

Experimental Comparison of Uninformed and Heuristic AI Algorithms for N Puzzle
Solution

Kuruvilla Mathew, Mujahid Tabassum and Mohana Ramakrishnan
Swinburne University of Technology(Sarawak Campus), Jalan Simpang Tiga, 93350, Kuching, Malaysia
kmathew@swinburne.edu.my, mtabassum@swinburne.edu.my and mramakrishnan@swinburne.edu.m

ABSTRACT

This paper compares the performance of popular AI
techniques, namely the Breadth First Search, Depth
First Search, A* Search, Greedy Best First Search and
the Hill Climbing Search in approaching the solution
of a N-Puzzle of size 8, on a 3x3 matrix board. It looks
at the complexity of each algorithm as it tries to
approaches the solution in order to evaluate the
operation of each technique and identify the better
functioning one in various cases. The N Puzzle is used
as the test scenario and an application was created to
implement each of the algorithms to extract results.
The paper also depicts the extent each algorithm goes
through while processing the solution and hence helps
to clarify the specific cases in which a technique may
be preferred over another.

KEYWORDS

Artificial Intelligence; N Puzzle Solution; Uninformed
and Heuristic AI Techniques;

1 INTRODUCTION

Artificial Intelligence (AI) attempts replicating the
human ways of reasoning in computing. As a full
replication may not be approachable at once due to is
magnitude and complexity, research now targets
commercialisable aspects of AI towards providing
“intelligent” assistive services to the human users [1].
Decision making in this paradigm involves evaluating
a number of alternatives in different spatial
configurations, environments and circumstances and to
find better of the alternatives. It also involves decision
making even when an ideal alternative is not derivable.
This paper is therefore limited to comparing the
implementations of the popular AI algorithms, namely
Breadth First Search, Depth First Search, A*, Best

First Search and Hill climbing algorithms for solving a
sliding n-puzzle in an attempt to look at the better
efficient of the algorithms for this case. To solve the
sliding n puzzle problem, one moves a set of square
tiles arranged randomly in a square board to arrive at a
pre-determined order. The board has only one blank
square and each tile can only move to the blank space
adjacent to itself. Our aim in this paper is to apply the
AI approaches to the case and compare their
performances in the problem solving.

This paper is organized as follows. Section II looks at
related work in the areas of research. Section III
outlines the problem and our approach towards the
solution. Section IV details the experiment and results
whereas section 5 presents the summary and
conclusion based on results observed in section IV.

2 RELATED WORKS

Brooks discussed about intelligence without perception
[1] in a case where intelligence is not about individual
sub-system decompositions but about parallel activity
decomposers that interact directly with the world, with
notions of peripheral and central systems fading away.

Drogoul and Debreuil presented a distributed approach
in solving the N Puzzle [2], an approach based on
decomposition of a problem into independent sub-
goals, which is in turn decomposed into agents that
satisfy the sub-goals. This approach is used to
demonstrate emergent solutions and for solving for
very large N Puzzles.

Kumar et. all presented summary of results from a
parallel best first search of state-space graphs [3]. The
paper looks at several formulations of A* Best First
algorithm and discussed how certain searches are better
or lesser suited for some search problems.

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 43

Blai Bonet and Héctor Geffner study a family of
heuristic planners [4], applying them in the context of
Hill Climbing and Best First search algorithms and
tested on a number of domains to analyse the best
planners and the reasons why they do well.

Korf, R. E. discussed a study on Depth First search as
asymptotically optimal exponential tree searches [5].
They discuss that the Depth First iterative-deepening
algorithm as capable of finding optimal solution for
randomly generated 15 puzzle.

Korf, R. E. presented a Linear Best First Algorithm [6],
exploring nodes in the best first order, and expands
fewer nodes. This works on the sliding puzzle with
reduced computation time, but with a penalty on
solution cost.

Russel. S and Norvig. P explored the detailed concepts
of AI using intelligent agents and multi-agent systems
search algorithms etc. in the distributed problem
solving approach in AI in their book[7]. The book
gives good insight towards the modern approaches in
AI.

3 THE PROBLEM

3.1 The N Puzzle

The sliding puzzle is a simple but challenging case for
demonstrating artificial intelligence concepts. It
involves having a set dimension of puzzle space
(usually 3x3 for an 8-puzzle) and denoting the
dimensions as N being the columns and M being the
rows. In the puzzle space, there is a random
arrangement of cells/blocks, with one empty space that
enables adjacent cells/block to slide into them. Since
the pieces are square blocks, only the top, bottom, left
and right blocks adjacent to the empty space may slide
into its place. The cells can either be numbered or
printed with a fragment of the whole picture that the
rearranged puzzle should show. An example of the
sliding puzzle can be depicted in the following figure

3.2 The Problem Formulation

Problem formulation is done by analysing the
environment of the puzzle and deriving its
characteristics using PEAS, as in Table 1.

3.3 Approaching the Solution

For solution searching, it would be most useful to distil
the possible arrangements of tiles as individual States.
Thus, each State shows a possible combination of tile
positions within the given puzzle space. The collection
of all possible States is called the State Space. With the
increase of N or M of the puzzle, the size of the State
Space shall increase exponentially.

TABLE I. ENVIRONMENT ANALYSIS
Sl
No

Environment Characteristics of Puzzle
 Description

1. Performan
ce

Arrangement of tiles/cells/blocks in
the whole puzzle space. Main
performance gauge is from the least
number of moves to solve the puzzle.

2. Environm
ent

Puzzle space determined by N
(columns) and M (rows), always with
a single empty space for tiles to slide
into. Numbers range from 1 to
(N*M)-1. Initial state arrangements
must be derived from Goal state
arrangement or else there will not be
possible solutions.

3. Actuators
Tiles are moved into the empty
space, either from Top, Bottom, Left
or Right of the empty space.

4. Sensors Fully software, so the agent will have
full view of the puzzle space.

In every state, the empty space position determines
which States can be transitioned to. For instance, when
the empty space is in the middle of a 3x3 puzzle, tiles
at the Top, Bottom, Left or Right can move into it. But
if the empty space is at the top left corner, only the
right or bottom tiles can slide into it.

Figure. 1. Puzzle transition graph for a 3 x 3 puzzle

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 44

Thus, after each slide, a new State is transitioned into.
If puzzle is to begin with an Initial State of tile
arrangements, then its subsequent transitions into other
States can be represented by a Graph. An example of
this can be seen in Figure 1.

A search attempt will need to begin with an Initial
State and a Goal State to achieve. As puzzle traversal
can often pass through the same state at different
intervals. We will consider the instances of decisions
as nodes. By aligning the node arrangements to start
from the Initial Node to possible routes leading to the
Goal nodes, a search tree is formed, as we see in Figure
2. The algorithms explored in this paper will traverse
the Search Tree in different ways to find the Goal State
from the Initial State.

Figure. 2. The Search Tree

3.4 The Ecosystem

This paper attempts to demonstrate the implementation
of Breadth First Search, Depth First Search, A*, Best
First Search and Hill Climbing algorithms for solving a
sizeable sliding puzzle. An Object Oriented Approach
is needed in order to modularize the application so that
different search algorithms (encapsulated in different
classes) can be made to work with the same interface.
The input parameters and output results are to be
presented in a Text File. There was a specific input file
format, show in figure 3.

Figure. 3. i/o files

We will also assume that the input parameters contain
only valid configurations, implying that the Initial
State is solvable, only if it can be done in reverse, to
reach the initial state starting from the Goal State.
Otherwise, the puzzle is unsolvable.

3.5 System Design Overview

The flow chart in Figure 4 illustrates the top-level
design of the application used to run the tests. The
Search Algorithms will have their own unique
flowcharts, which will be detailed during their own
specific sections of this paper.

Figure. 4. Flow chart test application application

A separate file reading and writing facility will help in
parsing the input parameters as well as outputting the
process logs as a new results file. This design enables
the different search methods to use the same interface
for extracting parameters, processing and generating
the results log. The application was developed in C#
using the Visual Studio .NET 2013 IDE.

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 45

4 The Algorithm Implementations and
Experiments

There are 5 different search algorithms that are
explored in this paper, namely the Breadth First
Search, Depth First Search, A*, Best First Search and
Hill Climbing. The first two are Uninformed
techniques while the others are Heuristics based. The
theory, software implementation and results of each
method are explained in the following sections.

4.1 Breadth First Search

The Breadth First Search is an uninformed type
algorithm, so it does not start will full knowledge of
the entire State Space. Instead, it builds its own
memory of the State Space by remembering all the
explored nodes that it passes through. In addition, the
only way for the BFS to know when to stop is by
finally arriving at a node that has the same state as the
Goal Node. The BFS traverses the Search Tree by
uncovering the frontier one level at a time. The
sequence is illustrated in Figure 5.

Figure. 5. Breadth First Tree Traversal

The algorithm strategy can be explained plainly in the
following steps:

Step 1: Begin by making the Root Node as the
Active Node.
Step 2: Add the Active Node into the Solutions List.
Step 3: Check if the Active Node is the Goal Node.
Step 4: If it is the Goal Node, then go to Final Step.
Step 5: If not, derive all unexplored successors and
add them into the Queue.
Step 6: If the queue is empty, go to Final Step.
Step 7: Else, take the next element on the Queue as
Active Node, and repeat Step 2.

Final Step:
Trim all Solution List nodes that do not lie between
the Goal Node and the Root Node.

Examining the steps, it can be concluded that the
Queue used to arrange the order of nodes examined,
determines the horizontal-first motion of expansion
(First In, First Out). The configuration input
parameters are maintained for all 5 algorithm tests to
ensure a level testing condition. An excerpt from the
results (shown as the following) shows that for a 4
move solution, it has expanded 23 nodes. The reason
for the 22 drops was that the Successor trimming also
removes the state that it the active node is transitioning
from. This shows that while BFS can find the shortest
path to the Goal State, it has to expand quite a lot of
nodes and remember them in the process.

Result Summary

Nodes Expanded = 23
Nodes Dropped = 22
Solution Length = 4

4.2 Depth First Search

The Depth First Search algorithm shares the similar
mode for Goal identification and Search Tree traversal,
but not in its motion of expansion. Instead of going
Horizontal first, the DFS method chooses a branch and
expands it continuously until it reaches a dead end. If a
goal has not been found, it will backtrack to the next
available alternate branch and repeat the process. This
motion is illustrated in Figure 6.

Figure. 6. Depth First Search Tree Travesal

As mentioned in the BFS strategy, the motion of
expansion is influenced by the type of data structure
used. Instead of First-In-First-Out, DFS will use a
Stack (First-In, Last Out). The rest of the algorithm is

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 46

http://upload.wikimedia.org/wikipedia/commons/3/33/Breadth-first-tree.svg
http://upload.wikimedia.org/wikipedia/commons/1/1f/Depth-first-tree.svg

exactly the same as BFS. But pure DFS has a high
possibility of infinite depth, so it will need a depth
limit to force the agent to backtrack. This will
transform the DFS into Depth-Limited Search.

As the difference between DFS and BFS is only the
frontier data structure, the programmatic flow chart for
DFS is exactly the same as BFS, except that the
Frontier is now a Stack where BFS uses a queue. While
the Depth Limited Search do not consume as much
memory as BFS when it expanded 4743 but dropped
4832 nodes, it takes variable amount of time to search,
depending on whether it found a branch with the goal
at the end. Also, the DFS is not a complete method
because it can get lost expanding a branch without
reaching an end or goal. In this experiment, it took
much longer than BFS with 4743 nodes expanded and
the solution is inefficient with 4730 moves. The
summary result, using the same configuration as the
BFS test is as the follows:

Nodes Expanded = 4743
Nodes Dropped = 4832
Solution Length = 4730

4.3 A* Search

The A* Search is a Heuristics-based Informed search
algorithm. The term ‘Informed’ refers to the use of
State Space awareness in the form of the Heuristics
Function. All informed search methods rely on
knowing how much a particular node have in common
with the Goal Node. Put simply, Heuristics H(n) =
Difference (Goal State,Current State). The higher H(n)
is, the less ideal the alternative.

Figure. 7. A* traversal of the 8-Puzzle search tree

A heuristics search algorithm will basically use the
Breadth First Search’s horizontal motion of expansion,
but will only expand leaves that are most ‘ideal’, i.e.
having the smallest H(n). The A* algorithm takes this
further by incorporating the Path Cost into the
Heuristics function for every node. So now, not only
are nodes chosen according how closely they resemble
the Goal State, but also how far they are from the Root
Node. An example of the A* traversal can be seen as
Figure 7. The Blue numbers are the Path Costs and the
Green numbers are the Heuristics function.

The overlying structure of the A* search algorithm is
the BFS, but significant changes has been made to the
generation of successors and queue management which
involves the heuristics and path cost calculations.
These details are reflected in the flowchart shown in
Figure 8.

Figure. 8. A* Search Algorithm Implementation

It is observed that the A* algorithm managed to find
the best solution like BFS in 4 steps, but has managed
to do so with only 4 nodes being expanded. Also, it has
managed this with only generating 9 nodes and
dropping 3, presumably due to them being too far
different from the Goal State. It is more memory
efficient compared to DFS and is faster than BFS but
requires more computation power as each node is not
only evaluated for it matching the Goal State, but also

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 47

how much difference between them and how far down
the tree it has gone.

The summary of the test results, using the same
configuration script for BFS and DFS, are as the
follows:

Nodes Generated=9
Nodes Expanded = 4
Nodes Dropped = 3
Solution Length = 4

4.4 Best First Search

The Best First Search is also a type of informed search
method, in that it relies on the Heuristics Function for
its working. Unlike the A* method, which requires
higher computational capacity, the Best First Search
only compares the heuristic value of nodes, ignoring
the path cost. Theoretically, this will cut down the
required computations of the A* by half, in expense of
the possibility of having endless loops or very
expensive total path cost of solutions. Other than that,
it operates over a Breadth First Search’s motion of
expansion.

The Best First Search is also known as the Greedy Best
First Search. When it expands nodes and gets a list of
possible successors that were not explored before, it
will derive the heuristics value of each of the
successors and pick the best one to expand. The other
leaves will be unexplored. It is not optimized, as the
cheapest path may involve going through heuristically
suboptimal nodes but yet have less path cost. Other
than this, the Greedy Best First Search has the same
mode of operation as the A*.

The Greedy Best First Search only differs from the A*
Search at the point of determining the fate of possible
Successors. Instead of taking into account calculations
of path cost, it directly decides on which leaf to expand
by using only the H function. In this particular
instance, its findings and performance match the A*
test, because the solution only spans 4 steps. On longer
solutions and more complex Search Trees, the same
cannot be expected of the Greedy BFS search as there
is a higher possibility of it getting stuck on a lost
branch with initially low H values. By supplying the
same configurations as the previous tests, the following
results are observed:

Nodes Generated=9
Nodes Expanded = 4
Nodes Dropped = 3
Solution Length = 4

4.5 Hill Climbing Search

Similar to the Greedy Best First Search, the Hill
Climbing method borrows from the A* Search but
simplifies it even further. Where the Greedy search
only bases its decisions on the Heuristics Function, Hill
Climbing works in the same way but totally disregards
memory of explored nodes. Therefore, it travels down
the Search Tree by selecting the successor with the
cheapest heuristics value, without retaining memory of
explored states.

This will ensure that the heuristics technique functions
with minimal use of memory, least computation
possible but still retain the advantage of an informed
method of solution finding. The downside of Hill
Climbing is that due to the absence of memory,
resulting in the possibility of repeating the same states
and getting stuck in some state of local maxima.

Figure. 9. Hill Climbing Search Algorithm

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 48

While the changes between the Greedy BFS and A*
are only in the selection of successors, Hill Climbing
greatly simplifies the Successor generation and
selection process, as illustrated in the flow chart shown
in Figure 9.

From the results, it seems that the Hill Climbing
technique manages to find the solution in the same
time as Greedy BFS and A*, but dropped more nodes
than the other two. Also, it shares even more risk of
failure than Greedy search in cases of longer solutions
or more complex problems. By supplying the same
configurations script, the following results are
observed:

Nodes Generated=5
Nodes Expanded = 4
Nodes Dropped = 7
Solution Length = 4

5 Summary, Conclusion and Future work

A summary of the comparison of the 5 AI techniques
are as observed in table II. The findings listed in the
table are plotted in a comparison chart in figure 10.
The values of Depth first search has been avoided in
the chart since the value is well out of range.

TABLE II. SUMMARY OF RESULTS

Sl
No

Summary of AI Algorithm Results on the N Puzzle

Algorithm G E D L

1 Breadth First Search NA 23 22 4

2 Depth First Search NA 4743 4832 4730

3 A* Search 9 4 3 4

4 Greedy BFS Search 9 4 3 4

5 Hill Climbing 5 4 7 4
a. G: Nodes Generated, E: Nodes Expanded, D: Nodes Deleted, L: Solution Length

The following conclusions can be made based on the
results as we observe in table II and figure 10.

• Breadth First Search: More complete and
concise uninformed technique that manages to
find the best solution using minimal
computation but suffers from intensive memory
use. BFS will be most recommended for small
dimension sliding puzzles, but for the
expandable N*M type with exponentially
scaling complexity, BFS becomes less efficient

and can run out of memory before completing
long solutions.

• Depth First Search: Explores branches
individually before backtracking. It is actually
good for long solutions, but only if it is lucky
enough to start on a branch with a possible Goal
State. The sliding puzzle has single definite
solutions, so it will not be optimal to use DFS.
A complete search method is preferable.

• A* Search: By utilizing both heuristics values
and path costs, the A* search manages to find
the shorted solutions with moderate memory
and time performance. A lighter method will be
preferable if it was a small puzzle. However,
this dynamically up-scaling puzzle will benefit
more from the A*’s complete and heuristic
approach.

• Greedy BFS: The Best First Search also uses
the A*’s heuristic method, but negates the path
cost. For this particular problem, the Best First
Search is quite effective, matching the
performance of the A* search on shorter
solutions. For longer solutions, the A* is safer
but requires more computations.

• Hill Climbing: This is the most memory
efficient heuristics approach but has high risks
of failure due to local maxima issue and
disregard of memory, especially for moderate to
long solutions. This is not recommended for the
sliding puzzle problem as there is a high chance
for the failure conditions to present themselves.

Figure. 10. Comparisson of the Search Algorithm
Observations

In conclusion, the best approaches to apply to this
dynamically scaling sliding puzzle will either be the
A* or the Greed Best First Search. Greedy BFS is more

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 49

memory efficient and matches the performance of A*
for shorter solutions. For longer and more complex
solutions, the A* is the best choice, in order to avoid
possibilities of getting a suboptimal solution due to the
Greedy BFS’s disregard for path cost computations.

A further improvement can be implemented in the
form of a morphing algorithm that can opt to repeat the
search in A* if the initial attempt with Greedy BFS
turns out unusually long solution. Also, a fail-safe
function to switch from A* to Greedy BFS can be
implemented, to kick in during events of critically
reduced memory conditions.

6 Acknowledgements

We acknowledge the contributions of Mark Tee Kit Tsun
and Carmella Sim Lee Yoong for the contributions in coding
for the algorithm implementations.

7 References

[1] Brooks, R. A., “Intelligence without representation”
Artificial Intelligence, Volume 47, Issues 1–3, January
1991, Pages 139-159, ISSN 0004-3702

[2] Drogoul, A., and Dubreuil, C. "A distributed approach
to n-puzzle solving." Proceedings of the Distributed
Artificial Intelligence Workshop. 1993.

[3] Kumar. V. Ramesh, K. and Rao, V. N. "Parallel Best-
First Search of State-Space Graphs: A Summary of
Results." AAAI. Vol. 88. 1988.

[4] Bonet, B. and Geffner, H. “Planning as heuristic
search,” Artificial Intelligence, Volume 129, Issues 1–2,
June 2001, Pages 5-33, ISSN 0004-3702

[5] Korf, R. E. "Depth-first iterative-deepening: An optimal
admissible tree search." Artificial intelligence 27.1
(1985): 97-109.

[6] Korf, R. E. “Linear-Space Best-First Search,” Artificial
Intelligence, Volume 62, Issue 1, July 1993, Pages 41-
78, ISSN 0004-3702

[7] Russell, S. and Norvig, P. “Artificial Intelligence: A
Modern Approach Author: Stuart Russell, Peter Norvig,
Publisher: Prentice Hall Pa.” (2009): 1152

ISBN: 978-0-9891305-2-3 ©2013 SDIWC 50

