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ABSTRACT 

 
In this paper, we present method that detects useful 

feature points based on hardware architecture. We 

propose hardware architecture that uses the 

algorithm of FAST-n[1]. Feature point detection 

process needs extensive computing power and 

processing time. Therefore, we build hardware 

structure for real-time processing. The structure of 

the hardware is as follows. After loading the images 

in parallel, finding feature point candidates and 

selecting valid feature point modules operate 

simultaneously and independently using pipeline 

structure to reduce processing time. Proposed 

hardware architecture will operate in about 20,000 

cycles in case of 320 x 240 resolution image. If our 

hardware structure is used for 1080p, the 

performance of processing will be about 70fps. 
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1 Introduction 
 

Task of extracting feature points is the first 

step of many vision tasks such as object 

tracking, SLAM (simultaneous localization and 

mapping), localization, image matching and 

recognition. To extract feature points, a number 

of algorithms have been studied[1-7]. 

Most of the algorithms require extensive 

computational cost and time. These methods 

are not suitable for real-time processing of 

images.  

Therefore, we propose hardware structure for 

real-time processing application. The hardware 

implementation is faster and requires fewer 

resources than software structure. The structure 

of the hardware is as follows. After loading the 

images in parallel, three modules which search 

the feature point candidates module, compute 

score of each feature point and select effective 

feature point in the feature point candidates 

module operate simultaneously and 

independently using pipeline structure. As a 

result, faster operation than software can be 

achieved. 

 

 

2 FAST Algorithm 

 

 

Figure 1. Segment test corner detection in an image 

patch 

 

FAST algorithm is abbreviation of features 

from accelerated segment test. It loads 16 pixels 

around the circular for a single reference pixel 

P as shown Figure 1. At this time, as formula 1, 

each pixel is compared if it is greater than plus 

the threshold value to the reference pixel, or if 

it is smaller than the reference pixel minus the 

threshold value. The result of comparison will 

be divided into three states, point darker than 
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the reference pixel, similar point and point 

brighter than the reference pixel. 

 

 (1) 

 

The number of continuous dark or bright 

pixels determines the constant n of FAST-n 

algorithm. The FAST-n algorithm usually 

detects 7 to 12 consecutive pixels. 

 

 
 

 
 

 
 
Figure 2. Center pixel and neighbor pixels (top: pixel 

value, middle: bright, bottom: dark) 

 

Figure 2 illustrates how to classify pixel. The 

around pixels are compared to the value of 

center pixel plus threshold value 64. Then the 

around pixels have the value of 0 or 1 

according to the differences. 

Decision tree scheme is used for detecting 

continuous pixel, as shown in the Figure 3 [8]. 

 

 
 
Figure 3. Decision tree of dark point, similar point, 

bright point 
 

When this condition is satisfied, the reference 

pixel is selected as the feature point candidate. 

In this case, detected feature point candidates 

are often located around detected feature points 

because of characteristics of FAST algorithm. 

However FAST algorithm requires post-

processing called NMS (non-maximal 

suppression). NMS selects valid feature points 

among the detected feature point candidates. 

Through formula 2, the maximum threshold 

that meets the conditions of the feature point 

candidate is calculated and stored. There are 

several intuitive definitions for V: 

1. The maximum value of n for which p is still 

a corner. 

2. The maximum value of t for which p is still a 

corner. 

3. The sum of the absolute difference between 

the pixels in the contiguous arc and the center 

pixel. 

Definitions 1 and 2 are very highly quantized 

measures, and many pixels share the same 

value of these. For speed of computation, a 

slightly modified version of 3 is used. V is 

given by : [1] 

 
 

 (2) 

 

To detect a valid feature points, only the 

feature point candidate which has the maximum 

value compared with others are left and the 

rests are removed. 
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Figure 4. Result Einstein image of FAST-9 algorithm in 

case of different threshold (top 16, middle 32, bottom 64) 

 

 
 

 
 

 
 
Figure 5. Result Lena image of FAST-9 algorithm in 

case of different threshold (top 16, middle 32, bottom 64) 
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Figure 4 and 5 are the result of FAST-9 

algorithm simulation in Matlab. Size of the 

image is 320 x 240. Green circles are feature 

points candidate and red dots are NMS 

processed feature points. 

 
Table 1. Result from Lena image of FAST-9 algorithm 

 

Threshold 8 16 24 32

FD 6,456 2,732 1,418 777

NMS 2,654 1,239 704 419

per 41.11 45.35 49.65 53.93

Threshold 40 48 56 64

FD 431 267 171 120

NMS 249 160 105 73

per 57.77 59.93 61.40 60.83

Threshold 72 80 88 96

FD 70 49 27 19

NMS 45 33 22 17

per 64.29 67.35 81.48 89.47

Threshold 104 112 120 128

FD 12 8 6 3

NMS 11 7 5 3

per 91.67 87.50 83.33 100.00  
 

Table 1 illustrates the result of FAST-9 

algorithm applied to Lena image with varying 

threshold from 8 to 128. FD is number of 

feature point before NMS processing. NMS is 

number of feature point after NMS processing. 

Per is the percentage of NMS processed feature 

point number of feature point candidate number. 

It is shown that as number of feature point 

decrease as threshold increase.  

 

 
 
Figure 6. Result Lena image of FAST-9 algorithm in 

case of different threshold from 8 to 128 

 

Figure 6 illustrates the count of feature point 

candidate and NMS processed feature point.  

 

 
 
Figure 7. Result Lena image of FAST-9 algorithm in 

case of different threshold (top 16, middle 32, bottom 64) 

 
Figure 7 illustrates the percentage of NMS 

processed feature point number of feature point 

candidate number. It is shown that as threshold   

increase, so do percentage. 

 
 

3 Hardware Structure of FAST Algorithm  
 

The Figure 8 illustrates the structure of 

software briefly. First, the image to gray scale 

is performed. Then FD function, FS function, 

NMS function are called in sequence. 

 
 
Figure 8. Software structure of FAST-n 
 

Figure 9 illustrates overall hardware structure. 

Divided gray scale image is stored in block 

RAM. Then pipeline structure operates with the 

stages of FD, FS and NMS modules 

simultaneously and independently. 
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Figure 9. Hardware structure of FAST-n 
 

When the center pixel and the neighbor pixels 

in the block RAM are loaded, neighbor pixels 

are made to vector as shown in Figure 10 so 

that vector is processed easily in hardware. 

 

 
 

Figure 10. Aligned arc pixel 
 

Figure 11 illustrates block diagram of FD 

(feature detection) module. Adder and 

subtractor are used to compute values from 

pixel and threshold. Values are compared with 

values in vector. If those results consist of 

continuous 1s of which the number is more 9, 

reference pixel would be a feature point 

candidate. 
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Figure 11. Block diagram of FD (feature detection) 

module 
 

Figure 12 illustrates block diagram of FS 

(feature score) module. Score is calculated 

using bmin and bmax. That module requires 

from minimum 0 to maximum 8 cycles to find 

accurate score. However, because overall 

system takes much time due to this operation, 

we changed the architecture from repetitive FS 

to a series of FS through pipeline. Flip flop is 

added to series of FS in each FS module as 

shown Figure 13. 
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Figure 12. Block diagram of repetitive FS (feature score) 

module 
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Figure 13. Block diagram of revised FS (feature score) 

module 

 

Figure 14 illustrates the block diagram of 

NMS (non-maximal suppression) module. 

Calculated reference pixel score is stored to 

memory and compared with adjacent pixel 

score. If reference pixel score is the highest, 

reference pixel would be a valid feature point. 
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Figure 14. Block diagram of NMS (non-maximal 

suppression) module 

 

 

4 Conclusions 
 

 We proposed hardware architecture of FAST 

algorithm for real-time processing. The pixel of 

gray scale image are divided and stored in 

block RAM. Pipeline structure is applied to FD 

(Feature Detection) module, FS (Feature Score) 

module and NMS (Non-Maximal Suppression) 

module in order to operate simultaneously and 

separately. 

Proposed hardware architecture will operate in 

about 20,000 cycles in case of 320 x 240 

resolution image. If our hardware structure is 

used for 1080p, the performance of processing 

will be about 70fps. 

 Object tracking is a key component in the 

system of caring companion animals. Proposed 

method would play a key role for efficient and 

fast tracking in the video module of the caring 

system. 
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