Sensor-Rocks: A framework to improve software
management for sensor networks

Timothy Telfer*, Sameer Tilak!, Philip Papadopoulos’, and Luca Clementif
*Monash University, Melbourne, Victoria, Australia
TUniversity of California, San Diego, La Jolla, CA, USA
Email: tdtell @student.monash.edu, {stilak, ppapadopoulos, Iclementi} @ucsd.edu

Abstract—

Software Operations and Management (O&M), i.e., defin-
ing, configuring, and updating thousands of software compo-
nents within a conventional data center is a well-understood
issue [12]. Existing frameworks like the Rocks toolkit [7], [11]
have revolutionized the way system engineers define, deploy
and manage large-scale compute clusters, storage servers,
and visualization facilities. Unfortunately, the state-of-the-art
approach in sensor network software O&M relies on system
administrators to manage the operating system and overall
system configuration of a system as a golden image. This
image is manually configured according to site and individual
project requirements. In the manual approach, this golden
image is copied onto corresponding sensors typically using
Over The Air Programming (OTAP) [8], [9], [10]. The funda-
mental problem with any golden image approach is that the
methodology often used to build this software master is either
unspecified or ad hoc. In either case, only the author of the
golden image can change its contents, add new functionality,
update existing components or completely rebuild (rebase) the
image when the underlying OS changes. The manual approach
does not scale, since ensuring consistency of installation, and
accuracy of configuration and updates of thousands of software
components is laborious and error-prone. One could dramat-
ically reduce both time and effort while improving system
reliability if techniques used to deploy scalable computing
systems (e.g., data centers) were extended to the challenging
world of sensor networks. We propose to develop Sensor-
Rocks by adapting and extending the Rocks toolkit. We believe
that Sensor-Rocks will revolutionize the world of sensor
networks by reducing the administrative overhead of defining
the software environment on individual sensors and network
of sensors from days/weeks to a few hours. The resulting
faster, reliable deployment of the software infrastructure will
fundamentally improve the reproducibility, which is a key for
gathering good-quality data.

I. INTRODUCTION

The Android platform has significant share of the mobile
phone market and it is run on a broad range of devices in-
cluding embedded platforms (e.g., GumStix), tablets, and net-
books. We believe that Android will play a significant role in
the next generation of environmental monitoring applications
since it allows one to leverage the significant technological
investment made in producing what has become commodity
embedded systems. Therefore, we choose to use the Android

platform for the proposed research. In Section II we describe
the current software O&M practice in Android world and
describe how the proposed approach will allow one to rapidly
and reliably build complete Android environments (firmware
flashes). In Section III we motivate the need for automating
software O&M on the Android platform, give an overview of
the Rocks toolkit, and then in Section III-B we describe our
approach. In Section III-C we describe the future work and in
Section IV we present conclusions.

II. BACKGROUND

Android is an operating environment for portable, low-
power devices that delivers a unified framework for devel-
oping mobile applications system. It consists of a customized
Linux-based kernel, which provides the essential support for
the physical hardware and attached devices. Applications are
insulated from the specific hardware and isolated from each
other using the Android application framework, a set of core
libraries, and a virtual machine abstraction (Dalvik VM) for
application isolation (See Figure 1(a)). Android applications
are authored in Java and can be rapidly developed using
a freely-available software development kit (SDK). Most
developers interact only with the SDK and never need to
change/modify the lower layers (this is NOT true for sen-
sors, we must add device drivers and other libraries). Since
nearly all Android devices are destined for human-in-the-loop
interaction, software delivery, installation, and configuration
is almost always done interactively with a person dragging
and clicking on a touch screen. This interaction modality is a
significant and practical barrier for deploying Android on 100s
to 1000s of sensors with no screens. Nearly every Android-
based device (like a cell phone) has its complete software
stack provisioned in two steps. First, the device manufacturer
creates a system image with pre-loaded applications and the
full support stack and then flashes this image (firmware) onto
the device. This first step scales to thousands of identical
hardware devices. Second, users customize their devices by
adding additional applications through an online Market or
direct download. Both parts — the manufacturer’s image and
user-installed applications can also be updated over the air.

Because there exists only a relatively small number of physi-
cal device variants (October 2011 estimates about 100 distinct
Android-based cell phone devices), little attention has been
paid to developing a top-to-bottom framework for creating a
device’s base (flash) image. Instead, software engineers hand-
craft images specific for their proprietary devices. This person-

291

User Applications
(mail, maps, sensor
preprocessing, adhoc routing, ...)

Android Application Framework

(Activity Mgr, Window Mgr, Feature/Capability Android Standard RHEL Linux
Package Mgr, ...) -
Coding Language Java Any (Java, C, Python, ...}
Libraries | Android Runtime Package Manager Per App XML + APK RPM (dependency
VM Isolation processing)
Linux Kemnel Application Installer Interactive Only Interactive + Kickstart
(Device Drivers, Powsr Mg, i)
Interprocess Comm) Runtime/Kernel Install Adhoc/ ByHand Kickstart (scriptable)

(a) Android application and kernel
stack

Fig. 1.

intensive methodology is quite understandable because of the
very small number of physical variants, but it also generally
leads to stagnant firmware. In this way, the state of Android
firmware definition is not unlike that of Linux from 15 years
ago, before the development of integrated releases represented
by Slackware and RedHat. Like today’s Android devices, those
early adopters of Linux downloaded all necessary components,
compiled and then assembled a working, complete OS in
a hand-crafted process that could take days, weeks or even
months. Today, not only is it easy to install a Linux-based OS
on a wide variety of hardware, but automated installers can
detect specific hardware while supporting user-defined custom
stacks to create a fully-operational computing system with no
interactive steps in under an hour. Linux could evolve to its
state today of supporting millions of hardware variations only
when the basic system definition became modular. Android
must (and we predict eventually will) follow a similar path
to system modularity as hardware platforms proliferate. It
is important to explore improved mechanisms for Android
system stack definition for three key reasons: 1) inexpensive
sensor devices have no interactive screens and must therefore
be configured only using a flashed-system image; 2) scaling
to 100s or 1000s of sensors means that we must be able to
handle hardware heterogeneity of individual sensors without
the time consuming process of building a highly-customized,
independent image for each variant; and 3) we want better
reproducibility of the basic software configuration so that
we can easily adjust to the rapid changes of the Android
environment and reap the benefits of new capabilities. In
short, to support scalable sensor deployments we must have a
significantly more nimble definition environment.

Figure 1(b) shows some other important differences between
Android and full Linux. Android can be thought of as a
very specialized Linux environment where applications can be
written only in Java, have specific modes in which they can
interact with the system, and operate on just a few hundred
hardware variants. However, we generally expect the offerings
in Android to dramatically expand as devices become more
capable and Android based platforms like Gumstix [4], Pand-
aboard [6], BeagleBoard [1] (without specific vendor/carrier
lock-ins) proliferate. We believe that in the not too distant fu-
ture (within next 3-5 years), a complete Android environment
will have the capabilities and flexibility of a commodity Linux

(b) Some key system definition differences between Android and Full Linux

Android software stack and its comparison with Linux

node of perhaps 10 years ago. This means that our intended ap-
proach to modular system footprint construction will become
essential as system complexity grows. Such a construction
technique will require dependency processing of packages and
scriptable (non-interactive) configuration as first steps. One
can accelerate the development of some of these now tried and
true techniques used on fully-capable Linux systems to support
our goals of many sensors (hardware heterogeneity) and vari-
ants of sensor configuration (functional heterogeneity) in the
rapidly changing Android software environment (a new major
release occurs every 6-9 months with updates on a monthly
basis). Package definition and dependency can be achieved by
adopting well-known package formats (e.g. RPM or Debian’s
dpkg) in combination with definitions of Android-specific soft-
ware repositories or sets of packages. Automated dependency
resolution can be handled via YUM (RPM-compatible) or APT
(dpkg compatible) so that all necessary software prerequisites
can be added simply by choosing a specific application.
However, automated full-systems configuration is much more
challenging for two reasons: 1) no scriptable system definition
framework like Redhat’s Kickstart exists today for Android ; 2)
Unlike installed Linux systems, common tools for modifying
configuration files via scripting languages are not part of the
installed Android environment. Linux can automatically define
and configure itself (this is what happens when you install
from a DVD), but Android does not have the same closed
form. Some other environment must be used to create the
completely configured firmware. In essence, we will have to
cross-compile an Android configuration using a Linux host.

III. AUTOMATED SOFTWARE OPERATIONS AND
MANAGEMENT (O&M)

In this section, we give an overview of the Rocks toolkit
and then describe our approach for automating software O&M
for sensor networks.

A. Rocks Background:

Rocks is a software toolkit that solves the computing cluster
definition, deployment and management problem [7], [11]. It
has reduced the time from raw hardware to a working system
within the data centers from days/weeks to a few hours. Rocks
scales out to 1000+ node environments within the resource-
rich environment of a data center. The toolkit treats a complete

292

base

frontend

i
Jooent

bio-server

Sge-Server

(a) A Portion and a Complete Rocks Config. Graph. Server and compute appliances are defined

Producion Davelopment

(i (e

tend

!
iy
?‘

i

&

!
M [o

- Asphcawn
~ oo
= s
Cluster
Producton P Development
[e——
PostgraSQL.
-
Visuailzation Vel i
Vecatzmon | Vaustzon
o oo
OpantLi x| Opandu
Vecaicmon | Vet
- o oo
oo | ootiin I Computs | [Compute | | Compute | | Compute |

(b) A Rocks-based sample data center architecture

by expanding instructions contained within each connected node. Different colors indicate

different Rolls.

Fig. 2.

software footprint on any machine as a set of software pack-
ages and configuration that together form a Rocks Appliance.
Appliances can share packages and configuration and the
approach takes advantage of the many similarities among
login nodes, compute nodes, web servers, storage servers, and
visualization walls.

Rocks splits the definition of any appliance into two fun-
damental pieces: the distribution, which is the complete set
of software packages (including OS Packages) and the Rocks
configuration graph [11]. Software installation on a given
appliance is performed by starting at an appliance-defined
entry point in the configuration graph and then traversing
this specific subgraph. The nodes in the graph itemized both
the required software packages and subsequent configuration
needed to make software functional. This information is com-
piled to create a description that is given to a native installer
like Redhat’s Kickstart or Solaris’ Jumpstart. The installer
(now operating in a completely automatic mode) finishes the
last steps of formatting disk drives, installing packages, and
following the configuration instructions generated by Rocks.
A key observation is that the graph is source code for a com-
plete set of appliances and that this in-depth and prescriptive
information can be used in novel ways, including traversing
the graph to support online updates and partial traversals to
support reconfigurations or additions of software and also for
version tracking and management.

Rocks is quite extensible by others and fundamentally
removes the unspecified or ad hoc process of golden image
creation. To achieve extensibility, Rocks defines a structured
set of programmable, replaceable and extensible components
called Rolls. Major software systems are structured as rolls.
The base operating system, the core tools of Rocks, and
kernel rolls are required. However, numerous optional add-
ons like web-services, database engines, task schedulers, high-
performance computing tools, Hadoop support, Xen virtual
machine hosting, Android authoring environment, and more,
have been created. Rolls enable experts to capture exactly how

Rocks-based approach for automating software O&M in a data center environment.

complex software should be configured [11] and transfer that
knowledge in the form of executable code (the Rocks graph).
Rolls provide both the architecture and mechanisms that
enable the end-user to incrementally and programmatically
modify the graph description for all appliance types. The
toolkit enables non-cluster experts to deploy and run clusters
in a matter of hours instead of days or weeks.

Figure 2(a) is a representation of a sample core Rocks sub-
graph, which describes the configuration of appliances in a
Rocks cluster. This configuration graph is composed of nearly
two hundred vertex files and a graph XML file from each
included Roll. Each vertex file specifies the complete software
package and configuration information for a specific function.
The graph file specifies the directed graph edges that connect
the vertices to each other. Using this XML representation of
a configuration graph, complete software configuration for
any cluster node type can be produced by traversing the
configuration graph from the appropriate entry point vertex.
For example, the configuration graph in Figure 4 has two
vertices named “compute” and “frontend”, which are the entry
points for building compute nodes and frontends. Rolls further
decompose this configuration from a single graph of hundreds
of nodes, into multiple sub-graphs, which are assembled at
installation time into what was previously a single mono-
lithic framework. Rocks has been able to configure cluster
complexes with a data center that are defined as integrated
systems of computing, web-servers, database engines, authen-
tication servers, and other heterogeneous functionality (nearly
a dozen distinct appliances) working together. Figure 2(b)
is an example of one such data center that was built using
the Rocks toolkit for the Community Cyberinfrastructure for
Advanced Marine Microbial Ecology Research and Analysis
project. It is the back-end system that powers the Portal at:
(http://camera.calit2.net).

Today, Rocks supports systems in the 1000s of nodes includ-
ing cluster complexes that are defined as integrated systems
of computing, web-servers, database engines, authentication

293

servers, and other heterogeneous functionality working to-
gether. Similarly the process of building field-deployed sensor
appliances will also involve building dozens of appliances and
configuring and installing numerous software components. It
provides an excellent basis for developing scalable, extensible,
and modular software infrastructure to automate software
O&M for the sensor networks.

B. Proposed Approach

We propose to adapt to sensors and sensor networks a well-
understood methodology in the space of computing clusters
that already has demonstrated scalability to 1000s of nodes
and transparent support for heterogeneous hardware. This
entails extending and adapting the existing Rocks graph-based
framework to describe the configuration of all node types
(appliances) that make up a complete sensor network. This ver-
sion of the Rocks software (Sensor-Rocks) will enable faster
and more reliable deployment of the sensor cyberinfrastructure
(CD) thereby fundamentally improving system reproducibility.
Fundamental to our approach is the fact that it does not use
golden images as a management tool. Instead its processing
programmatically builds a functional and fully-configured
system from smaller, sharable and reusable components. Dif-
ferent sensor types and roles within a sensor network are
directly analogous to appliances in a Rocks cluster. Although
we believe that the methodologies and concepts are equally
applicable in the sensor network domain, there are many open
issues that need to be explored.

We utilized CyanogenMod as the initial base operating sys-
tem for deployment on the sensor devices [2]. CyanogenMod
is a custom operating system based on Android, providing
significant enhancements many of which useful in the domain
of sensor networks. These include (1) Older device support
(2) Greater battery efficiency (3) leaner software footprint
(4) Nightly builds (5) CPU under/over-clocking, and (6)
Wifi/Bluetooth/USB tethering.

1) Sensor-Rocks method: We borrow the concept of con-
figuration graphs (along with conditions and constrains) and
rolls. Following the Rocks methodology, the entire set of
possible appliances within the sensor network is represented
as a profile graph. A profile graph (ref. Figure 3(a)) consists
of a number of interconnecting rolls, each of which represent
their own software systems. Within the graph, individual
rolls are represented as rectangles, and each has a unique
color. The rolls are further described by a set of nodes, each
of which contains information describing the packages and
configuration of a specific function of that roll. The nodes
are represented on the graph as ovals (ref. Figure 3(a)), and
have a matching color to the roll they belong to. The profile
graph applies conditional edges to allow certain paths to be
included or excluded based on the value of attributes (such
as hardware type). As shown in Figure 3(b), to allow for
dependencies between the nodes, an ordering graph describes
any dependency constraints between them.

To build binary image specified in this profile graph, the
software iterates through a set of directories representing each
roll in the profile. The roll directories each contain packages,
scripts, and a set of XML files to describe the roll subgraph and

its nodes. A roll XML file provides meta information on that
roll, such as development details and representation data. A
subdirectory of node XML files describe the packages and con-
figuration settings for each node contained in the roll. Graph
XML files are then used to define the structure of the nodes
within this roll, how it is attached to the overall profile graph,
and any ordering constraints and attributes. Figure 4(a) shows
the proposed workflow involved in building and installing an
appliance configuration. Blocks colored blue represent tasks
performed by the user, green represents tasks performed by
sensor-rocks and orange represents tasks performed by the
device. Blocks with text preceded by (*) represent tasks that
are not yet present or automated in the current framework.
The current workflow assumes the packages are precompiled,
the user will enter the device type attribute and manually push
the rom to the device.

In the example profile graph, Figure 3(a), three rolls are
included, along with a root node to keep everything connected.
The base roll contains the base operating system (Cyanogen-
mod) that will be run on the given hardware device. Figure 3(a)
shows three device nodes attached to the base roll, each
representing the Cyanogenmod binary for that specific device.
Codenames have been used in this example, as per the Android
and Cyanogenmod standards. Asus Nexus 7 is referred to as
”grouper”’, Samsung Nexus S is referred to as “crespo” and
Samsung Galaxy Tab 10.1 is referred to as ”p3”. These devices
are included as they were used during testing of the software.
The dev-settings roll includes post-scripting to apply settings
to the devices, useful for development purposes. The ocean-
sensor roll and its subsequent node represent the necessary
packages and settings for an ocean-sensor device, that are
included on top of the base roll. The earth-sensor roll and
its node contain packages and settings necessary to create a
sensor device to measure for earthquakes.

2) Sensor-Rock compiling distributions: Using the sensor
network’s profile graph, a specific appliance can be built by
traversing the graph from a given starting roll, and applying
any defined attributes to the conditional edges. This process
results in a subgraph of nodes, representing the contents of
a unique appliance’s image. Using the information contained
in each node from this subgraph, an ordered list of packages
and configuration scripts are produced. An example of this
is described in the “Building a Device Using Sensor-Rocks”
section below.

The Rocks approach uses a script in Kickstart file format [5]
to automate the installation process. Sensor-Rocks implements
similar functionality using Edify scripting [3], which can be
used to instruct the Android installation process to mount
file systems, change permissions, extract packages, and many
other tasks. Each node can contain its own Edify scripts,
which are combined into one large installer-script, while the
appliance distribution is created. This combined script is
placed into a zipped archive along with the contents of all
the node’s packages. The resulting zip can be loaded onto the
device and installed to produce the desired sensor device.

Sensor-Rocks also includes an important piece of function-
ality from the Rocks methodology which is refered to as “’post-
scripts”. These are scripts which are packaged as part of the

294

Profile Graph

hw=="grouper'

ocean-temperature
OCeal-3ensor

hw=="crespo’

hw=="p3'

Ordering Constraints

(a) Sensor-Rocks Profile Graph

Fig. 3.

rom, but instead of being a part of the installation process, they
are run after the device has booted. Both Rocks and Sensor-
Rocks implement these by allowing the user to write shell
scripts, and scheduling them to run after the device has booted.
Post-scripts are split up into two main types: "Run-Once” and
”Run-Always”. Run-Once post scripts will be scheduled to
run after the device has first booted, and are then discarded.
These can be useful for applying device settings, such as
enabling and disabling communication methods. The Run-
Always scripts are not discarded after first-boot, but instead
will be run everytime the device boots. These can be useful
for performing tasks, such as connecting to a specific network.

3) Sensor-Rocks module details: The Sensor-Rocks frame-
work utilizes a modular design, to allow interchangeability
between major components in the system, for a more flexible
tool set. It consists of three major modules: Package Manager,
Roll Manager and Device Manager.

The Package Manager: Its purpose is to handle the source
code repository control for all packages included in the sensor-
network. It is able to retrieve new source code when it is
available, and compile it into package binaries, ready to be
included in a roll. For this iteration of the Sensor-Rocks
Framework, the package manager is incomplete, and instead
the rolls utilize pre-compiled binaries.

The Roll Manager: Its responsibilities include handling
the xml files describing the sensor-network’s rolls, create
visual graphs representing the sensor-networks rolls and nodes,
and creating ROM images ready to be loaded onto sensor
appliances. This is the focus of this iteration of the Sensor-
Rocks framework.

The Device Manager: Its goal is to manage the devices
already deployed in the sensor network. It will contain a
database of all devices deployed and relevant data about them.
It will also handle the initial installation process of a created
ROM onto the device, removing the need for the developer to
manually perform this task. Future work will focus on creating
and optimizing an update process for an already deployed
sensor-network, enabling updated updates (i.e., source code
or profile graph structure) to be automatically pushed and
installed onto sensor devices, without the need for manual
intervention.

4) Building a Device Using Sensor-Rocks: Sensor-rocks is
controlled using a command line interface on a Unix terminal.

(b) Ordering Constraints

Describing profile graphs and declaring ordering constraints

The following is an example process performed by a user of
Sensor-Rocks wanting to deploy an appliance using the profile
graph in Figure 3(a).

Figure 4(b) shows the set of commands involved in building
a device using Sensor-Rocks and installing the binary image
onto it. The first command creates a subgraph of the overall
profile graph, representing the nodes to be included in the
appliance configuration. The subgraph starts at the requested
earth-sensor roll, and includes all nodes it passes by following
each directed path. If a node has a condition on the attribute
”hw”, that node will only be included if the condition requires
the value “grouper”. In this case, the crespo, and p3 nodes
are not included, but the grouper node is. The final subgraph
created will contain the nodes: earth-sensor, earthquake, base,
dev-settings and grouper. This is all compiled into a ROM,
and is labelled “rom.zip” in the output directory.

The two “adb” steps are used to push the ROM onto the SD
card of the device, and then reboot the device into recovery
mode, so that rom can be installed. The user must then select
to “Install ROM from SD card” and then locate the ROM.
After that, the device will install the ROM, and then reboot
into it. These two steps will later be automated as part of
the Device Manager module, following the workflow seen in
Figure 4(a).

C. Future Work

The next stage for the Sensor-Rocks project is to perform
a scalability analysis. We will quantify the time taken in the
process of deploying sensor networks with Sensor-Rocks and
compare this with the time taken to deploy the same network
using the previous golden image approach.

Future research and development of the Sensor-Rocks
framework will aim to further automate the tasks required in
deploying and managing a sensor network. One area of focus
will be pulling properties from a connected device to automate
the filling of configuration attributes. Another major area of
focus will be automating the process of pushing and installing
updated ROMs onto the devices within an already deployed
sensor-network.

Increasing ease of use is another future aim of the project.
One of the tasks involved in this will be creating helper tags
throughout the node xml files, automating some of the post-
scripting or install-scripting that the use would previously have

295

(*)Sensor-Rocks

{HUser caklést retrieves and
usednastgr—rgg 25 compiles any
P packan changes in source
J
¥

User connects device

v

User calls
sensor-rocks to
install a rom from a
starting roll

(*)Sensor-Rocks
pulls device type
from the device

v

Sensor-Rocks
parses XML files to
create profile graph

h

Sensor-Rocks
compiles included
packages and scripts
into rom
(*)Sensor-Rocks
pushes rom to device
(*)Sensor-Rocks . . T
reboots device into . Dﬁ:ﬁ ses Instatier 1 | sensor-rocks-cm.py compile-roll -r earth-sensor -a
el " created rom "hw’ : ’grouper’”
v 2 | adb push <path-to-sensor-rolls>/out/rom.zip /sd-
Device reboots and card/
runs post-scripts
after boot 3 | adb reboot recovery

(a) Sensor-Rocks Workflow.

(b) Commands for building a device using Sensor-Rocks framework.

Fig. 4. Sensor-Rocks workflow and commands to build devices.

to create. One such example would be a helper tag for setting
the network access point for the device, where previously the
user would have to create a post-script to perform this activity,
instead the helper tag would instruct Sensor-Rocks to create
it automatically.

Another feature to be included that will increase ease of
use, is an intuitive graphical user interface. The user will be
able to select a starting roll and attributes, and be able to see
the resulting sub-graph as he makes the changes. This will
help the user ensure he is getting the correct configuration on
the appliance. The graphical user interface will also display
information and graphing of the current state of the deployed
sensor network, allowing easy overview and management. The
controls included within the interface will greatly decrease the
learning curve required to operate the Sensor-Rocks Frame-
work.

IV. CONCLUSION

Long-term deployments of sensor-based environmental
observing systems need an efficient and scalable software
Operations and Management (O&M) approach, and a power
management approach that meets the functional, operational,
financial, and policy requirements. In this position paper,
we describe an integrated approach that utilizes, adapts, and
extends the Rocks toolkit that has worked well in a resource-
rich data center environment to the resource-constrained world
of sensor networks. Sensor-Rocks framework will enable
much faster and more reliable deployment of the sensor
cyberinfrastructure (CI) thereby fundamentally improving
system reproducibility. Its programatic approach, rather than

a golden-image based approach, is modular and scalable. In
this paper we also described the design and implementation
details of the Sensor-Rocks framework. We have used it to
successfully build a variety of images for multiple hardware
platforms.

ACKNOWLEDGMENTS This work is supported by a grant
from the Gordon and Betty Moore Foundation and NSF awards
1219504 and 1234983.

REFERENCES

[1]
[2]
[3]

[4]
[5]
[6]
[7]

Beagleboard. http://beagleboard.org/.
cyanogenmod. http://www.cyanogenmod.org/.
Edify script language.
developers.com/wiki/Edify_script_language.
Gumstix. http://www.gumstix.com/.
Kickstart file format. http://fedoraproject.org/wiki/Anaconda/Kickstart.
Pandaboard. http://pandaboard.org/.

G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M. Papadopoulos. Rolls:
modifying a standard system installer to support user-customizable
cluster frontend appliances. In CLUSTER, pages 421-430, 2004.

J. W. Hui and D. E. Culler. The dynamic behavior of a data dissemi-
nation protocol for network programming at scale. In SenSys, 2004.

P. Levis and D. Culler. The firecracker protocol. In Proceedings of the
11th workshop on ACM SIGOPS European workshop, EW 11, 2004.
V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and
energy efficient data dissemination service for extreme scale wireless
networks of embedded devices. IEEE Transactions on Mobile Comput-
ing, 6(7):777-189, 2007.

P. M. Papadopoulos, M. J. Katz, and G. Bruno. Npaci rocks: tools and
techniques for easily deploying manageable linux clusters. Concurrency
and Computation: Practice and Experience, 15(7-8):707-725, 2003.

S. Tilak and P. Papadopoulos. The case for a rigorous approach to
automating software operations and management of large-scale sensor
networks. In Computer Communication Review, volume 42 of ACM
SIGCOMM, pages 58-61. ACM, 2012.

“http://forum.xda-

[8]
[9]
[10]

(11]

[12]

296

