
Analysis of Secure Hash Algorithm (SHA) 512 for Encryption

Process on Web Based Application

Meiliana Sumagita1 and Imam Riadi2
[1,2] Department of Information System, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

Jl. Prof. Dr. Soepomo Sh, Warungboto, Umbulharjo, Kota Yogyakarta, Daerah Istimewa Yogyakarta

(meiliana1300016043@webmail.uad.ac.id, imam.riadi@is.uad.ac.id)

ABSTRACT

The login mechanism in web-based applications

implements the MD5 hash function as a form of

password encryption that proves to have weaknesses

in the form of Collision Attack that is likely to have

the same hash value on two different input values

that can threaten the security and confidentiality of

the data. Implementation of password security in

web-based applications requires updating to improve

reliability and ensure system security by using SHA

512 method. Data collection was done by literature

study, data collection from internet, and observation.

The research method is divided into several

processes, namely needs analysis and system

vulnerability, and analysis for improvement. The

program design consists of flowchart design and

conceptual design of a hash function calling

mechanism. Mitigation is carried out with the

implementation of the new hash function calling a

method, code change for system repair (patching) and

test results from implementation. Testing is done by

penetration testing and user acceptance test (UAT)

Testing after application of patch, the inputted

password has been converted to more reliable hash

function using SHA 512 method, and the result of

UAT shows the result agreed and strongly agree with

86, 00%, so the implementation of the patch used to

secure the password that was made during login can

run as required.

KEYWORDS

Secure, Hash, Algorithm, Web, SHA 512.

1 INTRODUCTION

The security issues sparked the mechanism to

control access to the network in order to protect

it from intruders [1]. A vulnerability in a web

application can be opening way for an attack in

the whole information system and does not close

the possibility for the control server [2]. One

feature of the login feature is to authenticate

users as identity checks where this function

becomes an essential component of the security

system. This is a way to differentiate between

registered users and intruders. Authentication

users on a network is a must for many companies

that seriously protect their information assets and

to know who and what will be accessed on their

networks.

Various kinds of techniques for increase security

data or information already is developed, one

common way is by cryptographic or encryption

techniques [3]. Use of encryption is needed to

support the security of the login process. The

sample web-based application used has been

applied encryption method using Message Digest

5 (MD5) method so it must be updated using

another more reliable method.

The SHA algorithm has a difference in the size

of each block, the word of the data used during

the hashing process, the length of the message

can be processed, and the size of the resulting

message digest varies according to the algorithm

used, shown as in Table 1. The size of the

Message Digest.

Table 1. Differences Each SHA Algorithm Variation

Algorithm Message

Length

(bit)

Block

Size

(in

bits)

Word

Size

(in

bits)

The Size

of the

Message

Digest

(bit)

SHA 1 <264 512 32 160

SHA 256 <264 512 32 256

SHA 384 <2128 1024 64 384

SHA 512 <2128 1024 64 512

SHA 1 has a 264-1 message input capacity, with

160 bits of hash results and 280 hash power

evaluations. Finally, in 2005 Rijmen and Oswald

published an attack on the reduced SHA 1

version (using only 53 rounds from 80 rounds)

and the results were found the collision with a

complexity of about 280 operations [4].

373

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

mailto:meiliana1300016043@webmail.uad.ac.id

SHA 256 and 384 are not used much even

though for security due to a protracted process

that causes the length of time in hashing [4].

SHA 512 is a development of SHA 1 which is an

MD4 based improvement. According to Megah

Mulya [5], 2009, the reliability of SHA 512 is

achieved by the ability to generate 512-bit hash

values, which is the longest hash value that a

hash function can generate. This long hash value

makes the SHA 512 more resistant to attack than

any other hash function so SHA 512 is

considered a powerful, robust and fast hash

function.

2 BASIC TEORY

2.1 Login System

An application or system that requires

authentication of the owner of the access is

definitely implementing the login system to

secure the data. Login activity is generally done

by entering data in the form of username and

password that has been registered in the

application or system. If the information is valid,

then the client is allowed to access the network

[6].

2.2 Encryption

Encryption is a process that changes a code from

an understandable into a code that can not be

understood or not readable. Encryption is

intended to protect information from being seen

by non-people or parties [7]. The way encryption

works are shown in Figure 1.

Figure 1. Working Mechanism of Encryption and

Decryption

2.3 Hash Cryptography Algorithm

The one-way hash function is a one-way hash

function [4]. A one-way hash function, also

known as message summary or compression

function is a mathematical function that takes the

enter variable length and converts it into a binary

sequence of a fixed length. The one-way hash

function is designed in a way that is difficult to

reverse the process, ie to find the circuit at a

certain value (hence it is called one direction).

The hash function is good if it is difficult to find

2 strings that will produce the same hash value

[8]. The way the hash function works is shown

in Figure 2.

Figure 2. Working Mechanism of One Way Hash

Function

2.4 Secure Hash Algorithm (SHA) 512

The SHA 512 algorithm is an algorithm that uses

the one-way hash function created by Ron

Rivest. This algorithm is the development of

previous algorithms SHA 0, SHA 1, SHA 256

and SHA 384 algorithms. Journal of research

Christian Angga [9], 2007, explains how the

cryptographic algorithm of SHA 512 is receiving

input in the form of messages of any size and

generates message diggest which has 512-bit

length.

Its predecessor is SHA1, and MD5 which is a

renewal of MD4, the linkage, and development

of the hash algorithm, indicating that the

algorithm has proven to have been found to be a

collision vulnerability. Currently, the National

Institute of Standards and Technology (NIST)

has made SHA 224, SHA 256, SHA 384, and

SHA 512 as the new standard hash function. In

Table 2 the resume parameters show some hash

functions.

Table 2. Comparison of Multiple Hash Functions

Algorithm The Size of

the Message

Digest (bit)

Message

Block

Size

Collision

MD2 128 128 Yes

MD4 128 512 Almost

MD5 128 512 Yes

RIPEMD 128 512 Yes

RIPEMD-

128/256

128/256 512 No

RIPEMD-

160/320

160/320 512 No

SHA-0 160 512 Yes

SHA-1 160 512 There is a

Disability

SHA-256/224 256/224 512 No

SHA-512/384 512/384 1024 No

WHIRPOOL 512 512 No

374

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

SHA 512 hash function performs the same hash

operation as SHA 2 operation in general [10].

SHA 512 hash function is a function that

generates message diggest 512-bit size and 1024

bit block length. How the cryptographic

algorithm works SHA 512 is to accept input in

the form of a message with any length or size

and will generate a message digest that has a

fixed length of 512 bits as shown in Figure 3.

Figure 3. Working Illustration / Creation of Message

Digest SHA 512

The workings of making message diggest with

SHA 512 algorithm are as follows:

1. The addition of bits

The first process is to add a message with a

number of bit wedges such that the message

length (in bits) is congruent with 890 mod

1024. The thing to remember is that the 1024

number appears because of the SHA 512

algorithm processes messages in blocks of

1024 sizes. If there is a message with a 24-bit

length, then the message will still be added

with the bundle bits. The message will be

added with 896- (24 + 1) = 871 bits. So the

length of the wedge bits is between 1 and

896. Then one more thing to note is that the

bit bits consist of a bit 1 followed by the

remaining bit 0.

2. Adding Long Message Redemption Value

Then the next process is the message added

again with 128 bits stating the length of the

original message. If the message length is

greater than 2128 then the length is taken in

modulo 2128. In other words, if initially, the

message length is equal to K bit, then 128 bit

adds K modulo 2128, so after the second

process is done then the message length now

is 1024 bits.

3. Initialize Hash Value

In the SHA 512 algorithm, the H hash value

(0) consists of 8 words with 64 bits in the

hexadecimal notation as in Table 3.

Table 3. Hexadecimal Notation SHA 512

Buffer Initial Value

A 6a09e667f3bcc908

B bb67ae8584caa73b

C 3c6ef372fe94f82b

D a54ff53a5f1d36f1

E 510e527fade682d1

F 9b05688c2b3e6c1f

G 1f83d9abfb41bd6b

H 5be0cd19137e2179

3 METHODOLOGY

This section will explain the systematic way

used to solve the research problem and also the

steps undertaken in the testing and analysis of

this research. The stages consist of literary

studies is to analyze the system used to

determine the current conditions, needs,

advantages, and disadvantages of these

programs. This stage is done by reading several

books, previous research journals, papers or

articles that are appropriate or relevant as well as

collecting resources from the internet both

journals, websites, proceedings and source code

that can be used in this research.

Needs analysis and system vulnerabilities are

carried out to analyze the vulnerabilities and

needs of the system used. The analysis is focused

on the web-based application login system

encryption function which aims to find out the

advantages and disadvantages of the encryption

method currently used when replaced using the

latest algorithm method.

Needs analysis and design for improvement are

to describe and display an overview of the

encryption process when the login is done. The

description carried out is by showing a flowchart

and conceptual diagram so that the work process

in which password encryption is carried out until

the login activity occurs can be delivered and

understood more clearly.

Mitigation performed with the implementation of

the latest hash function algorithm calling the

method, code change for patching and test

results from implementation. Testing in this

study was conducted to show a comparison

between the use of MD5 encryption method and

SHA 512 encryption method. Testing was done

375

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

by Penetration Testing and User Acceptance

Test. Penetration Testing is done by Brute Force

testing while User Acceptance Test is done by

filling out a questionnaire that is used as one of

the recommendations to improve data security in

web-based applications. These stages are

described in Figure 4.

Study of Literature

Needs Analysis And System

Vulnerabilities (Current Conditions)

Needs Analysis And Design For

Improvement

Mitigation/implementation Of The Latest

Hash Method (patching)

Testing

Figure 4. Block Diagram of Research Methodology

4 RESULTS AND DISCUSSION

4.1 Vulnerability Analysis

Information security is the preservation of

information from all possible threats in an

attempt to ensure or ensure business continuity,

minimize business risk, and maximize or

accelerate return on investment and business

opportunitie [11]. This analysis is a discussion of

how the system login on web-based applications

running. This analysis is useful to know the

vulnerability of the system so that it can know

the improvements that need to be done.

This study discusses the analysis of encryption

process in the web-based application using

algorithm method of a secure hash algorithm

(SHA) 512. The results of the analysis carried

out will be used as a reference or alternative in

managing web-based application login security

systems. Analysis of the problem that is being

discussed in this research will be explained in

Figure 5.

Attacker

User

Password changed to hash
value

Successfully accessing the
system if the password hash is

appropriate

Web-based
application

system

Server and database

The hash value of the password is
adjusted by the hash value in the

database

Login, input username
and password

Sniffing Attack,
Data Hacked

Return to login form if password
hash does not match

 Figure 5. Schema Login In Web-Based Application

The explanation of the web-based application

login scheme above is as follows.

1. Users enter the data in the form of username

and password and send the data to the server.

The data sent is data that has been changed

using the MD5 hash.

2. The server receives the data in the form of a

username and a hash value of the password

that has been sent by the user.

3. The server will bring the hash value to the

database to be equated with the hash value of

the user's password. Verification process

here is password verification in the form of

hash value and not the password in plaintext

form.

4. If the hash value sent by a user with stored in

the same database then a user can enter and

access system, but if not used will get a

warning that the wrong password and return

to main page login.

5. The problems found are the use of MD5 hash

methods that are vulnerable to collision

attacks [12], that threatening the security and

confidentiality of data such as the MITM

attack (Man In The Middle Attack) to

conduct sniffing, spofing and other illegal

activities [13].

4.2 Requirement and Improvement Analysis

This analysis is a discussion of what are the

needs of improving the login system in web-

based applications. After the needs and

vulnerability analysis is done, the result is that

the login system in the application must update

the hash method used.

After knowing the hash method used in the login

system, the use of encryption with the MD5 hash

function has to be updated with more current and

more reliable methods to maintain the security of

an application or system. Renewal of this hash

method is done by SHA 512 hash method which

has more reliability than MD5.

376

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

4.3 Mitigation and Testing

4.3.1 System Attack Scheme

The analysis process should be able to link

information from different variable includes the

completion of information against other

information to explain an event or attacks

activity [14]. Network forensics is defined in as

capture, recording, and analysis of network

events in order to discover the source of security

attacks or other problem incidents. In other

words, network forensics involves capturing,

recording and analyzing of network traffic [15].

Sniffing on a computer network involves the use

of a support tool that enables real-time

monitoring. Sniffing in this study was done to

check traffic on the network and retrieve a copy

or capture of the packet data. The sniffing

activity scheme is described in Figure 6.

Figure 6. Sniffing Activity Scheme

The sniffing experiment in this study was

conducted with the Wireshark tool. Wireshark is

one of the network packet analyzer tools.

Wireshark will try to capture network packets

and try to display the packet data as completely

as possible. After the data obtained then will be

analyzed the data capture results Wireshark to

determine what type of hash function used by the

system. The analysis to determine the type of

hash function is done with the Hash Identifier

tool. As an example of sniffing activities and

analyzing the type of hash function performed in

Figure 7 and Figure 8.

Figure 7. Sniffing Results Using Wireshark Applications

Figure 7 is the result of data traffic capture done

using Wireshark tool. Capture data shows

username information contains admin and

password contains ciphertext with hash value

154e2803428bb34b2a1c48ffadd177b6. After

obtaining the information is needed additional

data that is the hash function is likely to be used

by the system using Hash Identifier.

Figure 8. Hash Identifier results

Figure 8 shows that the login process on the

application system has applied the MD5 hash

method.

4.3.2 Design Improvement

To facilitate analysis, a design and description

for system improvement will be made by

showing a flowchart and a conceptual image as

described in Figure 9 and Figure 10.

1. Start

2. Input
username

& password

3. Change the
password to SHA

512 hash form

4. Check the
database

5. Home
system

6. Finish

Y

T

Figure 9. Flowchart Login Process Using SHA 512

Method

377

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Based on the flowchart presented in Figure 9,

process no. 3 that was previously encrypted

using MD5 is changed using SHA 512 method.

So in that process, the data transmission in the

form of input from password will be changed to

SHA 512 hash form which has the hash value

much longer than MD5 therefore, user data will

be more secure from a vulnerability that can

occur when using MD5 as described in Figure

10.

User

Successfully accessing the
system if the password hash is

appropriate

Web-based
application

system

Server and database

The hash value of the password is
adjusted by the hash value in the

database

Login, input username
and password

Return to login form if password
hash does not match

The password is changed to
SHA 512 hash value

Figure 10. Image Conceptual Login Process Username

and User Password Using SHA 512

The explanation of the conceptual image is as

follows.

1. Users access the application and login to

login to the application. The login process is

done by sending data in the form of

username and password. The process of

sending data is done by changing the

password data in the form of plaintext into

SHA 512 ciphertext hash.

2. The application server receives the data in

the form of the hash value of the password

and then forward it to the database. This

process is performed to verify the hash sent

by the user whether it is the same as the

password hash stored in the database (hash

function for storing password).

3. If the data is suitable then the user can enter

and access the application.

4.3.3 Patching Implementation

Renewal is done by changing the existing hash

method into SHA 512 hash method combined

with the addition of SALT secret key.

Implementation done at this stage is encoding by

creating a patch that will be used to call a hash

function during login.

The plot of the calling process and the data

changes for the username and password is first

made before the encoding is done, so it can be

known where the calling of the hash function

calling can change the password to the ciphertext

hash value. This process generates a flowchart

calling the hash function on the system. There is

also a diagram can be seen in Figure 11.

Index.php
(gtfw-php-app)

Config/gtfw_base_dir.def
(configuration that calls into

gtfw base)

Index.php
(gtfw-php-base)

Cpu/
GtfwCpu.class.php

GtfwSecurity.class.php
(function login)

In Gtfw Cpu the first function
called is the initialize (init)

function and then the process
function

Runs the login
function and processes

the SHA 512 hash

The function of the process
will call the module for login

and activity with "enable
security"

Inside GtfwCpu there are 2
activities or processes,

namely initialize and process

Automatically the
init security

function in initialize
is executed

Run the init
function

 Figure 11. The Hash Function Calling Diagram

The process diagram shown in Figure 11 can be

described as follows:

1. The index.php file is the first file executed by

the program or application. This file will

display the login form, will then call the

gtfw-php-base file as the base library of the

system.

2. The gtfw_base_dir.def file shows where the

gtfw-php-base file is located and goes

directly to index.php located in gtfw-php-

base.

3. Inside index.php gtfw-php-base contains

system libraries that invoke many functions

or activities to process the system as a

base/base function to run the system.

4. The index.php file on gtfw-php-base will

process GTFW_BASE_DIR_CORE on the

GtfwCpu.class.php file. The main functions

that are processed are the initialize and

process functions. The initialize (init)

function is a function that will run the

security command. The function of the

process is a function that access/process

some modules/actions, one of which is the

module to log in. If in process function

access login module and another module

with "enable security" then automatically

fungi init will be executed.

5. If init is done then will go to file

GtfwSecurity.class.php and call the login

function residing in it. This login function

performs a hash method call for encryption

to secure password data when login is done.

The coding done in this research includes

changing the code or patch. The

378

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

GtfwSecurity.class.php file is used to print the

hash value of a user-entered password by calling

the SHA 512 hash function and receiving the

hash value from the server to match the hash

values stored in the database with the hash

values generated from the input process. The

source code line for the GtfwSecurity.class.php

file can be seen in the script below.

$salt = $this->RequestSalt();

if ($hashed) {

$hash = md5(md5($salt .

$user['Password'])); } else {

$hash = $user['Password']; }

if (md5($password) === $hash) {

Changes and additions to code are done in the

GtfwSecurity.class.php file, the addition of the

code is used to call the SHA 512 hash function

that has been implemented earlier in the GTFW

application. The source code line for the

GtfwSecurity.class.php file after adding the code

can be seen in the script below.

$salt = $this->RequestSalt();

if ($hashed) {

$hash = hash('sha512', hash('sha512',

$salt . $user['Password']));

 } else {

$hash = $user['Password']; }

if (hash('sha512', $password) ===

$hash) {

After the password is set to hash value, then the

system will do the user data from the server then

adjust the hash value with the existing in the

database. Then stored in the login session and

login process was successful.

4.3.4 Results of Patching Implementation

The result of adding code or scripts done in the

previous process is to increase the value of

security in the process of sending data. The

result after the program is executed can be seen

as in Figure 12 and Figure 13.

Figure 12. Results Process Call Hash Function Before

Patching Performed

Figure 13. Results of the Hash Function Calling Process

After Patching Performed

4.3.5 Testing

4.3.5.1 Penetration Testing

This test has a purpose to show the resistance

and strength of each algorithm against brute

force attacks. The testing mechanism is to attack

the resulting hash value by trying any

combination to find the plaintext of the hash.

This test is done by using Hashcat tool that

serves to get plaintext from a hash or ciphertext.

The result of this test is the comparison of time

from which hash is faster-found plaintext him.

In the brute force test, the data obtained from the

experiment is the time taken to obtain a plaintext

that has been in the hash with MD5 takes an

average of 54 seconds while the time taken for

hash with SHA 512 takes an average of 68

seconds. Based on the test it was found that the

SHA 512 algorithm is better in terms of

durability and strength for brute force testing

because it has a longer time to find the plaintext

of the hash value of the algorithm.

4.3.5.2 User Acceptance Test
User Acceptance Test is a testing process

undertaken by the developer that will produce

the document presented as evidence that the

implementation of the program can be accepted

by the developer in accordance with the

required. The result of the percentage of user

acceptance test is presented in a pie chart as

shown below.

0%

78%

8%
14%

0%

Disagree

Less Agree

Neutral

Agreement

Strongly Agree

Figure 14. Percentage Test Result User Acceptance Test

379

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Figure 14 shows the percentage of the above

values indicates the responses of respondents to

the statements in the Security Test questionnaire

with SS answers of 8.00%, S of 78.00%, N of

14.00%, TS by 0.00%, and STS for 0.00%.

Results obtained from the above test can be seen

in Table 4 as table comparison of data security

between before and after patching.

Table 4. Comparison Table Before and After Patching

Performed

No. Parameter

Comparison

Before

Patching

After

Patching

1.
Security

standard for

login feature.

Not fulfilling,

because it still

uses the old

hash method

that has been

proven to have

a dangerous

vulnerability.

Already

fulfilled. The

encryption

update uses

hash functions

that have a

more reliable

and robust

security level.

2.

The level of

password

security on the

mechanism of

web-based

application

login feature.

Less good,

because the

algorithm

method used

has been

proven to have

dangerous

vulnerabilities.

Good, because

the algorithm

method used

proved more

secure and

reliable.

3.

The total value

of the hash

function

generated.

The resulting

hash value is

small so it only

takes a while

when a brute

force test is

performed.

The resulting

hash value is

much more so

as to generate

a long time

when a brute

force test is

performed.

5 CONCLUSION

Based on the results of research and discussion

can be concluded that the login process in web-

based applications requires updating of the

encryption method used by the method of SHA

512 algorithm. This update aims to improve the

security of password data on logging features

that are more reliable and powerful so that the

attacker will be very difficult to attack the

system. Implementation of the SHA 512

algorithm method produces the longest number

of bits of 512 bits so as to ensure system security

and data confidentiality.

Penetration Testing against Brute Force attacks

using the Hashcat tool indicates that the SHA

512 algorithm is better in terms of endurance and

strength for brute force testing because it has a

longer time to find the plaintext of the hash value

of the algorithm thus indicating that the hash

function is more reliable and robust. In addition

to testing the User Acceptance Test generate

agreed percentage and strongly agree at 86.00%,

so the implementation of the patch used to

secure passwords on the login feature can run as

required.

REFERENCES

[1] E. Kurniawan and I. Riadi, “Security level

analysis of academic information systems

based on standard ISO 27002:2003 using

SSE-CMM,” vol. 16, no. 1, pp. 139–147,

2018.

[2] I. Riadi, E. I. Aristianto, and A. Dahlan, “An

Analysis of Vulnerability Web Against Attack

Unrestricted Image File Upload,” Comput.

Eng. Appl., vol. 5, no. 1, pp. 19–28, 2016.

[3] P. Irfan, Y. Prayudi, and I. Riadi, “Image

Encryption using Combination of Chaotic

System and Rivers Shamir Adleman (RSA),”

Int. J. Comput. Appl., vol. 123, no. 6, pp. 11–

16, 2015.

[4] M. H. W, “Development of Hash Function

Encryption on SHA (Secure Hash

Algorithm),” J. Ilmu Komput. dan Teknol.

Inf., vol. 3, no. 2, pp. 1–7, 2009.

[5] M. Megah, “Use of SHA-512 Algorithm to

Ensure Integrity and Authenticity of Message

on Intranet,” no. 1, pp. 107–111, 2009.

[6] N. Hermaduanti and I. Riadi, “Automation

framework for rogue access point mitigation

in ieee 802.1X-based WLAN,” J. Theor. Appl.

Inf. Technol., vol. 93, no. 2, pp. 287–296,

2016.

[7] A. Kristanto, Data Security On Computer

Networks. Yogyakarta: Penerbit Gava Media,

2003.

[8] SSL Information, “Difference Between

Hashing and Encryption,” 2018. [Online].

Available:

https://www.ssl2buy.com/wiki/difference-

between-hashing-and-encryption.

[9] C. Angga, “Analysis of How Diverse Works

Hash Functions Exist,” pp. 1–6, 2011.

[10] W. Setiawan, “Analysis and Comparison of

Whirlpool and SHA-512 Algorithms as a

Hash Function,” Makal. IF3058 Kriptografi –

Sem. II Tahun 2010/2011, 2011.

[11] Y. P. Rosmiati, I. Riadi, “A Maturity Level

Framework for Measurement of Information

Security Performance,” Int. J. Comput. Appl.,

vol. 141, no. 8, pp. 975–8887, 2016.

[12] S. Dewantono, “Weakness of Message Digest

380

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Function 5,” 2011.

[13] M. S. Ahmad, I. Riadi, and Y. Prayudi, “Live

Forensics Live From Investigation To

Analyze Man Attacks in the Middle Attack

Evil Twin Based,” Ilk. J. Ilm., vol. 9, no.

April, pp. 1–8, 2017.

[14] M. I. Mazdadi, I. Riadi, and A. Luthfi, “Live

Forensics on RouterOS using API Services to

Investigate Network Attacks,” Int. J. Comput.

Sci. Inf. Secur., vol. 15, no. 2, pp. 406–410,

2017.

[15] D. Mualfah and I. Riadi, “Network Forensics

For Detecting Flooding Attack On Web

Server,” IJCSIS) Int. J. Comput. Sci. Inf.

Secur., vol. 15, no. 2, pp. 326–331, 2017.

381

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(4): 373-381
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

