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ABSTRACT 

This paper compares the performance of popular AI 
techniques, namely the Breadth First Search, Depth 
First Search, A* Search, Greedy Best First Search and 
the Hill Climbing Search in approaching the solution 
of a N-Puzzle of size 8, on a 3x3 matrix board. It looks 
at the complexity of each algorithm as it tries to 
approaches the solution in order to evaluate the 
operation of each technique and identify the better 
functioning one in various cases. The N Puzzle is used 
as the test scenario and an application was created to 
implement each of the algorithms to extract results. 
The paper also depicts the extent each algorithm goes 
through while processing the solution and hence helps 
to clarify the specific cases in which a technique may 
be preferred over another. 
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1 INTRODUCTION 

Artificial Intelligence (AI) attempts replicating the 
human ways of reasoning in computing. As a full 
replication may not be approachable at once due to is 
magnitude and complexity, research now targets 
commercialisable aspects of AI towards providing 
“intelligent” assistive services to the human users [1]. 
Decision making in this paradigm involves evaluating 
a number of alternatives in different spatial 
configurations, environments and circumstances and to 
find better of the alternatives. It also involves decision 
making even when an ideal alternative is not derivable. 
This paper is therefore limited to comparing the 
implementations of the popular AI algorithms, namely 
Breadth First Search, Depth First Search, A*, Best 

First Search and Hill climbing algorithms for solving a 
sliding n-puzzle in an attempt to look at the better 
efficient of the algorithms for this case. To solve the 
sliding n puzzle problem, one moves a set of square 
tiles arranged randomly in a square board to arrive at a 
pre-determined order. The board has only one blank 
square and each tile can only move to the blank space 
adjacent to itself. Our aim in this paper is to apply the 
AI approaches to the case and compare their 
performances in the problem solving.  

This paper is organized as follows. Section II looks at 
related work in the areas of research. Section III 
outlines the problem and our approach towards the 
solution. Section IV details the experiment and results 
whereas section 5 presents the summary and 
conclusion based on results observed in section IV. 

2 RELATED WORKS 

Brooks discussed about intelligence without perception 
[1] in a case where intelligence is not about individual 
sub-system decompositions but about parallel activity 
decomposers that interact directly with the world, with 
notions of peripheral and central systems fading away.  

Drogoul and Debreuil presented a distributed approach 
in solving the N Puzzle [2], an approach based on 
decomposition of a problem into independent sub-
goals, which is in turn decomposed into agents that 
satisfy the sub-goals. This approach is used to 
demonstrate emergent solutions and for solving for 
very large N Puzzles.  

Kumar et. all presented summary of results from a 
parallel best first search of state-space graphs [3]. The 
paper looks at several formulations of A* Best First 
algorithm and discussed how certain searches are better 
or lesser suited for some search problems.  
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Blai Bonet and Héctor Geffner study a family of 
heuristic planners [4], applying them in the context of 
Hill Climbing and Best First search algorithms and 
tested on a number of domains to analyse the best 
planners and the reasons why they do well. 

Korf, R. E. discussed a study on Depth First search as 
asymptotically optimal exponential tree searches [5]. 
They discuss that the Depth First iterative-deepening 
algorithm as capable of finding optimal solution for 
randomly generated 15 puzzle.  

Korf, R. E. presented a Linear Best First Algorithm [6], 
exploring nodes in the best first order, and expands 
fewer nodes. This works on the sliding puzzle with 
reduced computation time, but with a penalty on 
solution cost. 

Russel. S and Norvig. P explored the detailed concepts 
of AI using intelligent agents and multi-agent systems 
search algorithms etc. in the distributed problem 
solving approach in AI in their book[7]. The book 
gives good insight towards the modern approaches in 
AI. 

3 THE PROBLEM 

3.1 The N Puzzle  

The sliding puzzle is a simple but challenging case for 
demonstrating artificial intelligence concepts. It 
involves having a set dimension of puzzle space 
(usually 3x3 for an 8-puzzle) and denoting the 
dimensions as N being the columns and M being the 
rows. In the puzzle space, there is a random 
arrangement of cells/blocks, with one empty space that 
enables adjacent cells/block to slide into them. Since 
the pieces are square blocks, only the top, bottom, left 
and right blocks adjacent to the empty space may slide 
into its place. The cells can either be numbered or 
printed with a fragment of the whole picture that the 
rearranged puzzle should show. An example of the 
sliding puzzle can be depicted in the following figure 

3.2 The Problem Formulation 

Problem formulation is done by analysing the 
environment of the puzzle and deriving its 
characteristics using PEAS, as in Table 1. 

3.3 Approaching the Solution  

For solution searching, it would be most useful to distil 
the possible arrangements of tiles as individual States. 
Thus, each State shows a possible combination of tile 
positions within the given puzzle space. The collection 
of all possible States is called the State Space. With the 
increase of N or M of the puzzle, the size of the State 
Space shall increase exponentially. 

TABLE I.  ENVIRONMENT ANALYSIS 
Sl 
No 

Environment Characteristics of Puzzle 
 Description  

1.  Performan
ce 

Arrangement of tiles/cells/blocks in 
the whole puzzle space. Main 
performance gauge is from the least 
number of moves to solve the puzzle. 

2.  Environm
ent 

Puzzle space determined by N 
(columns) and M (rows), always with 
a single empty space for tiles to slide 
into. Numbers range from 1 to 
(N*M)-1. Initial state arrangements 
must be derived from Goal state 
arrangement or else there will not be 
possible solutions. 

3.  Actuators 
Tiles are moved into the empty 
space, either from Top, Bottom, Left 
or Right of the empty space. 

4.  Sensors Fully software, so the agent will have 
full view of the puzzle space. 

 

In every state, the empty space position determines 
which States can be transitioned to. For instance, when 
the empty space is in the middle of a 3x3 puzzle, tiles 
at the Top, Bottom, Left or Right can move into it. But 
if the empty space is at the top left corner, only the 
right or bottom tiles can slide into it. 

 

Figure. 1. Puzzle transition graph for a 3 x 3 puzzle 
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Thus, after each slide, a new State is transitioned into. 
If puzzle is to begin with an Initial State of tile 
arrangements, then its subsequent transitions into other 
States can be represented by a Graph. An example of 
this can be seen in Figure 1. 

A search attempt will need to begin with an Initial 
State and a Goal State to achieve. As puzzle traversal 
can often pass through the same state at different 
intervals. We will consider the instances of decisions 
as nodes. By aligning the node arrangements to start 
from the Initial Node to possible routes leading to the 
Goal nodes, a search tree is formed, as we see in Figure 
2. The algorithms explored in this paper will traverse 
the Search Tree in different ways to find the Goal State 
from the Initial State. 

 
Figure. 2. The Search Tree 

3.4 The Ecosystem 

This paper attempts to demonstrate the implementation 
of Breadth First Search, Depth First Search, A*, Best 
First Search and Hill Climbing algorithms for solving a 
sizeable sliding puzzle. An Object Oriented Approach 
is needed in order to modularize the application so that 
different search algorithms (encapsulated in different 
classes) can be made to work with the same interface. 
The input parameters and output results are to be 
presented in a Text File. There was a specific input file 
format, show in figure 3.  

 
Figure. 3. i/o files 

We will also assume that the input parameters contain 
only valid configurations, implying that the Initial 
State is solvable, only if it can be done in reverse, to 
reach the initial state starting from the Goal State. 
Otherwise, the puzzle is unsolvable. 

3.5 System Design Overview  

The flow chart in Figure 4 illustrates the top-level 
design of the application used to run the tests. The 
Search Algorithms will have their own unique 
flowcharts, which will be detailed during their own 
specific sections of this paper. 

 
Figure. 4. Flow chart test application application 

A separate file reading and writing facility will help in 
parsing the input parameters as well as outputting the 
process logs as a new results file. This design enables 
the different search methods to use the same interface 
for extracting parameters, processing and generating 
the results log. The application was developed in C# 
using the Visual Studio .NET 2013 IDE. 
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4 The Algorithm Implementations and 
Experiments 

There are 5 different search algorithms that are 
explored in this paper, namely the Breadth First 
Search, Depth First Search, A*, Best First Search and 
Hill Climbing. The first two are Uninformed 
techniques while the others are Heuristics based. The 
theory, software implementation and results of each 
method are explained in the following sections. 

4.1 Breadth First Search 

The Breadth First Search is an uninformed type 
algorithm, so it does not start will full knowledge of 
the entire State Space. Instead, it builds its own 
memory of the State Space by remembering all the 
explored nodes that it passes through. In addition, the 
only way for the BFS to know when to stop is by 
finally arriving at a node that has the same state as the 
Goal Node. The BFS traverses the Search Tree by 
uncovering the frontier one level at a time. The 
sequence is illustrated in Figure 5.  

 
Figure. 5. Breadth First Tree Traversal 

The algorithm strategy can be explained plainly in the 
following steps: 

Step 1: Begin by making the Root Node as the 
Active Node. 
Step 2: Add the Active Node into the Solutions List. 
Step 3: Check if the Active Node is the Goal Node. 
Step 4: If it is the Goal Node, then go to Final Step. 
Step 5: If not, derive all unexplored successors and 
add them into the Queue. 
Step 6: If the queue is empty, go to Final Step. 
Step 7: Else, take the next element on the Queue as 
Active Node, and repeat Step 2. 

Final Step:  
Trim all Solution List nodes that do not lie between 
the Goal Node and the Root Node. 

Examining the steps, it can be concluded that the 
Queue used to arrange the order of nodes examined, 
determines the horizontal-first motion of expansion 
(First In, First Out). The configuration input 
parameters are maintained for all 5 algorithm tests to 
ensure a level testing condition. An excerpt from the 
results (shown as the following) shows that for a 4 
move solution, it has expanded 23 nodes. The reason 
for the 22 drops was that the Successor trimming also 
removes the state that it the active node is transitioning 
from. This shows that while BFS can find the shortest 
path to the Goal State, it has to expand quite a lot of 
nodes and remember them in the process.  

Result Summary 

Nodes Expanded = 23 
Nodes Dropped = 22 
Solution Length = 4 

4.2 Depth First Search 

The Depth First Search algorithm shares the similar 
mode for Goal identification and Search Tree traversal, 
but not in its motion of expansion. Instead of going 
Horizontal first, the DFS method chooses a branch and 
expands it continuously until it reaches a dead end. If a 
goal has not been found, it will backtrack to the next 
available alternate branch and repeat the process. This 
motion is illustrated in Figure 6. 

 
Figure. 6. Depth First Search Tree Travesal 

As mentioned in the BFS strategy, the motion of 
expansion is influenced by the type of data structure 
used. Instead of First-In-First-Out, DFS will use a 
Stack (First-In, Last Out). The rest of the algorithm is 
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exactly the same as BFS. But pure DFS has a high 
possibility of infinite depth, so it will need a depth 
limit to force the agent to backtrack. This will 
transform the DFS into Depth-Limited Search. 

As the difference between DFS and BFS is only the 
frontier data structure, the programmatic flow chart for 
DFS is exactly the same as BFS, except that the 
Frontier is now a Stack where BFS uses a queue. While 
the Depth Limited Search do not consume as much 
memory as BFS when it expanded 4743 but dropped 
4832 nodes, it takes variable amount of time to search, 
depending on whether it found a branch with the goal 
at the end. Also, the DFS is not a complete method 
because it can get lost expanding a branch without 
reaching an end or goal. In this experiment, it took 
much longer than BFS with 4743 nodes expanded and 
the solution is inefficient with 4730 moves. The 
summary result, using the same configuration as the 
BFS test is as the follows: 

Nodes Expanded = 4743 
Nodes Dropped = 4832 
Solution Length = 4730 

4.3 A* Search 

The A* Search is a Heuristics-based Informed search 
algorithm. The term ‘Informed’ refers to the use of 
State Space awareness in the form of the Heuristics 
Function. All informed search methods rely on 
knowing how much a particular node have in common 
with the Goal Node. Put simply, Heuristics H(n) = 
Difference (Goal State,Current State). The higher H(n) 
is, the less ideal the alternative.  

 
Figure. 7. A* traversal of the 8-Puzzle search tree 

A heuristics search algorithm will basically use the 
Breadth First Search’s horizontal motion of expansion, 
but will only expand leaves that are most ‘ideal’, i.e. 
having the smallest H(n). The A* algorithm takes this 
further by incorporating the Path Cost into the 
Heuristics function for every node. So now, not only 
are nodes chosen according how closely they resemble 
the Goal State, but also how far they are from the Root 
Node. An example of the A* traversal can be seen as 
Figure 7. The Blue numbers are the Path Costs and the 
Green numbers are the Heuristics function. 

The overlying structure of the A* search algorithm is 
the BFS, but significant changes has been made to the 
generation of successors and queue management which 
involves the heuristics and path cost calculations. 
These details are reflected in the flowchart shown in 
Figure 8. 

 
Figure. 8. A* Search Algorithm Implementation 

It is observed that the A* algorithm managed to find 
the best solution like BFS in 4 steps, but has managed 
to do so with only 4 nodes being expanded. Also, it has 
managed this with only generating 9 nodes and 
dropping 3, presumably due to them being too far 
different from the Goal State. It is more memory 
efficient compared to DFS and is faster than BFS but 
requires more computation power as each node is not 
only evaluated for it matching the Goal State, but also 
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how much difference between them and how far down 
the tree it has gone.  

The summary of the test results, using the same 
configuration script for BFS and DFS, are as the 
follows: 

Nodes Generated=9 
Nodes Expanded = 4 
Nodes Dropped = 3 
Solution Length = 4 

4.4 Best First Search 

The Best First Search is also a type of informed search 
method, in that it relies on the Heuristics Function for 
its working. Unlike the A* method, which requires 
higher computational capacity, the Best First Search 
only compares the heuristic value of nodes, ignoring 
the path cost. Theoretically, this will cut down the 
required computations of the A* by half, in expense of 
the possibility of having endless loops or very 
expensive total path cost of solutions. Other than that, 
it operates over a Breadth First Search’s motion of 
expansion.  

The Best First Search is also known as the Greedy Best 
First Search. When it expands nodes and gets a list of 
possible successors that were not explored before, it 
will derive the heuristics value of each of the 
successors and pick the best one to expand. The other 
leaves will be unexplored. It is not optimized, as the 
cheapest path may involve going through heuristically 
suboptimal nodes but yet have less path cost. Other 
than this, the Greedy Best First Search has the same 
mode of operation as the A*. 

The Greedy Best First Search only differs from the A* 
Search at the point of determining the fate of possible 
Successors. Instead of taking into account calculations 
of path cost, it directly decides on which leaf to expand 
by using only the H function. In this particular 
instance, its findings and performance match the A* 
test, because the solution only spans 4 steps. On longer 
solutions and more complex Search Trees, the same 
cannot be expected of the Greedy BFS search as there 
is a higher possibility of it getting stuck on a lost 
branch with initially low H values. By supplying the 
same configurations as the previous tests, the following 
results are observed: 

Nodes Generated=9 
Nodes Expanded = 4 
Nodes Dropped = 3 
Solution Length = 4 

4.5 Hill Climbing Search 

Similar to the Greedy Best First Search, the Hill 
Climbing method borrows from the A* Search but 
simplifies it even further. Where the Greedy search 
only bases its decisions on the Heuristics Function, Hill 
Climbing works in the same way but totally disregards 
memory of explored nodes. Therefore, it travels down 
the Search Tree by selecting the successor with the 
cheapest heuristics value, without retaining memory of 
explored states.  

This will ensure that the heuristics technique functions 
with minimal use of memory, least computation 
possible but still retain the advantage of an informed 
method of solution finding. The downside of Hill 
Climbing is that due to the absence of memory, 
resulting in the possibility of repeating the same states 
and getting stuck in some state of local maxima. 

 
Figure. 9. Hill Climbing Search Algorithm 

 

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 48



 

 

While the changes between the Greedy BFS and A* 
are only in the selection of successors, Hill Climbing 
greatly simplifies the Successor generation and 
selection process, as illustrated in the flow chart shown 
in Figure 9. 

From the results, it seems that the Hill Climbing 
technique manages to find the solution in the same 
time as Greedy BFS and A*, but dropped more nodes 
than the other two. Also, it shares even more risk of 
failure than Greedy search in cases of longer solutions 
or more complex problems. By supplying the same 
configurations script, the following results are 
observed: 

Nodes Generated=5 
Nodes Expanded = 4 
Nodes Dropped = 7 
Solution Length = 4 

5 Summary, Conclusion and Future work 

A summary of the comparison of the 5 AI techniques 
are as observed in table II. The findings listed in the 
table are plotted in a comparison chart in figure 10. 
The values of Depth first search has been avoided in 
the chart since the value is well out of range.  

TABLE II.  SUMMARY OF RESULTS 

Sl 
No 

Summary of AI Algorithm Results on the N Puzzle 

Algorithm G E D L 

1  Breadth First Search NA 23 22 4 

2  Depth First Search NA 4743 4832 4730 

3  A* Search 9 4 3 4 

4  Greedy BFS Search 9 4 3 4 

5  Hill Climbing  5 4 7 4 
a. G: Nodes Generated, E: Nodes Expanded, D: Nodes Deleted, L: Solution Length 

The following conclusions can be made based on the 
results as we observe in table II and figure 10.  

• Breadth First Search: More complete and 
concise uninformed technique that manages to 
find the best solution using minimal 
computation but suffers from intensive memory 
use. BFS will be most recommended for small 
dimension sliding puzzles, but for the 
expandable N*M type with exponentially 
scaling complexity, BFS becomes less efficient 

and can run out of memory before completing 
long solutions. 

• Depth First Search: Explores branches 
individually before backtracking. It is actually 
good for long solutions, but only if it is lucky 
enough to start on a branch with a possible Goal 
State. The sliding puzzle has single definite 
solutions, so it will not be optimal to use DFS. 
A complete search method is preferable. 

• A* Search: By utilizing both heuristics values 
and path costs, the A* search manages to find 
the shorted solutions with moderate memory 
and time performance. A lighter method will be 
preferable if it was a small puzzle. However, 
this dynamically up-scaling puzzle will benefit 
more from the A*’s complete and heuristic 
approach. 

• Greedy BFS: The Best First Search also uses 
the A*’s heuristic method, but negates the path 
cost. For this particular problem, the Best First 
Search is quite effective, matching the 
performance of the A* search on shorter 
solutions. For longer solutions, the A* is safer 
but requires more computations. 

• Hill Climbing: This is the most memory 
efficient heuristics approach but has high risks 
of failure due to local maxima issue and 
disregard of memory, especially for moderate to 
long solutions. This is not recommended for the 
sliding puzzle problem as there is a high chance 
for the failure conditions to present themselves. 

 
Figure. 10. Comparisson of the Search Algorithm 
Observations 

In conclusion, the best approaches to apply to this 
dynamically scaling sliding puzzle will either be the 
A* or the Greed Best First Search. Greedy BFS is more 
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memory efficient and matches the performance of A* 
for shorter solutions. For longer and more complex 
solutions, the A* is the best choice, in order to avoid 
possibilities of getting a suboptimal solution due to the 
Greedy BFS’s disregard for path cost computations. 

A further improvement can be implemented in the 
form of a morphing algorithm that can opt to repeat the 
search in A* if the initial attempt with Greedy BFS 
turns out unusually long solution. Also, a fail-safe 
function to switch from A* to Greedy BFS can be 
implemented, to kick in during events of critically 
reduced memory conditions. 
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