, since the hardware threads become
less idle, which causes the newly-created
threads to wait longer in the RTU_LIFO caus-
ing its overflow. The scalability is impacted
at work units 10, 50 due to calling the recruit-
ing thread (RT) 7, 13 times, and RTU overflow
trap 7, 13 times, respectively. Also, the number
of blocked threads is O since this benchmark
does not utilize conditional instructions, there-
fore, thread blocking (deferring) does not oc-
cur. Also, the deferred thread buffer full count
is O since no threads are blocked (deferred).

Figure 3 shows the results of hardware
scheduling when executing HARD-TCSB
benchmark, Workload-B, Workload-C, the
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number of spawned threads is 1000 threads
(enough to overflow the RTU and cause thread
blocking on conditional instructions).

HARD-TCSB Benchmark, (1000 Threads ), (RTU, DTU) Size = 64
Entries, Work Unit = 50, Workload-B, Workload-C
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Figure 3. Scalability of HARD-TCSB bench-
mark, Workload-B, Workload-C, 1000 threads spawned,
RTU_LIFO = RTU_FILLQ = 64 entries, DTB = 64 en-
tries, work units = 50.

The size of the DTB is 64 entries, the size
of RTU_LIFO and RTU_FILLQ is 64 entries
each (see subsection 4.5). Work unit 50 is used
since it shows better scalability than work units
1, 10. The scalability persists though thread
blocking occurs 8, 19, 29, 39, 68, 71, 77, 83
times for hardware threads 4, 8, 12, 16, 20,
24, 28, 32, consecutively, and 1 call to the re-
cruiting thread (RT) occurs at hardware threads
28, 32. This shows that hardware thread block-
ing can mitigate scalability degradation due to
the fast rate by which the hardware scheduler
can block a thread and save it in the DTB.
Workload-B scalability is close to Workload-C
as shown in Figure 3 though it becomes weaker
between hardware threads 24, 32 due to calling
the RT.

7.2 SOFT-TCSB benchmark results

Figures 4 and 5 show the results from soft-
ware scheduling when executing the SOFT-
TCSB benchmark, Workload-A, the number of
spawned threads is 1000, work units 1, 10, 50,
400 and 600 are used (scalability shows up at
around work unit 400). For work units 1, 10
and 50, there is not any scalability. Most of

the execution time is consumed by the Workers
rather than the threads whose instruction count
is small, 10, 100, and 500 instructions for work
units 1, 10, and 50, respectively. The Work-
ers issue a high number of loads/stores to the
memory sub-system to manage the work LIFO
increasing the scheduling time, thereby weak-
ening the scalability. The scalability starts to
show up at around work unit 400 though it is
weak after 20 hardware threads (thread exe-
cutes 4000 instructions, average thread execu-
tion time 38001 CPU clock cycles). We also
study the scalability at work unit 600 (thread
executes 6000 instructions, average thread ex-
ecution time 58859 CPU clock cycles) to see
how far the scalability improves as the work
unit is increased. The scalability becomes vis-
ible at work unit 600.

SOFT-TCSB Benchmark, 1000 Threads, Work Units = 1, 10,
50 Workload-A
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Figure 4. Scalability of SOFT-TCSB benchmark,
Workload-A, 1000 threads spawned, work units 1, 10
and 50.

7.3 Execution time comparison

To estimate the average speedup of hard-
ware scheduling when compared with software
scheduling, we chose the execution time results
of HARD-TCSB benchmark (1000 Threads,
RTU_FILLQ = 64 Entries, RTU_LIFO = 64
Entries, DTB Size = 64 Entries, Work Unit
50, Workload-A) and SOFT-TCSB benchmark
(1000 Threads, Work Units = 50, Workload-
A). The simulation results based on 8 cores

19



International Journal of New Computer Architectures and their Applications (IJNCAA) 10(1): 10-22

The Society of Digital Information and Wireless Communications, 2020 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

SOFT-TCSB Benchmark, 1000 Threads, Work Units = 400, 600
Workload-A
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Figure 5. Scalability of SOFT-TCSB benchmark,
Workload-A, 1000 threads spawned, work units 400 and
600

(32 hardware threads) are used since the 8
cores produce the maximum computational ca-
pacity of the processor. Based on the com-
paring execution times, hardware scheduling
is 22.76 times faster than software schedul-
ing. The performance of our proposed sched-
uler is expected to be higher than Carbon since
the scheduling is fully managed by hardware.
The software Worker that typically handles
thread scheduling in Carbon is replaced by
hardware in our scheduler. Also, we introduce
hardware-based FGS that is not supported by
Carbon. Carbon was compared with software
scheduling and we did the same since extract-
ing any performance data from a modeled Car-
bon would have been implementation depen-
dent rendering the comparison inaccurate. In-
tel used an in-house simulator to model Carbon
which we could not access.

7.4 Results summary

The hardware scheduler’s scalability of fine-
grained threads (instruction count is 100 and
above) is clear and it persists even when
FGS thread blocking occurs, which is due to
the scheduler’s ability to block threads fast.
The software scheduler exhibits no scalabil-
ity when executing fine-grained threads com-
pared with hardware scheduling, the scalabil-
ity starts showing up when the count of the

thread’s instructions is increased to 4000 in-
structions (coarse-grained thread). The pro-
posed hardware scheduling outperforms soft-
ware scheduling by 22.76 times.

8 CONCLUSIONS

In this work, we propose the use of hardware
scheduling and synchronization to overcome
the scalability challenge of light-weight, fine-
grained multi-threading. The proposed hard-
ware scheduler is capable of scheduling fine-
grained threads whose instruction count is 100
instructions (thread average execution time is
1000 CPU clock cycles) with tangible scalabil-
ity though weakened by the calls to the RT and
RTU/DTU overflow traps. Our proposed hard-
ware scheduler performs 22.76 times faster
than software scheduling. The silicon area oc-
cupied by the hardware scheduler depends on
the size of its queues. As the size increases,
it becomes less likely to resort to software to
backup/restore threads to/from memory sub-
system, therefore, the performance becomes
better. The hardware scheduler’s RTU and
DTU require 68 Kbytes of silicon area to ac-
commodate 64 threads and 1.0625 Mbytes to
accommodate 1000 threads. The TSAU re-
quires what is equivalent to 8 Kbytes of mem-
ory at worst-case estimation, which can be eas-
ily contained in terms of silicon area and power
budgets. The size of the queues in the RTU and
DTU must be selected based on implementa-
tion choices that balance performance against
silicon and power budgets.
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