
Evaluation of Authentication and User Identification on
Simultaneous Session Limitation Mechanism

Ryo SHIBAHARA and Keizo SAISHO

Kagawa University

2217-20 Hayashi-cho, Takamatsu 761-0396, Japan

s18g470@stu.kagawa-u.ac.jp, sai@eng.kagawa-u.ac.jp

ABSTRACT

Responsiveness of Web servers is lowered

when they are overloaded caused by a lot of re-

quests from clients. Moreover, Web servers are

required to be not only available but also sta-

ble responsiveness especially for interactive Web

applications. In this paper, a mechanism which

limits the number of simultaneous sessions us-

ing firewall is proposed in order to provide sta-

ble Web services. The mechanism consists of

authentication server, firewall and user identi-

fication server. Authentication server authenti-

cates user and registers IP address of his ma-

chine with firewall when the number of current

simultaneous sessions is less than the specified

number. After this, authenticated users can ac-

cess Web server via firewall and user identifica-

tion server. By using firewall, it is possible to

not only limit the number of simultaneous ses-

sions but also block malicious attacks such as

DoS attack. Unauthenticated users, however,

can access the Web server without authentica-

tion when they use same NAT environment or

proxy server as authenticated users. User iden-

tification server detects access from unauthenti-

cated users and blocks them. Moreover, it lim-

its the number of accesses per unit time in or-

der to prevent attacks from authenticated ma-

licious users. This paper describes evaluation

of user authentication server and user identifi-

cation server. From results of evaluations, we

confirm that user authentication server can au-

thenticate and has enough capacity, and user

identification server has tolerance of attack with

unauthenticated users and can limit the number

of accesses per unit time.

KEYWORD

Limit of Simultaneous Sessions, Firewall, User

Authentication and Identification, Web Service

1 INTRODUCTION

In recent years, various Web services are pro-

vided. Moreover, a lot of users can use Web

services anywhere and anytime with the spread

of smart phones. As the number of users in-

creases, requests to Web servers also increase.

Web server is overloaded when excessive re-

quests issue to it. As a result, responsiveness

of services is lowered and these services may not

be available at the worst case. Thus, we de-

veloped simultaneous session limitation mech-

anism that limits the number of simultaneous

sessions from authenticated users to solve such

situation. The mechanism consists of authen-

tication server, firewall and user identification

server. By using firewall, it is possible to not

only limit the number of simultaneous sessions

but also block malicious attacks such as DoS at-

tack. Authentication server authenticates user

and registers IP address of his machine with

firewall when the number of current simulta-

neous sessions is less than the specified num-

ber. After this, authenticated users can ac-

cess Web server via firewall and user identifi-

cation server. Unauthenticated users, however,

can access the Web server without authentica-

tion when they use same NAT environment or

proxy server as authenticated users. User iden-

tification server detects access from unauthen-

ticated users and blocks them. We use cookie

to identify sessions. By checking cookie, user

identification server can detect whether session

is formally authenticated. Moreover, we develop

the mechanism which limits the number of ac-

113

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

cesses per unit time from authenticated users

in order to prevent attacks from authenticated

malicious users. This paper describes functional

and performance evaluation of user authentica-

tion server and user identification server.

2 RELATED WORKS

In [1], a system aims to reduce load of the Web

server is proposed. This system is achieved that

all requests to origin Web server are redirected

to the CAPTCHA nodes. The results of exper-

iments show that the latency has increased but

the load of the Web server has been reduced and

the average response time has been significantly

improved, compared to the case of accessing the

Web server directly. This research is the same

as our research in reducing the load on the web

server. It cannot cope with many users accessing

simultaneously, but our research can.

There are researches that relaxes user frustra-

tion even when Web server is overloaded[2][3].

In [2], WebQ, a system to improve user experi-

ence when accessing overloaded Web servers, is

proposed. Users accessing a server protected by

WebQ receive a HTTP redirect response speci-

fying a wait time in the virtual queue, and are

automatically redirected to the web server upon

expiration of the wait time. The results of exper-

iments show that requests can be processed nor-

mally and response time is also improved even

if the load of Web server protected by the pro-

posed system exceeds the capacity of the Web

server. In [3], the mechanism which contin-

ues important services by lowering the quality

of unimportant services rather than restricting

users access when Web server is overloaded is

proposed. From the results of experiments, it

has been confirmed that the proposed approach

is effective when Web server is overloaded. Our

research can block the malicious attacks, but

they cannot block.

In [4], a study aims to improve the https server

performance. It proposes cipher suite selection

algorithm to meet the different demands for se-

curity and response time, and strategy which

reduces the response time for higher priority

requests and guarantees the response time for

lower priority requests, while reducing the av-

erage system response time. From the results

of experiments, it has been confirmed that this

study proves the efficiency of the method, and

when the server load is high, the advantage

of the strategy is more obvious. Our research

restricts the number of sessions for improving

responsiveness to allowed users, but they use

strategy for improving performance.

There are researches that defend against

DDoS attacks[5][6]. In [5], a system employs

cloud-side proactive and reactive defenses to

combat DDoS attacks that may target it. In

the proactive defense, coordination server at-

tempts to protect against botnet reconnaissance

by periodically changing (via DNS) proxy IP

addresses. In the reactive defense, all clients

are supposed to use proxies that are overloaded

could be periodically reassigned to (shuffled

among) the attacked proxies at random. From

the results of experiments with several cases,

it has been confirmed this system worked well.

Our research blocks accesses to Web server using

firewall when it reaches upper limit, but their

system uses proactive and reactive defenses of

shuffling client-to-server assignments. In [6], au-

thers propose XFirewall which is temporary fire-

wall to prevent DDoS attacks. It is created in

front of the normal firewall that either protects

the server or the network when it is needed with

customized policy rules and removed when the

DDoS storm is over. Our research configures

firewall rules based on authorisation, but XFire-

wall is configured based on the detected pattern.

There are researches that do access control

for security and performance[7][8][9]. In [7], new

fine-grained two-factor authentication (2FA) ac-

cess control system with the necessity of both a

user secret key and a lightweight security device

is proposed. From the results of detailed secu-

rity analysis and simulation, it has been con-

firmed to achieve the desired security require-

ments and to demonstrate the practicability of

the proposed 2FA system. In [8], a 2-level fuzzy

admission control algorithm to improve system

throughput is proposed. The first level named

load controller judges the load situation of each

114

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

tier by the resource consumption and requests

delay. The second level named admission con-

troller decides the admission rate of the current

session by probability statistics. The experi-

ments show that the algorithm can overcome the

limitation of general admission control strategies

and improve the system throughput. In [9], a

design pattern for improving the performances

of a distributed access control mechanism has

been proposed. This mechanism has a central

authorisation service. A client requests permis-

sion to access some services form the central au-

thorisation service through LocalController. At

this time, the LocalController caches authori-

sation information. When the client requests

permission again, the LocalController permits

the request using cached authorisation infor-

mation. This drastically decreases the number

of requests to the central authorisation service.

The observations of the runtime behaviour of

various occurrences of such a design pattern on

real software systems have shown a drastic in-

crease in performance when compared with a

straightforward simpler implementation. Our

research uses access control with user authen-

tication and firewall.

3 SIMULTANEOUS SESSION LIM-

ITATION MECHANISM

Figure 1 shows proposed the simultaneous ses-

sion limitation mechanism. It consists of au-

thentication server, firewall, user identification

server. The authentication server (Auth server)

authenticates users and allows them when the

number of current sessions is less than the spe-

cific number. The firewall (IPF server) has ad-

ditional functions that automatically update fil-

tering rules. The user identification server (UI

server) denies requests from unauthorized users.

SS server really provides some kind of Web ser-

vices. All users are supposed to access SS server

via IPF server and UI server. The overview of

steps to access SS server from user are shown

below.

1. User requires access right to Auth server.

2. Auth server authenticates the user by his

account and password and check the num-

ber of current sessions.

3. If the number is lower than upper limit then

IPF server changes filtering rules and the

Auth server informs UI server of the session

information of the authenticated user.

4. Auth server informs the user of SS server’s

URL.

5. The user accesses to the URL. The access

goes to UI server by DNS setting. The ac-

cess can pass IPF server and reaches UI

server.

6. UI server checks the session information. If

the check is passed then UI server accesses

SS server and returns result to the user.

Otherwise, UI server sends the user theWeb

page which prompts to be authenticated.

4 DESIGN

We describe design of Auth server and UI

server explained in the previous section.

4.1 Auth Server

Auth server has databases to manage user and

session. The following two problems are consid-

ered at designing time.

• Protect Auth server from DoS attack

• Protect databases from malicious attack

It is possible to solve DoS attack problem by

setting multiple Auth servers. However, this

method causes synchronizing problem because

Figure 1: Structure of Simultaneous Session

Limitation Mechanism

115

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

Figure 2: Steps to access SS server

each Auth server has databases. Thus, we in-

troduce reverse proxy servers for Auth server.

All accesses to Auth server are done via them.

By restricting the number of accesses to Auth

server at reverse proxy servers, Auth server can

avoid overload. It is thinkable that reverse proxy

servers deny accesses when the number of re-

quests per second exceeds the specific number.

Moreover, all accesses are denied when the num-

ber of simultaneous sessions exceeds the upper

limit.

It is possible to avoid direct accesses from DoS

attackers by setting Auth server inside firewall.

This can also solve the second problem. The

steps to access SS server by using reverse proxy

are shown in Figure 2. The number and title

correspond to those in Figure 2.

1. Access

A user accesses any reverse proxy server.

2. Redirect to Auth server

The user accesses Auth server by redirect-

ing.

3. Login

Auth server authenticates the user.

4. Refer session DB

When the authentication succeeds, Auth

server obtains the number of current ses-

sions by referring session DB, and then

checks whether it exceeds the upper limit

or not.

5. Register session information

If the check is passed, Auth server registers

session information to session DB. Session

information has cookie, IP address, expired

time and so on.

6. Update filtering rules

IPF server updates filtering rules accord-

ing to the session information stored in ses-

sion DB every 1 second. The operations are

done. When the new session information is

registered session DB, it is applied filtering

rules at least after 1 second.

7. Send session information

Auth server sends UI server session infor-

mation every 1 second.

8. Inform SS server’s URL

Auth server informs the user SS server’s

URL via reverse proxy server.

9. Access to informed URL

The user accesses to informed URL.

10. Check IP address

IPF server passes the access to UI server if

it is sent from permitted user.

11. Check cookie

UI server checks cookie included the access.

12. Access to SS server

If the check is passed, UI server accesses SS

server and returns the result to the user.

Otherwise, UI server sends the user theWeb

page which prompts to be authenticated.

4.2 UI Server

In the simultaneous session limitation mech-

anism, UI server identifies authenticated users

by checking cookie. We considered two meth-

ods. The first method is to manage cookies us-

ing database built on UI server. The second

method is to manage cookies using file. In order

to reduce search time cookies are stored in mul-

tiple files. The file name is the hash value calcu-

lated from the value of cookie. We call the for-

mer method DB method and the latter method

HASH method.

5 FUNCTIONAL TEST OF USER

AUTHENTICATION METHOD

We performed functional test for authentica-

tion method.

116

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

5.1 Experiment Environment and Check

Points

Figure 3 shows the experiment environment.

We use virtual machines for reverse proxy server,

Auth server, UI server and SS server. IPF server

is physical machine which also hypervisor on

which UI server and SS server run. Specifica-

tions of hypervisors are also shown in Figure 3.

We implemented access deny function which de-

nies when the number of simultaneous sessions

reaches upper limit. The following points are

tested by actually accessing from browsers.

• User can be authenticated and access SS

server.

• User can’t access SS server if the number of

simultaneous sessions reaches upper limit.

• Reverse proxy server can deny accesses if

the number of simultaneous sessions has al-

ready reached upper limit.

Figure 3: Experiment environment of functional

test

5.2 Experiment Procedure

In this experiment, upper limit is set

2. This experiment uses three browsers:

Google Chrome(user1), Safari(user2) and Fire-

fox(user3). Since they store cookie indepen-

dently, their sessions are identified individually.

It is possible to use them on the same client.

The steps to perform functional test are shown

below.

Step-1 Users access to Auth server via reverse

proxy server simultaneously with their

browsers.

Step-2 user1 sends his account and password to

Auth server.

Step-3 user2 sends his account and password to

Auth server.

Step-4 user3 sends his account and password to

Auth server.

Step-5 user3 accesses to Auth server via reverse

proxy server again.

5.3 Result

Figure 4 to 8 show results of Step-1 to Step-5,

respectively. Figure 4 shows the user1’s screen

only because other screens are slightly different,

but the same content. At Step-2 and Step-3,

user1 and user2 were authenticated successfully

and got the response from SS server as shown

Figure 5 and 6. On the other hand, user3 got

the response from Auth server as shown Fig-

ure 7. Access to SS server from user3 was de-

nied even though authentication of user3 suc-

ceeded because the number of simultaneous ses-

sions reached the upper limit. In this experi-

ment, the upper limit is 2. At Step-5, reverse

proxy server denied the access from user3 be-

cause the number of simultaneous sessions al-

ready reached the upper limit and sent the mes-

sage showing reason for the denial as shown Fig-

ure 8. The results show that our authentication

method works as designed.

Figure 4: Login screen

117

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

Figure 5: Success to access SS server (user1)

Figure 6: Success to access SS server (user2)

Figure 7: Failure to access SS server (user3)

6 PERFORMANCE EVALUATION

OF USER AUTHENTICATION

METHOD

In this section, performance of user authenti-

cation method is examined. In this experiment,

user clients don’t access to SS server in order to

examine only authorisation.

6.1 Experiment Environment

Experiment environment is same as that of

in Section 5 except Auth server. The capacity

of Auth server is improved in order to examine

the performance. The number of CPUs is 4,

memory size is 20 GB and the number of worker

processes is 32.

Figure 8: Denies accessing to Auth server by

reverse proxy server

6.2 Experiment Procedure

In this experiment, upper limit of the number

of simultaneous sessions is set a large enough

number which never reaches the upper limit.

The number of accesses from user clients per

second is increases by 1 every 10 seconds from 1

to 100.

6.3 Result of Performances Experiment

Figure 9 and 10 show the results of the ex-

periment. Green point and red point show suc-

cessful and failed responses in figures, respec-

tively. In Figure 9, access failure has begun

around 350 seconds from the start of experiment

(35 accesses per second). Response time length-

ened and the number of failed responses also in-

creased after 500 seconds. Figure 10 is part of

Figure 9 up to 350 seconds. All accesses take less

than 0.5 seconds despite the number of accesses

per second exceeds the number of worker pro-

cesses. From the results, we confirm that user

authentication method has enough speed to pro-

cess user authentication.

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200

re
sp

on
se

-t
im

e

elpased-time

reverse-wait

success.csv failure.csv

Figure 9: Result of authentication method

118

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 50 100 150 200 250 300 350

re
sp

on
se

-t
im

e

elpased-time

350reverse-wait

success.csv failure.csv

Figure 10: Result of authentication method in

300 seconds

7 SOFT UPPER LIMITATION VS.

HARD UPPER LIMITATION

In this section, we describe about soft and

hard upper limitation and evaluate them.

7.1 Discussion on Upper Limitation

When the number of current sessions are

nearly at the upper limit, it occurs a problem

that some users is authenticated successfully but

they are denied to access to SS server. This

isn’t a problem if the service is provided to first

fix number arrivals. However, when the service

uses this system to keep responsiveness, this is

a problem. In that case, the number of current

sessions exceeds the upper limit a little is not

a problem. All users who can access to Auth

server should be allowed accessing to SS server.

We call the way denies the users to access when

the number of current sessions exceeds the upper

limit hard limitation, and call the way allows the

users who have already accessed to Auth server

when the number of current sessions reaches the

upper limit soft limitation.

7.2 Experiment Procedure

We use same environment in Section 6. In this

experiment, upper limit of the number of simul-

taneous sessions is set 200 and the user client is-

sues 4 accesses every second for 6 minutes. Valid

session time is set 1 minute.

7.3 Experiment Result

Figure 11 and 12 show the results. Green

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350

re
sp

on
se

-t
im

e

elpased-time

repeat

success.csv failure.csv refusal.csv

Figure 11: Result of hard limitation

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350
re

sp
on

se
-t

im
e

elpased-time

softlimit

success.csv refusal.csv

Figure 12: Result of soft limitation

point shows successful response, red point shows

failed response and blue point shows response

denied at reverse proxy server. Figure 11 is the

result using hard limitation. In Figure 11, fail-

ures exist between green point group and blue

point group, and response time of them is longer

than that of successful and denied. We thought

that some users are denied after authenticated

successfully because the number of current ses-

sions reached the upper limit while they are au-

thenticating. Hard limitation will cause this sit-

uation. Figure 12 shows result using soft limi-

tation. Although a few successful accesses have

longer response time than others, maximum re-

sponse time is less than 2 seconds. Soft limita-

tion allowed 203 users to access SS server despite

the upper limit is 200. Failed response is not ap-

peared in this experiment. Only 3 users are ad-

dtionally allowed to access SS server. From the

experiment, we confirmed that soft limitation is

effective to use the service which sets upper lim-

itation to keep responsiveness.

119

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

8 PERFORMANCE EVALUATION

OF UI SERVER

In this section, performance of UI server is

examined using two methods: DB methos and

HASH method.

8.1 Experiment Environment

Figure 13 shows experiment environment. All

servers and user clients are built as virtual ma-

chines on hypervisors which specifications are

shown in Table 1. User clients are built on hy-

pervisor1 and hypervisor2, UI server is built on

hypervisor3 and SS servers are built on hypervi-

sor4 and hypervisor5. UI server uses Nginx[10],

Lua[11] and lua-nginx-module[12]. SS servers

use Apache2.4.18[13]. The reason for using mul-

tiple SS servers is to prevent them from becom-

ing bottleneck.

Figure 13: Experiment environment

CPU Memory

Hypervisor1 Intel Core i5-3470 16GB

Hypervisor2 Intel Core i5-4460 16GB

Hypervisor3 Intel Xeon E5-2620 32GB

Hypervisor4 Intel Xeon E5-2620 32GB

Hypervisor5 Intel Xeon E5-2620 32GB

Table 1: Specification of hypervisor

8.2 Experiment Procedure

We performed two experiments. One exam-

ines throughput of UI server, the other exam-

ines capacity of blocking accesses from malicious

users.

This first experiment uses 5 user clients and

10 SS servers. The scenario is shown below. The

number of accesses per second from each client

is increases by N every 30 seconds from 20 ac-

cesses per second up to E (maximum number of

accesses per second).

The second experiment uses 6 user clients and

10 SS servers. 1 user client plays authenticated

users and issues accesses with fixed number of

access per second (C). Other user clients play

malicious users and issue accesses with same

manner as the first experiment. We call ac-

cesses from authenticated user and malicious

user AccessA and AccessM .

8.3 Experiment Result

Figure 14 and 15 show the result of the

first experiment with DB method and HASH

method, respectively. In this experiment, N and

E are set 20 and 600, respectively. Total N and

E become 100 and 3000, since the number of

clients is 5. The results of each user client are

slightly different. These figures show the results

of 1 user client. Histogram in figures shows the

number of responses per second and the scale

is shown by left vertical axis. Green part and

red part show successful and failed responses,

respectively. Orange line graph shows the num-

ber of requests waiting for response and the scale

is shown by right vertical axis. Horizontal axis

shows times of day.

First, we examine the result of DB method.

In Figure 14, access failure has begun around

300 seconds from the start of experiment (1,100

accesses per second) and the number of requests

waiting for response gradually increases. Only

about to 250 (= 50× 5 clients) accesses per sec-

ond were successful after 360 seconds (1,300 ac-

cesses per second).

Next, we examine the result of HASH method.

In Figure 15, access failure has begun around

480 seconds from the start of experiment (1,700

120

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

Figure 14: Using database method

Figure 15: Divided files using hash method

accesses per second) and the number of requests

waiting for response also gradually increases.

After this, the number of successful accesses

per second was decreased gradually and finally

reached about 1,750 (= 350× 5 clients).

Figure 16 and 17 show the result of the sec-

ond experiment with DB method and HASH

method, respectively. In this experiment, C, N

and E are set 100, 20 and 1,800, respectively.

Total N and E become 100 and 9000, since the

number of clients playing malicious users is 5.

These figures show the number of responses to

authenticated user’s.

First, we examine the result of DB method.

In Figure 16, failure of AccessA per second has

begun around 480 seconds from the start of ex-

periment (1,700 AccessM s per second). After

this, the number of successful AccessA per sec-

ond is about 30 (30%).

Next, we examine the result of HASH method.

In Figure 17, failure of AccessA per second has

begun around 2220 seconds from the start of ex-

periment (7,500 AccessM s per second). How-

ever, the number of AccessA failures per second

was less than equal to 3 obtained from log anal-

ysis.

From the first experiment, HASH method can

process accesses about 1.6 times of DB method

when all accesses are issued from authenticated

users. From the second experiment, the toler-

ance of malicious access of HASH method is

much higher than that of DB method. We think

that HASHmethod has enough capacity and tol-

erance of malicious accesses.

Figure 16: Using database method

Figure 17: Divided files using hash method

9 CONTROLLING THE NUMBER

OF ACCESSES PER UNIT TIME

We describe controlling the number of ac-

cesses per unit time and evaluate it.

9.1 Design of Access Control

If malicious users are authenticated, they can

attack UI server and SS server such as DoS at-

tacks. We must take measure against attacks

after authentication. We think that it is possi-

ble to prevent the situation by restricting user

to access SS server when the number of ac-

cesses from him per unit time exceeds designated

value. This method, however, cannot block at-

tack on UI server. It is possible to prevent the

attack by requesting IPF server from UI server

to block it. We implemented only the former

function. In the future, we will implement the

latter function.

9.2 Experiment Environment and

Procedure

In this experiment, we use UI server, SS server

and user client as shown Figure 18. We exam-

ine three cases 30, 50 and 90 that are the upper

121

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

limit of the number of accessing to SS server per

second. The scenario is shown below. The num-

ber of accesses per second from an user client is

increases by 1 every 10 seconds from 1 up to 100.

After that, user client keeps to issue 100 accesses

for 3 minutes. Finally, the number of accesses

per second from an user client is decreases by 1

every 10 seconds down to 0.

Figure 18: Experiment environment

9.3 Result

Figure 19, 20 and 21 show the results of ex-

periment. In these figures, blue and red points

show successful and failed responses, respec-

tively. Green line shows the number of accesses

per second and red line shows the upper limit.

All figures can confirm that all accesses failed

when the number of accessing to SS server ex-

ceeds the upper limit. These results show that

this function works as designed.

Figure 19: upper limit 30

10 CONCLUSION

We proposed simultaneous session limita-

tion mechanism and implemented reverse proxy

server, authentication server and user identifica-

Figure 20: upper limit 50

Figure 21: upper limit 90

tion server that are comprised it. Reverse proxy

servers and authentication server cooperate to

authenticate users and to limit the number of

sessions. We confirmed that these functions

work correctly and implemented authentication

method has enough speed to process user au-

thentication. Addtionally, we implemented soft

limitation and confirmed that it is effective for

the service which sets upper limitation to keep

responsiveness. We also implemented two user

identification methods, DB method and HASH

method, for user identification server. From the

results of experiments, HASH method is supe-

rior to DB method and has enough capacity and

tolerance of malicious accesses. Also, we imple-

mented controlling the number of accesses per

unit time. We confirmed that it works correctly.

Future works is shown below.

• Implementation of access deny function

which denies accesses at reverse proxy

servers when the number of requests per

second exceeds the specific number.

• Implementation of prevention function to

block accesses using IPF server when the

accesses from authenticated malicious users

cannot be processed by UI server.

122

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

References

[1] Ahmad T. Al-Hammouri, Zaid Al-Ali,

Basheer Al-Duwairi, “ReCAP: A dis-

tributed CAPTCHA service at the

edge of the network to handle server

overload”, Transactions on Emerging

Telecommunications Technologies 2017,

https://doi.org/10.1002/ett.3187

[2] Bhavin Doshi, Chandan Kumar, Pulkit

Piyush, Mythili Vutukuru, “WebQ: A vir-

tual queue for improving user experience

during web server overload”, 2015 IEEE 23rd

International Symposium on Quality of Ser-

vice (IWQoS), pp.135-140, 2015

[3] ZiYou Wang, MingHui Zhou, Hong Mei,

“Towards a degradation-based mechanism

for adaptive overload control”, 19th Asia-

Pacic Software Engineering Conference

(APSEC 2012), pp.52-60, 2012

[4] Lu Yan, Haojiang Deng, Xiao Chen, Xi-

aozhou Ye, “Service Differentiation Strat-

egy Based on User Demands for Https

Web Servers”, 2018 IEEE 16th Interna-

tional Conference on Software Engineer-

ing Research, Management and Applications

(SERA), pp.189-194, 2018

[5] Yuquan Shan, George Kesidis, Daniel Fleck,

“Cloud-Side Shuffling Defenses against

DDoS Attacks on Proxied Multiserver Sys-

tems”, CCSW ’17 Proceedings of the 2017

on Cloud Computing Security Workshop,

pp.1-10, 2017

[6] Ahamed Aljuhani, Talal Alharbi, Hang

Liu, “XFirewall: A Dynamic and

Addtional Mitigation Against DDoS

Storm”, ICCDA ’17 Proceedings of

the International Conference on Com-

pute and Data Analysis, pp.1-5, 2017,

http://dx.doi.org/10.1145/3093241.3093252

[7] Joseph K. Liu, Man Ho Au, Xinyi Huang,

Rongxing Lu, Jin Li, “Fine-Grained Two-

Factor Access Control for Web-Based Cloud

Computing Services”, IEEE Transactions on

Information Forensics and Security, Vol.11,

No.3, pp.484-497, 2016

[8] Pan Dan, Gan Hong, “Building of Multi-

Tier Web Server Access Control Design and

Research”, Proceedings of the 2nd Informa-

tion Technology and Mechatronics Engineer-

ing Conference (ITOEC 2016), pp.422-427,

2016

[9] Emiliano Tramontana, “A Design Pattern

for Improving the Performances of a Dis-

tributed Access Control Mechanism”, Pro-

ceedings of 5th Asian Conference on Pattern

Languages of Programs (AsianPLoP 2016),

pp.80-88, 2016

[10] Nginx, https://nginx.org/en/

[11] lua, https://www.lua.org/

[12] lua-nginx-module,

https://github.com/openresty/

lua-nginx-module

[13] Apache, https://httpd.apache.org

123

International Journal of Digital Information and Wireless Communications (IJDIWC) 9(2): 113-123
The Society of Digital Information and Wireless Communications, 2019 ISSN: 2225-658X (Online); ISSN 2412-6551 (Print)

