

Presenting New Method to Optimize Query in Distributed Database System

Sajjad Baghernezhad

Department of Computer, Darab Branch, Islamic Azad University, Darab, Iran

sbaghernezhad@yahoo.com

ABSTRACT

 Query optimization is one of the essential problems

in centralized and distributed database. The data

allocation to different sites is proposed in a

distributed DMS(Database Management System)

before a query in order to decrease, the next

communicative costs namely an optimized bed

production which is of ‘NP’ issues. In this article, it

was attempted to examine both the methods to

allocate data and produce optimized design in a

distributed system and the space to query for query

optimization in the distributed environment and

show the need concerning optimization method in

view of different aspects of optimization process.

We install a new method for optimization in

distributed database environment which indicates

somehow our simple optimization design is

executed relatively well until the database design is

physical

KEYWORDS

Query Optimization, Distributed Database,

Allocation, SQL

1 INTRODUCTION

In recent years the distributed database are used

increasingly due to development concerning

computer networks and database technology[1].

Distributed database system is dispersed

physically but is centralized logically and is a

composite of computer networks and database

system; generally distributed database

technology is the center of different researches

such as general integration design, data

exchange and query processing and

optimization; the query optimization returns to

the early distributed systems and recently many

researches executed in relation to different

potentials of data sources combination and

costs model[2]. However, query optimization

presents features in a developed distributed

environment which changes considerably trade

offs in the optimization process. The distributed

query processors should take into consideration

three essential principles to process and

optimize users’ query:

Necessary query processing: Processing query

is the process to translate a query in a high level

language such as SQL to a lower level

language. It is possible to access the data and

calculate in different sites in a distributed

system in big scale so one of the essential goals

of the distributed database systems

development is to take into consideration some

part of a query design in a distributed method to

increase efficiency[3].

Necessary costs factors: Considering the tables

are in the same place of a centralized database

management system the query costs are

measured on the base of a one-dimensional

factor but in a distributed database it is

necessary to control the costs logically by a

database by dividing them in different

dimensions; usually the response time and

computation precision and accuracy are main

factors to compute the query costs.

Necessary costs estimation: Considering the

tables are among different sites in the

distributed systems one of the main goals of

distributed systems is to estimate the

communicative cost among the sites; of course,

ISBN: 978-1-941968-02-4 ©2014 SDIWC 18

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

a centralized optimizer may not estimate

accurately the operations’ costs in many

independent sites. In first section of this article

we describe the query optimization and

examine essential steps to optimize query in

distributed databanks. In the second one we

describe optimization architecture and define

the problem and in the third one we describe

how allocate the data to different sites and

methods installing to produce the optimize

design and in the following section we examine

the proposed method to optimize query and

finally we propose essential points for future

researches.

2 DEFINING ARCHITECTURE AND

RELATED PROBLEM

The most related sections of the system to

optimize query are the proposers in independent

sites and query optimizer among the devices

(Figure). As the query optimizer may use a

variety of optimization, algorithm in a

centralized database system it is necessary to

estimate the cost by essential sources or the

fabricated proposers in a heterogeneous

database system. The optimizer and relation

proposers use two mechanisms:

1 – RFP (Request for proposition) where the

optimizer uses one operation.

2 – Proposition by the proposers who estimate

the cost (Figure 1).

Figure 1. System architecture

3 THE DISTRIBUTED QUERY

OPTIMIZATION PROBLEM

The most important issue is related to

communicative cost among different sites in the

distributed databanks. Contrary to centralized

databanks the most important cost is related to

time and the memory necessary to execute a

query. The distributed query optimization

problem is to find an execution design special

to the user’s query to achieve the goal proposed

by the user; such goal may be a function

formed by many variables such as response

time, total execution cost and data accuracy; for

simplicity we focus on two of them: execution

time and total execution cost. The optimization

issue may be proposed in two general phases in

distributed databanks and each one may be

examined separately; this section includes the

data allocation in different sites to decrease

communicative costs or minimize the

exchanges in a distributed system and second

section is related to produce executive

optimized design for a query[4]. A query with

link tendency formed of some links may be

executed in different designs which has

different executive cost but the same result; in

continuation we try to describe in detail the two

sections

3.1 Data allocation

The most important cost in the executive

requests in a distributed database system is the

cost for the cost of the data transfer achieved by

a request from different site to a site where the

request is executed. The data allocation is to

define a measure from the frameworks in other

sites to decrease total costs appeared during the

execution of a collection of the requests.

Having executed this method the time mean to

execute the request which is very important in a

usual distributed group and multimedia

database system decreases; however, the

problem related to NP data allocation method

continues. The execution cost related to the

ISBN: 978-1-941968-02-4 ©2014 SDIWC 19

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

request depends on the request and data

situation. In view of specialty the data situation

in a request defines the amount of the data

transfer in processing the request so when

someone encounters the data allocation it had

better he (she) improves the data. Having

defined the collection of the requests achieved

from the pieces of the data the pieces are

allocated to the sites from the database to

decrease the total cost of the data transfer for

processing requests. The methods proposed in

the field are described. It should be noted that a

general form for databank, the method to

allocate data and some limits are taken into

consideration in some algorithms and some

algorithms are stated, but we consider their

general state in which the tables of a bank may

be divided between several sites. Perhaps there

are some copies of a table in several sites or

each site may include only one table; with such

presupposition we deal with proposed

algorithms.

3.1.1 Genetic algorithm

This method select a primary group from

division possibilities and enters into genetic

cycle as chromosomes shown in an array frame

as following algorithm[5]:

(1) Initialize population. Each

individual of the

population is a concatenation of the

binary

representations of the initial random

allocation of

each data fragment.

(2) Evaluate population.

(3) no of generation = 0

(4) WHILE no of generation < MAX

GENERATION DO

(5) Select individuals for next

population.

(6) Perform crossover and mutation for

the selected

individuals.

(7) Evaluate population.

(8) no of generation ++;

(9) ENDWHILE

(10) Determine final allocation by

selecting the fittest

individual. If the final allocation is

not feasible, then

consider each over-allocated site to

migrate the data

fragments to other sites so that the

increase in cost is

the minimum.

Figure 2. Genetic algorithm

3.1.2 Algorithm to query randomly beside

Main principle in a side searching method is to

create a primary solution with medial quality;

then based on neighbor defined before it selects

a rapid solution in the searching space and tests

if it is a better solution or not. If the new

solution is better, it accepts its method and

begin to query in new neighbor space;

otherwise, it selects another solution. The

method stop querying after some social steps or

the solution stops after passing some stable

steps. The quality of querying solution in

neighbor space depends on creating neighbor

solution; this method is defined to allocate the

data as follows:

(1) Use Divisive-Clustering [19] to

find an initial

allocation Initial Alloc;

(2) Best Alloc = Initial Alloc;

(3) New Alloc = Best Alloc; iteration

= 0;

REPEAT

(4) searchstep = 0; counter = 0;

REPEAT

(5) Randomly select two sites from New

Alloc;

(6) Randomly select two data fragments

from each

site;

(7) Exchange the two data fragments;

(8) IF cost is reduced THEN

adopt the exchange and set counter to

0;

ELSE otherwise undo it and increment

counter;

UNTIL ++searchstep > MAXSTEP OR

counter >

MARGIN;

ISBN: 978-1-941968-02-4 ©2014 SDIWC 20

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

(9) IF cost(New Alloc) < cost(Best

Alloc) THEN

Best Alloc = New Alloc;

(10) Randomly exchange two data

fragments from

two randomly selected distinct

sites from New Alloc; /* Probabilistic

jump */

UNTIL iteration > MAXITERATION;

Figure 3. Algorithm querying randomly in neighborhood

3.2 Producing design to execute optimally

and related works

In this section we examine the methods

producing optimal design to execute a query.

The methods producing an optimal design are

sorted in two groups based on cost and rule; in

the method based on rule essentially the

findings are considered from a design in the

best link graph and there is no space for a

vaster space so this method is rapid and mostly

there is no other better one and the algorithms

find a better design after one execution. In the

method based on cost the base is to apply

statistic relation in the estimations and costs; it

has query space and uses competency methods

for query and finds the best design for little

relations and there is no possibility to find

design for many relations

3.2.1 Link graph

The query optimization methods are based on

that if each database may be considered as a

link graph in a way that each node shows a

table and each edge shows the relation between

the tables, both groups of the algorithms

operate by virtue of the link graph(Figure 2)[6].

Figure 4. Joint graph.

Algorithms based on rule are the methods with

low flexibility and often low efficiency and

mostly no optimal design is achieved, but

considering they select a design as an optimal

design in one execution they are rapid. For

instance, we may mention Prim and Kruskal

algorithms; these methods are executable only

for little databases with limited capacity and

practically are not very efficient. In the

algorithms based on cost the statistical relations

and data in the system catalog are used to

estimate costs, etc. And the query space is

exponential and competency methods are used

for query. The algorithms based on cost are

sorted in two definitive and non-definitive

groups. In the former algorithm is only a

comprehensive and dynamic one and may not

reply the great questions, but the non-definitive

ones query for a graph whose nodes are

alternative executive designs and may be used

to reply the question; each node has a cost and

the algorithm is to find a node with its least

costs[7].

3.2.2 Dynamic programming algorithm

The advantage of this algorithm is to create the

best possible design, but its time complexity is

multi-phrases and its space complexity is not

appropriate to complicated queries; specially in

a distributive system the dynamic programming

complexity is expensive for many queries[8];

one of the developed states of the dynamic

programming algorithm is repetitive dynamic

programming creating designs as good as

dynamic programming algorithm for and

complicated simple queries not available in the

dynamic programming. Dynamic programming

algorithm is shown for query optimization in

algorithm No. 3 operating from down to up and

creates more complicated design substructures

by simpler ones.

INPUTS rels “List of relations to be

joined”

ISBN: 978-1-941968-02-4 ©2014 SDIWC 21

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

OUTPUT pt “Processing Tree”

partialsolutions := {All scans for all

attributes

involved}“Remove all elements from

partialsolutions

with equivalent, lower-cost

alternative”

FOR i := 2 .. |rels|

FOR all pt in partialsolutions

FOR all R in rels such that R not in

pt := pt ∞ R

END

END

“Remove all elements from

partialsolutions with

equivalent, lower-cost alternative”

END

RETURN “Arbitrary element from

partialsolutions”

Figure 5. Algorithm dynamic programming

3.2.3 Composite evolution optimization

algorithm

Composite evolution optimization algorithm is

created and used by composing genetic

algorithm, learner’s automata ,composing gene

and chromosome concepts. The important

property of composite evolution algorithm is its

resistance against replies’ superficial changes.

Auto-restoration, reproduction, fine and reward

are the composite algorithm features. Contrary

to classic genetic algorithms the binary coding

or natural overlay exposition are not used in the

composite evolution algorithm. Composite

evolution algorithm has higher efficiency than

the genetic one.

Function query optimization (query)

Create the initial population CM1…

CMn;

EvalFitness();

While (Not (Stop Condition)) do

NewCM1 = CM with minimum Value of

Cost;

For i = 1 to n do

Select CM1; Select CM2;

If (Random > PC) then

Crossover (CM1, CM2);

End If

If (Random > PM) then Mutation (CM1);

Mutation (CM2);

End If

NewCMi+1 = CM1;

NewCMi+2 = CM2;

i=i+2;

End For

For i = 0 to n do

CMi = NewCMi;

For i=1 to 4

u = Random *n;

If (costu(CM.LAi)<MeanCost) then

Reward(CM.LAi , u)

Else Penalize(CM.LAi , u);

End If

End For

End For

EvalFitness();

Figure 6. Compositive evolution algorithm

4 HOW TO OPTIMIZE THE PROPOSED

QUERY

The suppositions to discuss about algorithm

and optimization technique proposed in this

article are as follows:

Precise statistics: We suppose that there are

precise statistics about cardinality and choice;

such data may are collected from the standard

protocols with permission to query from host

database.

Relation costs: We suppose the relation costs

are almost stable during optimization and query

execution and the optimizer may meet the

sustained relation costs in data transfer between

two related sites.

There is no tube line throughout sites: We

suppose that there is no tube line among the

query operators throughout the sites; generally

we divide all optimization algorithms in three

steps:

1 – Selecting designs’ substructures meeting the

cost and preparation of the requests for

proposals.

2 – Sending the message for the proposers of

the request cost.

3 – Estimating costs for the designs and

designs’ substructures; if possible, to decide

how to execute the design for query and if

necessary, repeating the steps 2 and 3.

ISBN: 978-1-941968-02-4 ©2014 SDIWC 22

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

It is clear that we should try to minimize the

number of the steps 2 and 3. Considering step 2

includes relation with some expense our

proposed algorithm has tried to minimize the

restoration from a great collection of data. Our

proposed algorithm searches for all probable

designs for query by using ‘Up to down’

method and optimal rule in the least time.

However, algorithm finishes the work on due

time and guarantees to find the optimal design

for query execution,it is possible to divide the

proposed algorithm in four steps as follows:

Step 1: Catalog of all joints and possible

multiple joints which may be defined as a basic

relation and an intermediate relation without

production Cartesian multiplication.

Step 2: Creating a proposal request for the

joints and estimating step 1 to scan basic tables.

Step 3: The request cots from the proposers for

the joint and scan operation. If the entrance

relations are the intermediate tables, only the

single joint costs is requested for each joint

with supposing the entrance costs had been

estimated before.

Step 4: Estimating the designs’ costs and

related substructures as return by dynamic

programming and finding optimal design for

query.

Suppose the bank with relations designs as

follows:

Branch (branch_name,branch_city,assets).

Client (customer_name,customer_street,

customer_city).

Loan (loan_number,branch_name,amount).

Customer (customer_name,loan_number)

Account (account_number, branch_name,

balance).

Deposit (customer_name,account_number).

We may distribute tables among three sites:

Site 1: Branch.

Site 2: Customer, customer, deposit.

Site 3: Loan, account (Figure 7).

Central data lexicon includes data related to the

tables in the sites and defined designs for the

tables. Now suppose following query:
SELECT customer_name, loan_number,

amount

FROM borrower , loan

WHERE borrower.loan_number =

Loan.loan_number

AND branch_name = ‘Perryridge’ and

amount > 1200;

Figure 7. Proposed database

Step 1: In this step the catalog refers to central

lexicon to define the sites for special query and

creates ‘N’ SubSelects, SubWheres and

fubForms in which there are ‘N’ sites; then

SelectItems enter in SubSelect(n) and

FormItems from the distributed sites in

SubForms (n) (Figure 8).

Figure 8. Step 1

Step 2: In this step we select each item from

WhereItem list. If related element belongs to

ISBN: 978-1-941968-02-4 ©2014 SDIWC 23

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

that site completely, the element relates to

SubWhere and if related element does not

belong to a site completely, the element is

located in final new list of Where (Element

analysis related to the operation); then it

searches the tables features one by one and

finds the sites containing the features and if it

does not include the features, the related

SubSelect includes them. This step is one of the

key steps in this algorithm; the example may

describe it for us better(Figure 9).

Figure 9. Step 2

Step 3: In this step we produce a SubQuery

from SubSelect, SubWhere and SunForm lists.
FinalSelect = SelectItems

FinalFrom = {R1,R2…..,Rn}

Where:

n = Number of the sites.

Rn = The result of the collection achieved from

‘n’; in this step we create query from

FinalFrom, FinalSelect and FinalWhere lists.

Design execution:
SUBQUERY[1] =NIL

SUBQUERY[2]:

SELECT

CUSTOMER_NAME, B.LOAN_NUMBER

FROM BORROWER ;

SUBQUERY[3]:

SELECT AMOUNT, L.LOAN_NUMBER

FROM LOAN

WHERE BRANCH_NAME = ‘PERRYRIDGE’

AND AMOUNT>1200 ;

FINALQUERY :

SELECT

CUSTOMER_NAME,B.LOAN_NUMBER ,

AMOUNT

FROM R2, R3

WHERE

B.LOAN_NUMBER = LOAN.LOAN_NUMBER

Where:

R2 and R1 are the result from related parallel

sites and final query in the middle layer,

respectively(Figure 10).

Figure 10. Design execution

Step 4: It includes queries substructure

execution in related parallel sites and final

query in the middle layer.

5 COMPARISON and CONCLUSION

Query optimization in distributed databank are

examined from the views allocating data and

producing optimal execution design, but

considering both discussions are of NP there is

no definitive reply for them; meanwhile, none

of the presented algorithms produce optimal

reply for all problems and have favorable

ISBN: 978-1-941968-02-4 ©2014 SDIWC 24

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

results only for some problems with special

features; for example, the techniques querying

for dynamic programming are appropriate to a

little amount of queries, but such methods are

not appropriate when the number of the

relations in the query increases because high

memory and process are used. The query

optimization method for the query is very

useful to distributed database systems. The

optimizer should consult with the sources of the

data involved in finding the operation cost to

estimate the optimization process cost. In view

of the cost concerning executive designs and

number of the defined joints the proposed

algorithm gives better results than composite

evolution algorithm. The algorithms

comparison indicates the proposed algorithm is

better than the composite evolution algorithm.

Having used this algorithm it is possible to

achieve the reply more rapidly and prevent to

trap algorithm in local minimums; so it can be

said that the proposed algorithm is a more

appropriate method to solve the problems of

distributed database queries. The mentioned

optimization process indicates in many cases

specially when our database design is physical

the query optimizer algorithm works well, but if

we have not such data, we should use more

aggressive optimization techniques

6 REFERENCES

[1] C. Shahabi, L. Khan, D. Mcleod. “A probe based

technique to optimize join queries in distributed internet

bases, Knowledge and Information Systems”. Computer

Science and Information Technology (ICCSIT), 3rd

IEEE International Conference on, Volume 8. 2002.

[2] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy,

and D. S.Weld. “An adaptive query execution system for

data integration.In SIGMOD”, International Journal on

Intelligent and Cooperative Information Systems,(6)

2/3:99–130, June 2009.

[3] C.Olston and J. Widom. “Offering a

precisionperformance tradeoff for aggregation queries

over replicated data”. vldb.org/conf /2005/pp. 144.

[4] T.Oliveria ,”Evolutionary Query Optimization for

Heterogeneous Distributed Database Systems”,

Engineering and Technology Volume33 September 2010.

[5] I. Ahmad, K. Karlapalem,and Y. Kwok, Siu-Kai So

“Evolutionary Algorithms for Allocating Data in

Distributed Database Systems”, Distributed and Parallel

Databases, January 2002, Volume 11, Issue 1, pp 5-32.

[6] S. Chaudhuri, “An Overview of Query Optimization

in Relational Systems”, PODS '98 Proceedings of the

seventeenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems. 1998.

[7] M. Yannis, E. Ioannidis. “Query Optimization”,

ACM Computing Surveys (CSUR). Volume 28 Issue 1,

March 1996

[8] M. Steinbrunn, G. Moerkotte, Alfons Kemper,

“Heuristic and Randomized Optimization for the Join

Ordering Problem”. The VLDB Journal, The

International Journal on Very Large Data Bases. Volume

6 Issue 3, August 2012.

ISBN: 978-1-941968-02-4 ©2014 SDIWC 25

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

