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ABSTRACT 

Nowadays, cryptography plays a major role in 

protecting the information of technology applications. 

This paper gives a new symmetric cryptosystem having 
a key dependent operation, enhanced by a rotor with 

controlled user identification ID and user key. The 

plaintext block is divided into basic Gaussian sub-

blocks each of thirty-two bits in length. The new 
Proposal uses optimal MDS matrix. The new Proposal 

can encrypt blocks of plaintext of length 512 bits into 

blocks of the same length. Also the key length is 512 
bits. The total number of rounds is sixteen rounds. It 

uses 162 modulo addition and thirty-two bits XORING 

followed by modulo  162 1  multiplication. The secret 
key is encrypted using the optimal MDS matrix to 

avoid any weakness points in the user key. We also try 
to get the minimum correlation between plaintext and 

ciphertext, highly avalanche effect and defeat the 

frequency analysis and most well-known attacks. The 

proposed algorithm is compared with the well known 
AES and IDEA symmetric systems and it gives 

excellent results from the point of view of the security 

characteristics and the statistics of the ciphertext. Also, 
we apply the randomness tests to the proposed 

algorithm and the results shown that the new design 

passes all tests which proven its security. 

KEYWORDS 

Gaussian field, MDS matrix, Branch number, Rotor 
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1 INTRODUCTION 

1.1 Gaussian Integers 

Gaussian integers are complex numbers on the 

form x iy  where x and y are integers and i 1  .

The norm N of a Gaussian integer x iy is 
2 2x y . A Gaussian prime is a Gaussian integer 

that cannot be expressed in the form of a product 

of other Gaussian integers. The ring of Gaussian 

integers is a unique factorization domain. 

1.2 Rotor Cryptosystem 

Cryptology [1] has for much of its history 

involved mathematical calculations that must be 

performed at great speeds. Human minds are not 

suited to performing such calculations quickly and 

accurately, so we have developed machines to aid 

the process of encryption, decryption, and 

cryptanalysis. Before the widespread use of digital 

computers, computing was done using machines 

that combine electrical and mechanical 

components. During this time, which took place 

primarily between the 1930s and the 1960s, rotors 

and rotor-based cryptosystems were developed 

and used extensively. 

1.3 The MDS Matrix 

Maximum distance separable matrixes (MDS) are 

widely used in design of block ciphers and hash 

functions etc. Based on the character of its 

differential branch number, MDS matrix is widely 

used and the arithmetic using MDS matrixes can 

effective against differential cryptanalysis and 

linear cryptanalysis. A linear code over Galois 

field (2 )pGF is denoted as an ( , , )n k d code, 

where n  is the symbol length of the encoded 

message, k  is the symbol length of the original 
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message, and d  is the minimal symbol distance 

between any two encoded messages[2]. 

Definition 1: Let K be a finite field and p and 

q be two integers. Let x M x be a mapping 

from pK to qK defined by the q p matrix M . 

We say that it is a linear multipermutation (or an 

MDS matrix) if the set of all pairs ( , )x M x is an 

MDS code, i.e. a linear code of dimension p , 

length p q and minimal distance 1q  [3]. 

The following theorem [4] will depict the 

character of MDS matrix from the angle of a 

subdeterminant. 

Theorem 1: A matrix is an MDS matrix if and 

only if every sub-matrix is non-singular. 

MDS matrices are constructed by two types of 

matrices: circulant and Hadamard matrices. 

Circulant matrices: Given k elements 0 1 1, .., k    , 

a circulant matrix M is constructed with each 

entry , ( )modi j i j kM   . 

Hadamard matrices: Given k elements 0 1 1, .., k    , 

a Hadamard matrix M is constructed with each 

entry , ( )i j i jM   . 

Definition 2: Let *K be a set including a 

distinguished one denoted 1. Let M be a 

q p matrix whose entries lie in *K . 

1. We let 1( )v M denote the number of ( , )i j pairs 

such that ,i jM is equal to 1. We call it the number 

of occurrences of 1. 

2. We let ( )c M be the cardinality 

of , ; 1,...., ; 1,.....,i jM i q j p  . We call it the 

number of entries. 

The following lemmas provide optimal 

constructions for small p and q . 

Lemma 1: We have ,

1 2 3q pv p q   for any 

,p q such thatq p . 

Lemma 2: For any m we have
2 1,2 1m mc m   . 

1.4 Branch Numbers of Matrices and Distance 

of Linear Codes 

The branch number of a permutation function is 

representing the diffusion rate and measures 

security against differential and linear 

cryptanalysis [5]. The branch number is defined as 

the minimum number of nonzero elements in the 

input and output when the input elements are not 

all zero. The branch number of an 
n n matrix M is defined by:              

   ( ) min ( ) ( . ) | 0,1 , 0
n

mTM wt x wt M x x x     (1) 

Where: :wt Hamming weight. 

   1 2, ,..., , 0,1 , 1,...,
T m

n ix x x x x i n  

Theorem 2: For MDS (2 , , )n n d code over 
8(2 )GF , then the branch number of TM is d . 

We see that the maximum branch number of 

n n binary matrices is equal to the maximum 

distance of binary linear [ ,2 ]n n codes. It is an 

important topic in the coding theory to find the 

maximum distance of binary linear [ ,2 ]n n codes. 

2 THE NEW PROPOSED SYSTEM 

The new system is a block cipher; it can encrypt 

blocks of plaintext of length 512 bits into blocks 

of the same length. The key length is 1024 bits. 

We test the new algorithm for many numbers of 

round, we found that the efficient number of round 

which gives better avalanche effect is 16. In the 

new system we: introduced representation for data 

using the Gaussian field, proposed new optimal 

MDS matrix, introduced new rotor bank depend 

on subkey of the round and the user identification 

to resist the frequency analysis attack and we 

generate the round subkey using the new MDS 

matrix and the rotor bank. 

2.1 The encryption process 

Our proposal system is purely block cipher. The 

input plaintext length is 64 bytes. These bytes are 

divided into 16 sub-blocks each of 32 bits. Each 

sub-block is represented in Gaussian field. 

 _Sub Block a ib   (2) 

Where: a and b : are short word (16 bits). 
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We offer the cryptosystem to the domain of 

Gaussian field to make the cryptosystem more 

secure and very difficult to be broken. The output 

of this system is also 16 sub-blocks arranged 

sequentially each of 32 bits divided into real and 

imaginary parts. These sub-blocks are combined 

again to form 64 bytes blocks. The key length is 

1024 bits. 

Many cryptanalytical techniques treat the top and 

bottom rounds of the cipher differently than the 

middle rounds. Typically, these techniques begin 

by guessing several key bits, hence “stripping out” 

some of the top/bottom rounds of the cipher, and 

then mounting the cryptanalytical attack against 

the remaining rounds. This suggests that the top 

and bottom rounds of the cipher play a different 

role than the middle rounds in protecting against 

cryptanalytical attacks [4]. Therefore, in our 

design the middle rounds are designed differently 

than the top and bottom rounds, which are viewed 

as “envelope rounds”. Specifically, envelope 

rounds consist of first XORing key words with the 

input plaintext, and then performing several 

rounds of keyed transformation. Finally we XOR 

the output from middle rounds with key words. 

  

2.2 Description of a Single Middle Round  

 

Input block is sixty-four characters divided into 

sixteen sub–blocks each consisting of 32 bits. 

Input key is 128 characters used to generate 128 

sub–blocks each consisting of 32 bits words bits. 

The top and bottom round consists of 16 sub-key 

words and the middle round consists of 6 16  sub-

key words. Figure 1 shows one round of our 

system.  

Considering [+] is modulo 162 addition, [.] is 

modulo 162 1 multiplication,  is XOR 32 bits. 

<<< is left shift.    1 1 2 2a ib a ib   is left 

shift 1a by amount calculated from taking last four 

bits of 2a and left shift 1b  by amount calculated 

from taking last four bits of 2b . 

 

Step 1: 6 6 3 [ ] x x x  , 3 3 1 <<< x x x , 

1 1 (17 6( 1))rx x sk     (3) 

Step 2: 2 2 9x x x  , 9 9 7 <<< x x x , 

7 7 (19 6( 1)) [ ] rx x sk     (4) 

Step 3:    

12 12 4 [ ] x x x  , 4 4 (18 6( 1))rx x sk     (5) 

Step 4: 8 8 11 [ ] x x x  , 11 11 10 <<< x x x , 

10 10 (20 6( 1))rx x sk     (6) 

Step 5: 14 14 15x x x  , 15 15 13 <<< x x x , 

13 13 (21 6( 1)) [ ] rx x sk     (7) 

Step 6:    

5 5 16x x x  , 16 16 (22 6( 1)) [ ] rx x sk     (8) 

 

 

2.3 The New Efficient MDS Matrix 

 

In the new algorithm, we design new MDS 

matrixes which provide the maximum branch 

number and the optimal construction conditions. 

The new matrixes are self inverse so that same 

matrix can be used for decryption algorithm, 

which decreases the complexity of system. The 

new MDS matrix is 8 8  Hadamard matrix. MDS 

is (16,8,9) . MDS property of the matrix is 

calculated i.e. a (16,8,9) code is MDS if d = n–k 

+1.This can be done by checking the branch 

number of the transformation. The input with one 

or two active byte column is multiplied with the 

matrix and the output column is checked, if the 

total number of active bytes including input and 

output bytes is equal to 9 then it satisfies the 

property of MDS. The new MDS matrix is 

checked for the involution property. We design it 

by providing the involution conditions which can 

calculate from the next matrix:  
 

        

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

 
 
 
 
 
 
 
 
 
 
 
 
 

         (9) 
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These conditions relative to the above matrix are: 

1- For involution: 
 

 
2 2 2 2 2 2 2 2

0 1 2 3 4 5 6 7 1b b b b b b b b             (10) 

 

2- For singular: 
 

0 1 2 3 4 5 6 7

0 3 4 7 0 7

                             

                   

b b b b b b b b

b b b b b b

   

  
(11)

 

 

In order to have optimal construction for the new 

MDS matrix, we apply the lemma 1 and lemma 2 

so we get:
  

 

           
8,8

1 16 8 3 21v      ,  
8,8 5c                 (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

To satisfy the equations 10, 11 and 12 in 
8(2 )GF  

for polynomial 8 4 3 1x x x x    we choose the 

elements for the new MDS matrix with the 

following conditions: 

 
 

  1 3 5 1b b b    , 0 4  b b ,  2 7 2

2 6 7+ =0b b b    (13)                                                   

 

The obtained polynomials for first MDS matrix 

and second MDS matrix are: 
 

1 [ 1, 01, 40, 01, 1, 01, 1, 91]H had xC x x x xC x xD x

2 [ 89, 01, 9, 01, 89, 01, 08, 1]H had x x xC x x x x xC

  (14) 
 

By using these polynomial 8 8  matrixes are 

constructed. The equations 15 and 16 are 

Figure.1. The structure of one round 
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represented the first MDS matrix and the second 

MDS matrix respectively.  

 

 

1 01 40 01 1 01 1 91

01 1 01 40 01 1 91 1

40 01 1 01 1 91 1 01

01 40 01 1 91 1 01 1

1 01 1 91 1 01 40 01

01 1 91 1 01 1 01 40

1 91 1 01 40 01 1 01

91 1 01 1 01 40 01 1

C C D

C C D

C D C

C D C

C D C

C D C

D C C

D C C

 
 
 
 
 
 
 
 
 
 
 
 
 

     (15) 

 

 

89 01 9 01 89 01 08 1

01 89 01 9 01 89 1 08

9 01 89 01 08 1 89 01

01 9 01 89 1 08 01 89

89 01 08 1 89 01 9 01

01 89 1 08 01 89 01 9

08 1 89 01 9 01 89 01

1 08 01 89 01 9 01 89

C C

C C

C C

C C

C C

C C

C C

C C

 
 
 
 
 
 
 
 
 
 
 
 
 

     (16) 

 

In our new system, the data at MDS step is 

converted into 8 8  matrix and multiplied with the 

MDS matrix. Each element in the product matrix 

is the sum of products of elements of one row and 

one column. We use in every round one MDS 

matrix from two depending on the user keys of it. 

At first we take the first bit in all subkeys and 

XOR them together. If the resulting bit is one then 

we use the first MDS matrix else we use the 

second one. In the MDS step we arrange the data 

according to the following equation: 

 

            

:1 : 3

: 2 : 4

: 6 : 5

: 7 :8

:11 : 9

:12 :10

:15 :13

:16 :14

subblok subblok

subblok subblok

subblok subblok

subblok subblok

subblok subblok

subblok subblok

subblok subblok

subblok subblok

 
 
 
 
 
 
 
 
 
 
 
  

            (17) 

 

This arrangement makes every sub-block effect on 

all other because sub-blocks: 9, 3, 10, 4, and 13 

effect on sub-blocks: 2, 6, 11, 12 and 15 and three 

of round subkeys effect on sub-blocks: 1, 7 and 

16. Also, sub-blocks: 1, 16, 11, 7 and 15 effect on 

sub-blocks: 3, 5, 8, 9 and 14 and three of round 

subkeys effect on sub-blocks: 4, 10 and 13. 

 

2.4 Bytes Permutation 

 

In order to have maximum avalanche effect, we 

need to permute the bytes to insure that all 

subkeys and inputs bytes will effect in all 

ciphertext. The bytes permutation depends on 

permute the bytes of sub-blocks: 1, 4, 7, 10, 13 

and 16 in all other words because these sub-blocks 

have the subkeys effect. The bytes permutation is 

shown in table 1. 

 
Table 1 The Bytes Permutation 

1 2 3 4 5 6 7 8 

1 2 3 4 22 56 24 40 

9 10 11 12 13 14 15 16 

9 10 11 12 64 17 54 61 

17 18 19 20 21 22 23 24 

14 60 26 51 27 5 29 7 

25 26 27 28 29 30 31 32 

44 19 21 35 23 42 49 38 

33 34 35 36 37 38 39 40 

46 43 28 53 41 32 47 8 

41 42 43 44 45 46 47 48 

37 30 34 25 50 33 39 58 

49 50 51 52 53 54 55 56 

31 45 20 63 36 15 57 6 

57 58 59 60 61 62 63 64 

55 48 62 18 16 59 52 13 

 

2.5 The Rotor Bank 

 

The KAM-FA cryptosystem is a block cipher 

enhanced by using a rotor mechanism. The rotor 

mechanism can be considered as a stand-alone 

cryptosystem. The rotor in the software 

implementation expands the character space to 

include all available 256 ASCII characters. This 

means that each cylinder will contain 256 
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characters in different permutation. This advantage 

is appeared in the extremely long period of the 

KAM-FA cryptosystem  
number of cylinders

256 . In this 

paper we introduce new rotor bank with four 

cylinders controlled by the user ID and key and 

implemented using the inverse exponent function. 

The rotor bank construction attempt in the 

following way: 

 

1- Initialize the rotor bank: The first cylinder 

contains 0x00, 0x01,……, 0xFF. The second 

cylinder contains 0x00, 0x01,…0xFF etc, and 

so on until the fourth cylinder.  

2- Rotate the rotor bank with the user key:  at the 

first we partition the user key into four sub 

blocks each with 256 bit. For every sub block 

we count the number of 1's bit on it. The 

represented four output numbers for sub blocks 

are used to rotate the four cylinders of the rotor 

bank respectively. 

3- Map each byte in the rotor bank to its 

multiplicative inverse in the finite field 
8(2 )GF  

; the value {00} is mapped to itself. 
 

After first eight rounds of KAM-FA rotor 

mechanism is used. After every character output 

we rotate the cylinder by using the round subkeys 

and the user ID. The user ID is 128 bit length 

which contains all information about the user. 

First, we divide the user ID into sub-blocks with 

length two bits then we divide the subkeys into 

sub-blocks with length two bits. After we have the 

first character output we XOR the first sub-block 

of the user ID with the first sub-block of subkeys. 

The resulting output is represented the number of 

cylinder that will be rotated and so on until the last 

character in plaintext. The figure 2 has shown the 

overall structure of KAM-FA. 

 

2.6 The Subkeys Generation 

 

The new system key expansion algorithm takes as 

input a 128-byte key and produces 128 words (512 

bytes). This is sufficient to provide 6-word subkey 

for each of the 16 rounds of the cipher and 32-

word to the envelope rounds. In subkey generation 

process, we try to have maximum avalanche effect 

between the user key and the ciphertext and to 

have minimum correlation coefficient. We use 

MDS matrix to make the subkeys effective against 

differential cryptanalysis and linear cryptanalysis. 

The worst case for the user key is to be repeated 

zeros in this case also the subkeys will be all zeros 

so we encrypt the first element in every column in 

key matrix by using the rotor bank. We divide the 

user key into two matrixes and use the MDS 

matrix to produce the first 128 bytes in the 

subkeys. Then we take the output matrixes and 

apply the second MDS matrix. We repeat this 

operation until we have 512 bytes of subkeys.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2 KAM-FA overall structure 
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In order to have maximum avalanche effect we 

need to make sure that every bit in the user key 

will effect on all subkeys. This is done by XORing 

the first byte in first column in key matrix after 

applying the MDS matrix on column with the 

second byte in second column before use the MDS 

matrix on the second column. We repeat this 

process until the eighth column. Also before we 

use the output matrix from multiplying the first 64 

bytes of user key with MDS matrix we XOR the 

first elements in every column with the first 

elements in the second output matrix which 

produces from multiplying the last 64 bytes of user 

key with MDS matrix and so on until we have the 

128 words of the subkeys. 

 

3. SECURITY ANALYSIS 

 

3.1 Avalanche Effect 

 

In cryptography, the avalanche effect refers to a 

desirable property of cryptographic algorithms. 

The avalanche effect is evident when an input is 

changed slightly (for example, flipping a single 

bit) the output changes significantly (e.g. half the 

output bits flip). In the case of quality block 

ciphers, such a small change in either the key or 

the plaintext should cause a drastic change in the 

ciphertext. Constructing a cipher to exhibit a 

substantial avalanche effect is one of the primary 

design objectives. The avalanche effect is 

calculated as: 

 
No. of flipped in the ciphered text

Avalanche Effect= 100%
No. of bits in the ciphered text

 (18) 

 

In our case, we take four plaintexts; first one is 

normal message with normal key. The second one 

is repeated zeros binary with repeated zeros key. 

The third one is repeated ones binary with 

repeated ones key. The fourth ones is repeated 

ones binary with repeated zeros key.  Each one of 

them is only 512 in length, flipping one bit from 

everyone in different positions and calculate the 

avalanche effect. Then we flip the user key in 

different positions and calculate the avalanche 

effect [5]. The following results are obtained after 

calculating the respective Avalanche Effects for 

our system, AES and IDEA. 

Table.2 Avalanche effect for 1 bit change in the plaintext 

 

Length 

of text 

in bits 

Change first bit in 

plaintext 

Change last bit in 

plaintext 

Change middle bit 

in plaintext 

KAM-

FA 
AES IDEA 

KAM-

FA 
AES IDEA 

KAM-

FA 
AES IDEA 

512 52% 12.5% 5.7% 53.5% 11.7% 6.4% 52.2% 11.1% 5.9% 

512 55.1% 11.9% 0% 52.4% 12.7% 0% 54.7% 11.5% 0% 

512 52.2% 13.5% 6.8% 54.3% 13.9% 6.3% 53.5% 10.9% 6.4% 

512 54.1% 12.9% 0.1% 53.3% 11.7% 0.1% 55.4% 11.5% 0.1% 

 

Table.3 Avalanche effect for 1 bit change in the user key 
 

Length 

of text 

in bits 

Change first bit in 

key 

Change last bit in 

key 

Change middle bit 

in key 

KAM-

FA 
AES IDEA 

KAM-

FA 
AES IDEA 

KAM-

FA 
AES IDEA 

512 53% 48.4% 51% 53.7% 50% 50% 54% 50.8% 49.6% 

512 53.7% 41.4% 5.6% 54.3% 50% 3.1% 53.7% 48.4% 3.1% 

512 52.5% 51.6% 49.2% 53.7% 46.1% 47.7% 52.4% 48.4% 36% 

512 53.1% 48.4% 20.3% 52.2% 45.3% 29.7% 53.3% 46.1% 23.4% 

 

The avalanche effect of the proposed algorithm is 

producing very high as comparison with AES and 

IDEA because in AES and IDEA the data length is 

128 bits and 64 bits respectively, while in our 

proposed system the data block length is 512 bits. 

 

3.2 Secret Data Groups 

 

Considering the secret data used in AES, the brute 

force attack for the key in the case of 128 bit block 

and plaintext is
128 38(2 3.4 10 )  . The secret data 

used in IDEA, the brute force attack for the key in 

the case of 128 bit block is
128 38(2 3.4 10 )  . The 

brute force attack for the data block in the case of 

64 bit block is
64 19(2 1.8 10 )  .Considering the 

secret data used in our proposed system, the brute 

force attack for the key for 1024 bits block 

is
1024 3082 1.8 10  . The brute force attack for the 

data block for 512 bits block is
512 1542 1.34 10  .  
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3.3 Language Statistics 

 

Language redundancy [6] is the greatest problem 

for any cryptosystem. The cryptanalyst uses the 

language redundancy to attack cryptosystems 

ciphertext. If the message is long enough, the 

cryptanalyst computes the frequency of each of the 

characters and consider different number of 

combinations up to the length of the cryptosystem 

block. The cryptanalyst will then try to estimate 

the plaintext from this statistical result. A 

cryptosystem is considered unbreakable against 

statistical analysis if its ciphertext has flat 

distribution. To implement the strength of new 

system, Figs 3&4 show the plaintext statistics of 

the used file. The ciphertext statistics of AES, 

IDEA and new proposed system are plotted in Figs 

5 to 10. 
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15
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Figure.3 Plaintext statistics of a text file 
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Figure 4 Plaintext statistics of repeated text file 

50 100 150 200 250
ASCII

70

80

90

100

frequency

 
 

Figure.5 Proposed system ciphertext statistics 
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Figure.6 AES ciphertext statistics 
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Figure.7 IDEA ciphertext statistics 
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Figure.8 Proposed system ciphertext statistics of a message 

consisting of 20 Kbytes of character "e" 

ISBN: 978-0-9853483-6-6 ©2013 SDIWC 170



 

50 100 150 200 250
ASCII

200

400

600

800

1000

1200

frequency

 
 

Figure.9 AES ciphertext statistics of a message consisting of 

20 Kbytes of character "e" 
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Figure.9 IDEA ciphertext statistics of a message consisting 

of 20 Kbytes of character "e" 

 

3.4 NIST Statistical suite 

 

The National Institute of Standards and 

Technology (NIST) [7] develops a Test Suite as a 

statistical package consisting of 16 tests that were 

developed to test the randomness of (arbitrarily 

long) binary sequences produced by either 

hardware or software based Cryptographic random 

or pseudorandom number generators. These tests 

focus on a variety of different types of non 

randomness that could exist in a sequence. Some 

tests are decomposable into a variety of subtests. 

The average values of the statistical tests for 

KAM-FA, AES and IDEA algorithms were given 

in Table 4. 

Table.3 Proposed system vs. IDEA Statistical tests  

                 

Algorithm 

Test name   

KAM-FA AES IDEA 

Frequency Monobit 100% Pass 100% Pass 100% Pass 

Frequency within a 

Block 
100% Pass 98% Failed 96% Failed 

Runs Test 100% Pass 100% Pass 100% Pass 

the Longest Run of 

Ones in a Block  
99% Pass 99% Pass 100% Pass 

Binary Matrix Rank  100% Pass 100% Pass 99% Pass 

Discrete Fourier 

Transform  
100% Pass 100% Pass 100% Pass 

Non-overlapping 

Template Matching  
100% Pass 99% Pass 100% Pass 

Overlapping 

Template Matching  
100% Pass 99% Pass 99% Pass 

Maurer’s Universal 

Statistical 
100% Pass 100% Pass 100% Pass 

Lempel-Ziv 

Compression  
100% Pass 99% Pass 98% Failed 

Linear Complexity  99% Pass 99% Pass 100% Pass 

Serial Test 100% Pass 97% Failed 88% Failed 

Approximate 

Entropy  
100% Pass 99% Pass 96% Failed 

Cumulative Sums 

(Cusum)  
100% Pass 100% Pass 99% Pass 

Random Excursions  100% Pass 97% Failed 98% Failed 

Random Excursions 

Variant (α = 0.05) 
96% Pass 96% Pass 95% Pass 

 

4. CONCLUSION 

 

A new symmetric key block ciphering algorithm is 

proposed in Gaussian domains. We have improved 

the security by increasing the size of data block to 

512 bits and the size of key to 1024 bits. We use 

modulo the prime field 
162 1  multiplication to 

increase the strength of the proposal cipher. We 

introduce a new optimal diffusion 8x8 MDS 

matrixes controlled by the subkeys. These new 

matrixes meet all requirements of optimum design. 

We use the MDS matrix in the key expansion 

procedure to make it strong against the known 

attacks and we use rotor bank to make sure that the 

subkey never be zero. In our proposed system if 

we change a few bits in the plaintext or the user 

key it cause more than half of the ciphertext to be 

change. A software program using Mathematica 9 

language is developed to simulate the proposed 

cryptosystem. From the statistics of the ciphertext, 

it is concluded that KAM-FA perfectly hides 
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ciphertext statistics. We extend the cryptosystem 

to the domain of Gaussian integer to make the 

cryptosystem more secure and very difficult to be 

broken.  Finally, our proposal is rigid to withstand 

the well-known methods of brute-force. 
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