
International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 519

Reusability Assessment of Open Source Components for Software

Product Lines

Fazal-e-Amin, Ahmad Kamil Mahmood, Alan Oxley

Computer and Information Sciences Department, Universiti Teknologi PETRONAS,

Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.

fazal.e.amin@gmail.com, {kamilmh, alanoxley}@petronas.com.my

ABSTRACT

Software product lines and open source

software are two emerging paradigms in

software engineering. A common theme in

both of these paradigms is „reuse‟. Software

product lines are a reuse centered approach

that makes use of existing assets to develop

new products. At the moment, a motivation

for using open source software is so as to

gain access to source code, which can then

be reused. The product line community is

being attracted to open source components.

The use of open source software in software

product lines is not for one time reuse but,

being a core asset, the component is

intended to be used repeatedly for the

development of other products in the family.

In this paper the results of an exploratory

study is presented; it was conducted to

explore the factors affecting the reusability

of open source components. On the basis of

the results of the exploratory study a

reusability attribute model is presented

which makes use of established object

oriented metrics accompanied with newly

defined metrics. The assessment using the

proposed metrics is compared with the

rankings assigned by human evaluators.

KEYWORDS

Software metrics, measurement, reusability,

mixed method, interview

1 INTRODUCTION

Software reuse reduces development

time, effort, cost and increases

productivity and quality. Studies in

software engineering confirm these

benefits[1] and [2]. Software reuse in its

most common form can be seen in

component based software development.

Software product lines (SPLs) are a

systematic way of using components. An

SPL can be defined as “a set of software-

intensive systems sharing a common,

managed set of features that satisfy the

specific needs of a particular market

segment or mission and that are

developed from a common set of core

assets in a prescribed way”[3]. An SPL

provides an infrastructure for systematic

software reuse. The software

development scene has been greatly

influenced by the emergence of open

source software (OSS) components. The

availability of OSS is far better today

than it was in the past; this is because of

component search engines. Furthermore,

the Code Conjurer tool, as described in

[4], has elevated code reuse to a high

level.
The motivation behind the two

emerging paradigms of SPLs and OSS is
reuse. SPL development can benefit
from OSS. It is more usual to start an
SPL with some assets already in place,
in other words SPLs are seldom started

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 520

from scratch. These initial assets could
be OSS.
The form of reuse in an SPL differs from
that in traditional reuse. It is systematic
reuse, whereas traditional reuse is ad
hoc. In an SPL an asset is developed by
reuse and is developed for reuse. The
latter concept of development for reuse
sets out new requirements for the asset.
The Software Engineering Institute has
defined a framework for SPLs that states
that software enters the organization in
three ways: built in-house;
commissioned from a third party;
purchased from a vendor by having
licensed user rights, as in the case of
open source or web services. The
inclusion of open source as an asset and
part of product line infrastructure is
already envisioned by the community,
for instance a model for an open source
based product line is presented in [5] and
a COTS based product line concept can
be found in [6-7]. In line with this
vision, while including an open source
component in a product line asset base it
is necessary to measure its reusability.
The measurement of reusability helps to
make a decision and a comparison of the
different components providing the
desired functionality.
This paper has three contributions; first

is the report on the partial results and

process of an exploratory study

conducted to explore the factors

affecting the reusability of open source

components in a product line

environment. Second, is the proposal of

a reusability attribute model and third is

the implementation/validation of the

results obtained by using the model and

metrics. In terms of methodology this

paper is based on mixed methods, both a

qualitative research method (interview)

and quantitative research methods

(survey; experiment) are used during the

research.

2 SOFTWARE REUSABILITY

Software reusability refers to the

probability of reuse of software [8]. In

[9] software reusability is defined as the

“characteristics of an asset that make it

easy to use in different contexts,

software systems, or in building different

assets”. The potential benefits of

software reuse and the maturity of

reusability concepts leads us to think

about how we might measure them [8].

In software measurement, three kinds of
entities are measurable - processes,
products, and resources [10]. A product
can be defined as any artifact developed
as a result of process activity. These
entities may have attributes which are of
two kinds - internal and external. An
external attribute is one that cannot be
measured directly. In contrast, internal
attributes can be measured directly. If
we can measure something directly then
this means that we can measure it
independently. Relevant metrics are
termed „direct metrics‟[11]. For
example, the size of a program can be
measured directly in several ways: by
counting the number of lines of code; by
counting the number of „methods‟; etc.
In software engineering measurement
terminology, a metric is a quantitative
indicator of a software attribute; a
metrics model specifies relationships
between metrics and the attributes being
measured by these metrics. The topic of
measurement, with respect to reuse,
covers six areas: modeling cost/benefits;
assessing maturity; assessing the amount
of reuse; identifying the failure modes;
identifying the reusability metrics;
identifying a library of reusability
metrics [12].
 A reusability assessment

approaches review reveals that none of

the approaches considers variability to

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 521

assess reusability [13]. In the context of

SPLs it is not viable to assess the

potential for reuse without considering

the capacity of the component to provide

variability. The importance of variability

is reflected in the literature. Variability

and commonality are the central

concepts of SPLs. Systematic reuse is

made possible by introducing variability

into the core assets. The fundamental

concept of variability is presented in

[14], whilst types of variability are

discussed in [14] and [15]. Variability

implementation mechanisms are

discussed in [16] and [17]. A synthesis

of the literature on variability types and

implementation mechanisms is provided

in [18] and [19]. It gives a description of

variability implementation mechanisms

and relates the mechanisms with the

types of variability and their scope.

In object-oriented programming a „class‟

is a basic unit of encapsulation that

facilitates its reuse. In [20] Szyperski‟s

notion of a component, given in [21], is

mapped to a class, and it follows that in

the context of object orientation a class

can be said to be a component because it

is the only unit of composition.

3 FACTORS AFFECTING

REUSABILITY OF OSS

The nature of the study to explore the

factors affecting the reusability of OSS

in a product line environment demands

the use of an exploratory research

method, and to serve this purpose

interviews are used as the tool to collect

data. A literature review was conducted

prior to this study that confirms that the

factors are as yet unexplored [13].

The interview is a means of collecting

primary data; it is a conversation

between two persons, one of which is a

researcher. Interviews can be used for

data collection where the nature of the

study is exploratory. Interviews are

helpful when the data to be gathered is

about a person‟s knowledge,

preferences, attitude or values [22].

Interviews may help to gather

impressions and opinions about

something. Interviews enable one to get

personalized data, provide an

opportunity to probe, establish technical

terms that can be understood by the

interviewee, and facilitate mutual

understanding. The interview provides

an in-depth view. Interviews are best for

exploring the perspective of informants

[22]. In the context of this study the

informants are those who have

experience with open source and product

lines and preferably have

academic/research experience. The

authors have contacted several people

and managed to conduct interview

sessions with five informants. A brief

introduction of them is presented in

table-1.

The results are obtained using the

grounded theory approach [23]. Open,

axial and selective coding is performed

to get meaningful results. The results are

divided into different categories. The

details of the study cannot be presented

here due to space limitations. However,

the results relevant to this paper are

presented here. The category that this

paper is concerned with is factors

affecting reusability of OSS in an SPL

environment.

Table 1: Information about the respondents

Responde

-nt ID

Experi-

ence

Experie-

nce Type

Current

Affiliation

Rsp-A 05

years

Academic,

Industrial

Academia

Rsp-B 10

years

Academic,

Industrial

Industry

Rsp-C 22

years

Academic,

Industrial

Industry

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 522

Rsp-D 08

years

Academic,

Industrial

Academia

Rsp-E 10

years

Academic,

Industrial

Academia

Table 2: Means used to conduct interviews

Means used Number of Interviews
Skype 01

Face to face 03

Telephone 01

Total 05

The results are obtained using the

grounded theory approach [23]. Open,

axial and selective coding is performed

to get meaningful results. The results are

divided into different categories. The

details of the study cannot be presented

here due to space limitations. However,

the results relevant to this paper are

presented here. The category that this

paper is concerned with is factors

affecting reusability of OSS in an SPL

environment.

The following factors relating to

documentation are identified: Flexibility;

Maintainability; Portability; Scope

Coverage; Stability; Understandability;

Usage History; Variability.

Documentation is one of the factors that

affect the reusability of an OS

component. Documentation has an

influence on the understandability of a

component. In the case of open source

the importance of documentation

increases because of the numerous

contributions to the code by different

developers. The analysis of code is

difficult without having the

documentation.

Flexibility is related to reusability in two

capacities. First it is the ability of a

component to be used in multiple

configurations. Second, it is a necessary

attribute concerning future requirements

and enhancements.

Maintainability is related to reuse in

terms of error tracking and debugging. If

the component is maintainable it is more

likely to be reused. In cases where OSS

components are running on systems

connected to others system then a bug is

particularly problematic. Sometimes

debugging a component on one

configuration may not work on other

configurations. On the other hand in

black box reuse maintainability is not

considered a factor of reusability.

Portability is considered a factor in the

sense that a cohesive component is more

potable. A component having all the

necessary information within it or

having less interaction with another

module during its execution is more

reusable. Again in the case of black box

reuse it is not a factor.

Another characteristic of the open source

components explored is that the

developer looks for a component

covering more of the scope of the

application. In some situations even the

size does not matter but size is a concern

in large sized components as it relates to

increased complexity and poor

understandability.

Furthermore, scope coverage is

important in situations where future

enhancements are already envisioned or

there are chances that more features

would be added in future.

The interviewees consider stability as an

important factor to be considered while

making decisions. Here, the term

„stability‟ refers to security in numbers,

that is, a reasonable number of

developers have contributed in the

development of the component and also

it has been used by a reasonable number

of developers. Stability is also related to

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 523

the usage history of the component.

Usage history provides a hint about the

usefulness of the component. Another

side of usage history is the maturity of

the component.

The subjects also have a consensus on

the understandability attribute. It is also

related to the maintainability of the

component; a component that is easy to

understand is easy to maintain.

Understandability affects the reliability

of a component.

Variability is one of the factors but on

the other hand it decreases

understandability. Variability is also

seen as the configurability of a

component, that it can be configured in

multiple configurations.

The details of the exploratory study will

be found in future publication [24] of the

authors, it is work in progress.

4 PROPOSED REUSABILITY

ATTRIBUTE MODEL

The proposed reusability assessment

model (figure 2) contains six attributes

related to the reusability of an SPL

component: flexibility; maintainability;

portability; scope coverage;

understandability; variability. These

emerged from the exploratory study.

These attributes are selected due to their

„internal‟ nature as the following

measurement is based on the code of the

components.

In the IEEE standard for software quality

methodology it is stated that software

quality is measured by identifying a set

of factors relevant to the software [11].

In our work the quality we concern

ourselves with is „reusability‟ and the

factors affecting reusability are

identified in the context of an SPL.

Complex quality factors cannot be

measured directly so factors may be split

into sub factors. The factors/sub factors

are measured by measures called

„metrics.‟

The proposed model is derived using the

GQM approach as shown below. The

GQM model helps one to understand and

define the factors to measure software

quality. The „object of study‟ defines the

scope of measurement, which in this

case is a „class.‟ The „purpose‟ of a

measure is to predict the effort required

to reuse the software. The „viewpoint‟

considered is that of a software

developer/user of the component. The

„environment‟ is one in which intense

reuse is employed, as in the case of

product line/family development.

Object of study: Class
Purpose: Prediction
Quality focus: Effort required to reuse
Viewpoint: Developer
Environment: Development of software
in a reuse intensive environment
(product line/ family)
Goal: Assessment of object oriented
systems to predict reusability from the
viewpoint of a developer.
1. How easy is it to reuse the

component?
1.1. How much variability is there in

the component?
1.1.1. What is the average

number of methods per
class?

1.1.1.1.Number of methods ÷
Total number of
classes

1.1.2. What is the average
number of children per
class?

1.1.2.1.Number of children ÷
Total number of
classes

1.2. How easy is it to understand the
component?

1.2.1. What is the size of the
component?

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 524

1.2.1.1.Number of methods
(NOM)

1.2.1.2.Lines of code (LOC)
1.2.2. How much coupling is

there in the component?
1.2.2.1.Coupling between

objects (CBO)
1.2.3. How much cohesion is

there in the component?
1.2.3.1.Lack of cohesion in

methods (LCOM)
1.2.4. How many comment

lines are there in the
component?

1.2.4.1.No. of comments
1.3. How easy is it to maintain the

system?
1.3.1. Maintainability Index

(MI)
1.3.2. McCabe‟s Cyclomatic

Complexity (MCC)
1.4. How much flexibility is there in

the component?
1.4.1. How much coupling is

there in the component?
1.4.1.1.CBO

1.4.2. How much cohesion is
there in the component?

1.4.2.1.LCOM
1.5. How portable is the component?

1.5.1. How independent is the
component?

1.5.1.1.Depth of inheritance
tree (DIT)

1.6. How much of the scope is
covered by the component?

1.6.1. How many features are
covered by the component?

1.6.1.1.NOM/Total number
of methods in all
classes

5 ATTRIBUTES AND METRICS

In this section a description of the

attributes and metrics which are used to

assess reusability is provided.

5.1 Maintainability

In [9] maintainability is defined as “the

ease with which a software system or

component can be modified to change or

add capabilities, correct faults or defects,

improve performance or other attributes,

or adapt to a changed environment”.

Two metrics, MCC and MI, are used to

measure maintainability.

5.2 Portability

It is defined as “the ease with which a

system or component can be transferred

from one hardware or software

environment to another”. The portability

of a component depends on its

independence, i.e. the ability of the

component to perform its functionality

without external support. In a scenario

where an open source component is used

in SPL development, the component

should have the characteristic of

portability. The component being a core

asset may be used in the development of

another product/family member within

the product line/family.

5.3 Flexibility

It is defined as “the ease with which a

system or component can be modified

for use in applications or environments

other than those for which it was

specifically designed” [9]. In [25-27]

flexibility is considered as a factor

affecting the reusability of a component.

In the context of an SPL, the flexibility

characteristic is necessary for a core

asset as it is intended to be reused in the

development of other products.

5.4 Understandability

It is defined as “the ease with which a

system can be comprehended at both the

system-organizational and detailed

statement levels”[9]. In [25, 28]

understandability is considered a factor

of reusability.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 525

5.5 Scope coverage

It is the attribute that measures the

number of features provided by the

component against the total number of

features in the SPL scope.

5.6 Independence

The term „independence‟ is introduced

to reflect the property of the system

concerning the ability of a class to

perform its responsibilities on its own.

Independence is measured by DIT. The

classes lower in the hierarchy are

inherited by other classes; these classes

depend on their ancestors to perform

their functionalities.

5.7 Size Metrics

In [10] the aspect of the software dealing

with its physical size is named the

„length‟ of the software. The metric used

for size is lines of code (LOC). It counts

the lines of source code. The second

metric used to measure size is number of

method (NOM).

5.8 Coupling and Cohesion Metrics
Coupling and cohesion are two key

concepts in object oriented software

engineering. Both of these are related to

interaction between the entities. The

higher the level of interaction, the higher

is the level of dependency. The lower the

level of interaction, the higher is the

level of cohesion. Cohesion refers to the

extent to which an entity can perform its

responsibilities on its own. The metric

used for coupling is CBO and the one

used for cohesion is LCOM.

5.9 Variability Metrics

In [14] types of variability are defined

on the basis of component reference

models, namely CORBA and EJB. The

building blocks of a component are

defined as classes, workflow among

classes, and interfaces.

We can consider the entities involved in

object oriented programming. In Java

these comprise the classes, interfaces,

packages and Java beans. From the

viewpoint of reuse, using Java beans is

considered to be a black box approach.

However, our work is concerned with a

white box approach to the reuse of

components.

An object oriented class consists of

attributes, which hold data, and methods

that exhibit behavior. An abstract class is

used as a super-class for a class

hierarchy, it cannot be instantiated.

In [14]variability types that are

described are „attribute‟, „logic‟ and

„workflow.‟ Another view of variability

types is presented in [15] where

variability is categorized as positive,

negative, optional, function and

platform/environment. All of the

variability types given in [14] can be

mapped to the variability types given in

[15], for instance, the „attribute‟

variability type is a „positive‟ variability

type when a new attribute is added.

Attribute variability can be implemented

using any of the following techniques:

inheritance; aggregation;

parameterization /generics; overloading.

The cases of attribute variability are

defined in [14]. One of these is the

variation in the number of attributes.

This type of variability is supported by

inherence and aggregation. Another type

of attribute variability is variation in the

data types of the attributes; this

variability is supported by

parameterization/generics.

As described earlier, inheritance is one

of the mechanisms to handle attribute

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 526

variability. In our work we propose

variability metrics on the basis of the

theory and mechanism of inherence.

With inherence the subclass inherits all

the methods and attributes of the super-

class. The subclass can define its own

attributes in addition to those it inherits

from the super-class, which causes the

attribute variability. The other

mechanism associated with inheritance

is overloading which causes logic and

work flow variability. So, a class that is

higher in the hierarchy, and therefore

having more accessible attributes and

methods, has more variability.

A systematic review presents the state of

the art in the area of software

measurement [29]. The results of the

review show that there is no measure

available for variation. This shortage of

metrics to measure variability,

specifically at the implementation level,

is also recognized in another study [30].

In our work we acknowledge this gap

and propose metrics to assess the

variability of software components.

Followings are the definitions of the

metrics used in the proposed model.

5.10 CBO

 These metrics count the number of

classes to which a class is coupled [31].

Coupling prevents a class from

performing its responsibility on its own,

i.e. the class having a higher CBO value

is more dependent on other classes. This

dependence of a class on other classes

decreases its understandability and

flexibility. It is measured on an absolute

scale; its domain is the set of integers [0,

∞).

5.11 LCOM

Cohesiveness is the property that

enhances encapsulation. LCOM metrics

indicate the lack of cohesion; lack of

cohesion decreases understandability

and flexibility[31]. It is measured on an

absolute scale; its domain is the set of

integers [0, ∞).

5.13 DIT

 This is a measure that indicates the

depth of a class within a hierarchy[31].

The class lower in the hierarchy depends

on all the ancestor classes; it hinders its

ability to be independent. A higher

value of DIT reduces the independence

which results in decreased portability. It

is measured on an absolute scale; its

domain is the set of integers [0, ∞).

5.14 LOC

 This is a measure of the lines of source

code. It is a size indicator of the entity.

The size of the software affects its

understandability. It is measured on an

absolute scale; its domain is the set of

integers [0, ∞).

5.15 NOM

 This is used in [32]. It measures the

number of methods declared within the

class. It is an indicator of the size of a

class. It is measured on an absolute

scale; its domain is the set of integers [0,

∞).

5.16 NOC

NOC is the measure that counts the

children of a class [31]. NOC itself

shows the reuse of a class. A large

number of children mean that the

functionality of the class is reused

through inheritance. It is measured on an

absolute scale; its domain is the set of

integers [0, ∞).

The equations used to calculate the

attributes value are as following:

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 527

Flexibility =1 - [(0.5 X Coupling) + (0.5

X Cohesion)]

Coupling = adjusted CBO, Cohesion =

adjusted LCOM

Understandability = 1 - [(0.25 X

Coupling) + (0.25 X Cohesion) + (0.25

X Comments) + (0.25 X Size)]

Size = (0.5 X adjusted LOC) + (0.5 X

adjusted NOM)

Portability = Independence = 1 -

adjusted DIT

Scope coverage = NOM ÷ Total number

of methods in all classes

Maintainability = (0.5 X adjusted MCC)

+ (0.5 X adjusted MI)

Variability = 0.5 X (NOC ÷ Total

number of classes) + 0.5 X (NOM ÷

Total number of methods in all classes)

Reusability of Class = 0.16 X Flexibility

+ 0.16 X Understandability + 0.16 X

Portability + 0.16 X Scope coverage +

0.16 X Maintainability + 0.16 X

Variability

6 Validations

As with other engineering disciplines,

software engineering is intended to help

humans in solving their problems [33].

Software engineering, being a

multidisciplinary field of research,

involves issues raised by technology and

society (humans). Software engineering

activities depend on tools and processes.

However, due to the involvement of

humans, social and cognitive processes

should also be considered [34].

Validation of new tools and processes is

a necessary part of the advancement of

software engineering [35]. The

involvement of humans in software

engineering demands the usage of

research methodologies from the social

sciences. Therefore, to validate the set of

metrics selected to measure variability, a

survey was used. A survey can be

defined as a comprehensive system for

collecting data using a standardized

questionnaire [36-37]. The information

collected from a survey is used to

“describe, compare or explain

knowledge, attitudes and behavior” [36].

This type of validation is used in [38],

where the term „experiment‟ is used for

the process of assessment of software

(classes) by experienced developers and

students. In [28] a „rating committee‟ is

used. A questionnaire is used in [39] and

[40] for the purpose of validation of

results.

Survey research is common in the

software engineering discipline. Due to

the effectiveness of surveys in software

engineering, researchers have laid down

a process to conduct surveys. In [37] a

comprehensive seven step process for

conducting a survey is explained. We

have used this approach presented and

customized two steps. The details and

the rationale for our decision are stated

later in this section. The specific steps

taken to conduct this variability

assessment survey were:

 Identification of aim

 Identification of target audience

 Design of sampling plan

 Questionnaire formulation

 Pilot test of questionnaire

 Questionnaire distribution

 Analysis of the results

Let us clarify the purpose of this

exercise. Our notion of a survey

resembles the process used in [38]

where, as we stated above, the term

„experiment‟ is used to conduct the

assessment of software code by humans.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 528

In this paper we have used the term

„survey‟ because we are using the

questionnaire as a tool to assess the

code.

The aim of this survey is to get an

objective assessment, from humans, of

selected software code. Turning to the

second step, 54 students of a software

engineering class were asked to assess

the variability of classes in the class

hierarchies. Out of 54, five samples were

discarded due to lack of information.

The selected students had knowledge

and experience in Java programming,

software engineering, and the concept of

object-orientation. They were studying

these subjects as part of a computer and

information sciences degree program. A

total of 15 classes were selected in three

hierarchies related to three different

components. Three components were

selected, namely Component A from a

rental domain, Component B from a

computer user account domain and

Component C from a bank account

domain. More details of the components

are provided in table-3. The

components selected for this purpose

were from Merobase

(http://www.merobase.com). Merobase

is database of source code files. The

collection has more than 10 million

indexed files, out of which eight million

are Java files. A search and tagging

engine is included.

Table 3. Component specifications

A sampling plan was designed to decide

the kind of statistical test used to

interpret the results. The questionnaire

was formulated and reviewed by the

authors. The questionnaire was pilot

tested and revised. The survey was

conducted in two sessions, 18

respondents completed the questionnaire

in the first session and 36 in the second

session. Both sessions were conducted

in the presence of the authors. The

results of the survey were analysed using

statistical software.

The response of the users was collected

using a Likert scale from 1 to 5 -

strongly disagree (1); disagree (2),

neither agree nor disagree (3); agree (4);

strongly agree (5). Next we made use of

Cronbach‟s alpha (α). (This is

commonly used in software engineering

measurements to assess internal

consistency.) The internal consistency

and reliability of the data, measured in

terms of α, is presented in table-4. The

α coefficient of the responses for each

component is computed. All the values

of α are greater than .7, which is

considered sufficiently good.

Table 4: Cronbach‟s α of component values

The evaluators were asked eighteen

questions to assess the variability of

components. The arithmetic means of

the responses is presented in table-5. The

value of reusability is the mean value of

the individual responses to the questions.

The graph of these values is plotted in

figures 3, 4, 5.

Component No. of

classes

No. of

methods

LOC

A 03 31 204

B 03 11 78

C 09 34 281

Component No. of

evaluators

Cronbach‟s α

A 49 .771

B 49 .848

C 49 .832

http://www.merobase.com/

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 529

Table 5: Results of reusability assessment by
human evaluators and using proposed mode

Figure 3: Classwise reusability values of
component A

Figure 4: Class wise reusability values of
component B

Figure 5: Class wise reusability values of
component C

7 DISCUSSIONS

Our work involves identifying

reusability assessment metrics. Some of

these are known, whereas others have

been introduced by us. In some other

research metrics are presented but not

validated e.g. [41]. In our work however,

we both present the metrics and validate

them empirically.

[42] and [43] assess reusability based on

the degrees of coupling and cohesion. In

comparison, our work considers these as

well as other factors. Our work focuses

on components written in java. The

metrics that we have selected are to a

certain extent dependent on java.

The list of factors affecting reusability

was arrived at following interviews with

experts. Next the metrics applicable to

these was decided upon. Most of these

came from literature review, however, a

small number were devised by ourselves,

details of which are the subject of a

forthcoming paper. Finally, we took a

number of classes and assessed their

reusability by two means. One

assessment was carried out using the

metrics; the other assessment was done

manually by final year computing

student. The results were compared.

8 CONCLUSIONS

A reusability attribute model and metrics

are presented in this paper as the result

of an exploratory study. We have

Component Evaluators

Assessmen

t (Mean)

Assessment using

proposed metrics

A 3.31 Class 1 2.89

Class 2 2.88

Class 3 2.68

B 3.15 Class 1 3.03

Class 2 3.22

Class 3 3.31

C 3.22 Class 1 3.09

Class 2 3.24

Class 3 2.98

Class 4 3.07

Class 5 3.08

Class 6 3.1

Class 7 2.93

Class 8 3.03

Class 9 3.26

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 530

highlighted gaps in the current literature:

the variability and scope coverage

attributes of a software component are

not being catered for. In our opinion the

current approaches are not suited to the

context of OSS and SPLs. Therefore, the

proposed addition of attributes will

provide more reliable assessment of

reusability. The results of the assessment

survey are presented. The values of

reusability and its attributes are

compared with the ratings obtained by

the survey. The other facet of this

research work is the bridging of the gap

between OSS and SPLs. The research is

aligned with the work that is progressing

in software engineering. Our work

contributes to the knowledge base. Our

future work is planned to include the

automation and further validation of our

approach.

9 REFERENCES

1. Krueger, C. W.: Software reuse,

ACM Comput. Surv., 24, 131-83

(1992).

2. Mohagheghi, P., and Conradi, R.:

Quality, productivity and

economic benefits of software

reuse: a review of industrial

studies, Empirical Softw. Engg.,

12, 471-516 (2007).

3. Clements, P., and Northrop, L.:

Software product lines: practices

and patterns, Addison-Wesley

Longman Publishing Co., Inc.

(2001).

4. Hummel, O., Janjic, W., and

Atkinson, C.: Code Conjurer:

Pulling Reusable Software out of

Thin Air, Software, IEEE, 25,

45-52 (2008).

5. Ahmed, F., Capretz, L. F., and

Babar, M. A.: A Model of Open

Source Software-Based Product

Line Development, In: Computer

Software and Applications, 2008.

COMPSAC '08. 32nd Annual

IEEE International, pp. 1215--20

(2008).

6. Ahmed, F., Capretz, L. F., and

Capretz, M. M. A.: Setting Up

COTS-Based Software Product

Lines, In: Sixth International

IEEE Conference on

Commercial-off-the-Shelf

(COTS)-Based Software Systems,

2007. ICCBSS '07, pp. 249 -

(2007).

7. Capretz, L. F., Ahmed, F., Al-

Maati, S., and Aghbari, Z. A.:

COTS-based software product

line development, International

Journal of Web Information

Systems, 4, 165 - 80 (2008).

8. Frakes, W. B., and Kyo, K.:

Software reuse research: status

and future, IEEE Transactions on

Software Engineering, 31, 529-

36 (2005).

9. IEEE: Systems and software

engineering -- Vocabulary, In:

ISO/IEC/IEEE 24765:2010(E),

pp. 1-418 (2010).

10. Fenton, N., and Pfleeger, S.:

Software Metrics: A Rigorous

and Practical Approach, PWS

Publishing Co. (1997).

11. IEEE: IEEE Standard for a

Software Quality Metrics

Methodology (1998).

12. Frakes, W., and Terry, C.:

Software reuse: metrics and

models, ACM Comput. Surv., 28,

415-35 (1996).

13. Fazal-e-Amin, Mahmood, A. K.,

and Oxley, A.: A Review of

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 531

Software Component Reusability

Assessment Approaches,

Research Journal of Information

Technology, 3, 1-10 (2011).

14. Kim, S. D., Her, J. S., and

Chang, S. H.: A theoretical

foundation of variability in

component-based development,

Information and Software

Technology, 47, 663-73 (2005).

15. Sharp, D. C.: Containing and

facilitating change via object

oriented tailoring techniques, In:

First Software Product Line

Conference, Denver, Colorado

(2000).

16. Gacek, C., and Anastasopoules,

M.: Implementing product line

variabilities, SIGSOFT Softw.

Eng. Notes, 26, 109-17 (2001).

17. Pohl, C., Rummler, A., Gasiunas,

V., Loughran, N., Arboleda, H.,

Fernandes, F. d. A., Noyé, J.,

Núñez, A., Passama, R., Royer,

J.-C., and Südholt, M.: Survey of

existing implementation

techniques with respect to their

support for the practices

currently in use at industrial

partners, In: AMPLE Project

deliverableD3.1 (2007).

18. Fazal-e-Amin, Mahmood, A. K.,

and Oxley, A.: An analysis of

object oriented variability

implementation mechanisms,

SIGSOFT Softw. Eng. Notes, 36,

1-4 (2011).

19. Fazal-e-Amin, Mahmood, A. K.,

and Oxley, A.: Mechanisms for

managing variability when

implementing object oriented

components, In: National

Information Technology

Symposium (NITS), King Saud

University, KSA (2011).

20. Jilles, v. G.: Variability in

Software Systems, the key to

Software Reuse, Licentiate

Thesis, University of Groningen,

Sweden, (2000)

21. Szyperski, C.: Component

Software: Beyond Object-

Oriented Programming,

Addison-Wesley (1998).

22. Gray, D. E.: Doing Research in

the Real World, SAGE

Publication Ltd. (2009).

23. Strauss, A., and Corbin, J.:

Basics of Qualitative Research

Techniques and Procedures for

Developing Grounded Theory,

Sage Publications (1998).

24. Fazal-e-Amin, Mahmood, A. K.,

and Oxley, A.: Using Open

Source Components in Software

Product Lines – an exploratory

study, . In: IEEE Conference on

Open Systems 2011, Langkawi,

Malaysia (2011).

25. C. Sant'anna, A. G., C. Chavez,

C. Lucena, and A. v. von Staa:

On the reuse and maintenance of

aspect-oriented software: An

assessment framework, In:

Proceedings XVII Brazilian

Symposium on Software

Engineering (2003).

26. Pohl, K., Böckle, G., and Linden,

F. v. d.: Software Product Line

Engineering Foundations,

Principles, and Techniques,

Springer-Verlag Berlin

Heidelberg (2005).

27. Sharma, A., Grover, P. S., and

Kumar, R.: Reusability

assessment for software

components, SIGSOFT Softw.

Eng. Notes, 34, 1-6 (2009).

28. Washizaki, H., Yamamoto, H.,

and Fukazawa, Y.: A Metrics

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 532

Suite for Measuring Reusability

of Software Components, In:

Proceedings of the 9th

International Symposium on

Software Metrics, IEEE

Computer Society, pp. 221-5

(2003).

29. Gómez, O., Filipe, J., Shishkov,

B., Helfert, M., Oktaba, H.,

Piattini, M., and García, F.: A

Systematic Review Measurement

in Software Engineering: State-

of-the-Art in Measures, in

Software and Data Technologies,

Vol. 10, Springer Berlin

Heidelberg, pp. 165-76 (2008).

30. Mujtaba, S., Petersen, K., Feldt,

R., and Mattsson, M.: Software

Product Line Variability: A

Systematic Mapping Study, In:

15th Asia-Pacific Software

Engineering Conference APSEC

08 (2008).

31. Chidamber, S. R., and Kemerer,

C. F.: A metrics suite for object

oriented design, Software

Engineering, IEEE Transactions

on, 20, 476-93 (1994).

32. Li, W., and Henry, S.:

Maintenance metrics for the

object oriented paradigm, In:

Software Metrics Symposium,

1993. Proceedings., First

International, pp. 52-60 (1993).

33. Jackson, M.: The Name and

Nature of Software Engineering,

in Advances in Software

Engineering: Lipari Summer

School 2007, Lipari Island, Italy,

July 8-21, 2007, Revised Tutorial

Lectures, Springer-Verlag, pp. 1-

38 (2008).

34. Easterbrook, S., Singer, J.,

Storey, M.-A., and Damian, D.:

Selecting Empirical Methods for

Software Engineering Research,

in Guide to Advanced Empirical

Software Engineering, pp. 285-

311 (2008).

35. Deelstra, S., Sinnema, M., and

Bosch, J.: Variability assessment

in software product families,

Information and Software

Technology, 51, 195-218 (2009).

36. Pfleeger, S. L., and Kitchenham,

B. A.: Principles of survey

research: part 1: turning lemons

into lemonade, SIGSOFT Softw.

Eng. Notes, 26, 16-8 (2001).

37. Kasunic, M.: Designing an

Effective Survey, Vol. CMU/SEI-

2005-HB-004 SEI, CMU (2005).

38. Etzkorn, L. H., Hughes, W. E.,

and Davis, C. G.: Automated

reusability quality analysis of OO

legacy software, Information and

Software Technology, 43, 295-

308 (2001).

39. Dandashi, F.: A method for

assessing the reusability of

object-oriented code using a

validated set of automated

measurements, In: Proceedings

of the 2002 ACM symposium on

Applied computing, ACM,

Madrid, Spain, pp. 997-1003

(2002).

40. Münch, J., Abrahamsson, P.,

Washizaki, H., Namiki, R.,

Fukuoka, T., Harada, Y., and

Watanabe, H.: A Framework for

Measuring and Evaluating

Program Source Code Quality, in

Product-Focused Software

Process Improvement, Vol. 4589,

Springer Berlin / Heidelberg, pp.

284-99 (2007).

41. Cho, E. S., Kim, M. S., and Kim,

S. D.: Component Metrics to

Measure Component Quality, In:

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 519-533
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 533

Proceedings of the Eighth Asia-

Pacific on Software Engineering

Conference, IEEE Computer

Society, pp. 419-26 (2001).

42. Gui, G., and Scott, P. D.:

Ranking reusability of software

components using coupling

metrics, J. Syst. Softw., 80, 1450-

9 (2007).

43. Gui, G., and Scott, P. D.:

Measuring Software Component

Reusability by Coupling and

Cohesion Metrics, Journal of

Computers, 4, 797-805 (2009).

