

Hardware Architecture of FAST Algorithm for Feature Point Detection

Chang-Sue Seo
1
, Hoon-Ju Chung

1
, Sung-Young Kim

1
, Sangook Moon

2
 and Yong-Hwan Lee

1

Kumoh National Institute of Technology, Korea
1
 and Mokwon University, Korea

2

scs@kumoh.ac.kr, hjchung@kumoh.ac.kr, sykim@kumoh.ac.kr, smoon@mokwon.ac.kr and

yhlee@kumoh.ac.kr

ABSTRACT

In this paper, we present method that detects useful

feature points based on hardware architecture. We

propose hardware architecture that uses the

algorithm of FAST-n[1]. Feature point detection

process needs extensive computing power and

processing time. Therefore, we build hardware

structure for real-time processing. The structure of

the hardware is as follows. After loading the images

in parallel, finding feature point candidates and

selecting valid feature point modules operate

simultaneously and independently using pipeline

structure to reduce processing time. Proposed

hardware architecture will operate in about 20,000

cycles in case of 320 x 240 resolution image. If our

hardware structure is used for 1080p, the

performance of processing will be about 70fps.

KEYWORDS

FAST, Corner detection, Edge detection,

Feature point, Hardware architecture

1 Introduction

Task of extracting feature points is the first

step of many vision tasks such as object

tracking, SLAM (simultaneous localization and

mapping), localization, image matching and

recognition. To extract feature points, a number

of algorithms have been studied[1-7].

Most of the algorithms require extensive

computational cost and time. These methods

are not suitable for real-time processing of

images.

Therefore, we propose hardware structure for

real-time processing application. The hardware

implementation is faster and requires fewer

resources than software structure. The structure

of the hardware is as follows. After loading the

images in parallel, three modules which search

the feature point candidates module, compute

score of each feature point and select effective

feature point in the feature point candidates

module operate simultaneously and

independently using pipeline structure. As a

result, faster operation than software can be

achieved.

2 FAST Algorithm

Figure 1. Segment test corner detection in an image

patch

FAST algorithm is abbreviation of features

from accelerated segment test. It loads 16 pixels

around the circular for a single reference pixel

P as shown Figure 1. At this time, as formula 1,

each pixel is compared if it is greater than plus

the threshold value to the reference pixel, or if

it is smaller than the reference pixel minus the

threshold value. The result of comparison will

be divided into three states, point darker than

ISBN: 978-1-9491968-07-9 ©2015 SDIWC 16

Proceedings of the Second International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA2015), Manila, Philippines, 2015

the reference pixel, similar point and point

brighter than the reference pixel.

 (1)

The number of continuous dark or bright

pixels determines the constant n of FAST-n

algorithm. The FAST-n algorithm usually

detects 7 to 12 consecutive pixels.

Figure 2. Center pixel and neighbor pixels (top: pixel

value, middle: bright, bottom: dark)

Figure 2 illustrates how to classify pixel. The

around pixels are compared to the value of

center pixel plus threshold value 64. Then the

around pixels have the value of 0 or 1

according to the differences.

Decision tree scheme is used for detecting

continuous pixel, as shown in the Figure 3 [8].

Figure 3. Decision tree of dark point, similar point,

bright point

When this condition is satisfied, the reference

pixel is selected as the feature point candidate.

In this case, detected feature point candidates

are often located around detected feature points

because of characteristics of FAST algorithm.

However FAST algorithm requires post-

processing called NMS (non-maximal

suppression). NMS selects valid feature points

among the detected feature point candidates.

Through formula 2, the maximum threshold

that meets the conditions of the feature point

candidate is calculated and stored. There are

several intuitive definitions for V:

1. The maximum value of n for which p is still

a corner.

2. The maximum value of t for which p is still a

corner.

3. The sum of the absolute difference between

the pixels in the contiguous arc and the center

pixel.

Definitions 1 and 2 are very highly quantized

measures, and many pixels share the same

value of these. For speed of computation, a

slightly modified version of 3 is used. V is

given by : [1]

 (2)

To detect a valid feature points, only the

feature point candidate which has the maximum

value compared with others are left and the

rests are removed.

ISBN: 978-1-9491968-07-9 ©2015 SDIWC 17

Proceedings of the Second International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA2015), Manila, Philippines, 2015

Figure 4. Result Einstein image of FAST-9 algorithm in

case of different threshold (top 16, middle 32, bottom 64)

Figure 5. Result Lena image of FAST-9 algorithm in

case of different threshold (top 16, middle 32, bottom 64)

ISBN: 978-1-9491968-07-9 ©2015 SDIWC 18

Proceedings of the Second International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA2015), Manila, Philippines, 2015

Figure 4 and 5 are the result of FAST-9

algorithm simulation in Matlab. Size of the

image is 320 x 240. Green circles are feature

points candidate and red dots are NMS

processed feature points.

Table 1. Result from Lena image of FAST-9 algorithm

Threshold 8 16 24 32

FD 6,456 2,732 1,418 777

NMS 2,654 1,239 704 419

per 41.11 45.35 49.65 53.93

Threshold 40 48 56 64

FD 431 267 171 120

NMS 249 160 105 73

per 57.77 59.93 61.40 60.83

Threshold 72 80 88 96

FD 70 49 27 19

NMS 45 33 22 17

per 64.29 67.35 81.48 89.47

Threshold 104 112 120 128

FD 12 8 6 3

NMS 11 7 5 3

per 91.67 87.50 83.33 100.00

Table 1 illustrates the result of FAST-9

algorithm applied to Lena image with varying

threshold from 8 to 128. FD is number of

feature point before NMS processing. NMS is

number of feature point after NMS processing.

Per is the percentage of NMS processed feature

point number of feature point candidate number.

It is shown that as number of feature point

decrease as threshold increase.

Figure 6. Result Lena image of FAST-9 algorithm in

case of different threshold from 8 to 128

Figure 6 illustrates the count of feature point

candidate and NMS processed feature point.

Figure 7. Result Lena image of FAST-9 algorithm in

case of different threshold (top 16, middle 32, bottom 64)

Figure 7 illustrates the percentage of NMS

processed feature point number of feature point

candidate number. It is shown that as threshold

increase, so do percentage.

3 Hardware Structure of FAST Algorithm

The Figure 8 illustrates the structure of

software briefly. First, the image to gray scale

is performed. Then FD function, FS function,

NMS function are called in sequence.

Figure 8. Software structure of FAST-n

Figure 9 illustrates overall hardware structure.

Divided gray scale image is stored in block

RAM. Then pipeline structure operates with the

stages of FD, FS and NMS modules

simultaneously and independently.

ISBN: 978-1-9491968-07-9 ©2015 SDIWC 19

Proceedings of the Second International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA2015), Manila, Philippines, 2015

Figure 9. Hardware structure of FAST-n

When the center pixel and the neighbor pixels

in the block RAM are loaded, neighbor pixels

are made to vector as shown in Figure 10 so

that vector is processed easily in hardware.

Figure 10. Aligned arc pixel

Figure 11 illustrates block diagram of FD

(feature detection) module. Adder and

subtractor are used to compute values from

pixel and threshold. Values are compared with

values in vector. If those results consist of

continuous 1s of which the number is more 9,

reference pixel would be a feature point

candidate.

 +

P_ref

th

C[0]
cmp

C[1]
cmp

C[15]
cmp

...

S_
bright

 -

P_ref

th

C[0]
cmp

C[1]
cmp

C[15]
cmp

...

S_
dark

is_FD

Figure 11. Block diagram of FD (feature detection)

module

Figure 12 illustrates block diagram of FS

(feature score) module. Score is calculated

using bmin and bmax. That module requires

from minimum 0 to maximum 8 cycles to find

accurate score. However, because overall

system takes much time due to this operation,

we changed the architecture from repetitive FS

to a series of FS through pipeline. Flip flop is

added to series of FS in each FS module as

shown Figure 13.

 +

P_ref

th

C[0]
cmp

C[1]
cmp

C[15]
cmp

...

S_
bright

 -

P_ref

th

C[0]
cmp

C[1]
cmp

C[15]
cmp

...

S_
dark

 + >>1

 -
==?

0

0
1

bmin

bmax

0
1

0
1

Figure 12. Block diagram of repetitive FS (feature score)

module

ISBN: 978-1-9491968-07-9 ©2015 SDIWC 20

Proceedings of the Second International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA2015), Manila, Philippines, 2015

 +

P_ref

th

C[0]
cmp

C[1]
cmp

C[15]
cmp

...

S_
bright

 -

P_ref

th

C[0]
cmp

C[1]
cmp

C[15]
cmp

...

S_
dark

 + >>1

 -
==?

0

0
1

bmin

bmax

0
1

0
1

FF

FF

Figure 13. Block diagram of revised FS (feature score)

module

Figure 14 illustrates the block diagram of

NMS (non-maximal suppression) module.

Calculated reference pixel score is stored to

memory and compared with adjacent pixel

score. If reference pixel score is the highest,

reference pixel would be a valid feature point.

P_ref_score

C_score
[x-1,y-1]

cmp

cmp

cmp

S_
bright

cmp

is_corner

C_score
[x-1,y]

C_score
[x-1,y+1]

C_score
[x,y-1]

==?

0

Figure 14. Block diagram of NMS (non-maximal

suppression) module

4 Conclusions

 We proposed hardware architecture of FAST

algorithm for real-time processing. The pixel of

gray scale image are divided and stored in

block RAM. Pipeline structure is applied to FD

(Feature Detection) module, FS (Feature Score)

module and NMS (Non-Maximal Suppression)

module in order to operate simultaneously and

separately.

Proposed hardware architecture will operate in

about 20,000 cycles in case of 320 x 240

resolution image. If our hardware structure is

used for 1080p, the performance of processing

will be about 70fps.

 Object tracking is a key component in the

system of caring companion animals. Proposed

method would play a key role for efficient and

fast tracking in the video module of the caring

system.

ACKNOWLEDGEMENT

This work (Grants No. C0217661) was

supported by Business for Cooperative R&D

between Industry, Academy, and Research

Institute funded Korea Small and Medium

Business Administration in 2014.

REFERENCES

[1] E. Rosten and T. Drummond, “Machine learning for

high-speed corner detection,” European Conference
on Computer Vision, vol. 3951, pp. 430-443, May
2006.

[2] D. Lowe, “Distinctive Image Features from Scale-

Invariant Keypoints,” International Journal of
Computer Vision, vol. 60, pp. 91-110, November
2004.

[3] C. Harris and M. Stephens, “A Combined Corner

and Edge Detector,” Alvey Vision Conference, vol.
15, pp. 147-151, 1988.

[4] H. Bay, T. Tuytelaars, and L. Gool, “SURF:
Speeded-Up Robust Features,” European Conference
on Computer Vision, vol. 3951, pp. 404-417, May
2008.

[5] T. K. Kim, “An Embedded FAST Hardware
Accelerator for Image Feature Detection,” Journal of
The Institute of Electronics Engineers, vol. 49, pp.
28-34, March 2012.

[6] S. R. Kim, H. J. Yoo, and K. H. Sohn, “FAST and

BRIEF based Real-Time Feature Matching
Algorithms,” The Korean Society of Broadcast
Engineers, vol. 2012, pp. 1-4, November 2012.

[7] H. Heo and K. Y. Lee, “FPGA based
Implementation of FAST and BRIEF algorithm for
Object Recognition,” Journal of IKEEE, vol. 17, pp.
202-207, June 2013.

[8] J.R. Quinlan, “Induction of decision trees,” Machine
Learning 1, vol. 1, pp. 81-106, 1986.

ISBN: 978-1-9491968-07-9 ©2015 SDIWC 21

Proceedings of the Second International Conference on Electrical, Electronics, Computer Engineering and their Applications (EECEA2015), Manila, Philippines, 2015

