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ABSTRACT 
 
Brain decoding, to decode a stimulus given to or a 
mental state of human participants from measurable 
brain activities by means of machine learning 
techniques, has made a great success in recent years. 
Due to large variation of brain activities between 
individuals, however, previous brain decoding 
studies mostly put focus on developing an 
individual-specific decoder. For making brain 
decoding more applicable for practical use, in this 
study, we explored to build an individual-
independent decoder with a large-scale functional 
magnetic resonance imaging (fMRI) database. We 
constructed the decoder by deep neural network 
learning, which is the most successful technique 
recently developed in the field of data mining. Our 
decoder achieved the higher decoding accuracy than 
other baseline methods like support vector machine 
(SVM). Furthermore, increasing the number of 
subjects for training led to higher decoding accuracy, 
as expected. These results show that the deep neural 
networks trained by large-scale fMRI databases are 
useful for construction of individual-independent 
decoders and for their applications for practical use. 
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1 INTRODUCTION 
 
Brain decoding is a technology to read out 
(decode) a stimulus given to or a mental state of 
human participants from measurable brain 
activities, which has potential applications in 
neuroscience-based engineering, such as brain 
machine interface, neuro rehabilitation, and 

even therapy of mental disorders. Brain 
decoding is usually based on machine learning, 
especially, supervised learning framework; the 
decoder is trained to associate brain activities as 
its input and stimuli or mental states as its 
output. Because brain activities are very 
different between individuals, previous brain 
decoding studies mostly focused on 
construction of subject-dependent decoder for 
each subject (e.g., [1], [2], [3], [4]). In practical 
situations of applying brain decoding, however, 
it may be difficult to collect sufficient data for 
training subject-dependent decoders for various 
reasons; especially in the scenario of BMI, the 
subjects could be disabled, then they may not 
be able to perform a number of task sessions to 
collect sufficient amount of data. When 
considering practical brain decoding technology, 
construction of subject-independent decoders 
based on extraction of subject-independent 
features inside has been highly demanded. Here, 
subject-independent decoders are required to 
read out the brain activities of an unseen subject 
whose data have never been used for training 
the decoders. 
 
With an interest in building subject-
independent decodes, in this study, we applied 
deep neural network learning to a large fMRI 
dataset which includes many subjects' data 
when performing various kinds of cognitive 
tasks. In particular, we used the Human 
Connectome Project (HCP) dataset [5], which 
is one of the largest public-available fMRI 
databases. HCP includes fMRI data of over 500 
subjects when they are performing seven kinds 
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of cognitive tasks. The deep neural network 
leaning has the potential to make the best use of 
this ‘big data’; it recently attracts much 
attention because of its high classification 
performance in various artificial intelligence 
issues, like image recognition, speech 
recognition, and so on [6], [7]. Very recently, 
some studies applied the deep learning 
technique to analyses of fMRI data; Plis et al., 
[8]  compared schizophrenia patients and 
healthy controls, and Hatakeyama et al., [9] 
presented an application to voxel-wise 
decoding of hand motions. However, there has 
been no study that used the deep learning 
technique for subject-independent decoding of 
cognitive tasks, especially with the help of big 
data. To our best knowledge, this is the first 
study, so would be important for allowing the 
brain decoding technology to be applicable to 
many practical situations. 
 
2 METHODS 
 
2.1 Data Acquisition and Preprocessing 
 
In this study, we used the preprocessed task-
evoked fMRI data registered in the HCP Q3 
fMRI database [5], [10]. The HCP dataset is 
one of the largest open databases, covering 
fMRI data during various types of cognitive 
tasks. Here, we briefly explain key data 
specifications and preprocessing procedure. For 
more details, see HCP Q3 Release Reference 
Manual(www.humanconnectome.org/document
ation/Q3). 
 
FMRI data were acquired from eighty healthy 
and unrelated adult subjects, by a Siemens 3T 
Skyra, with TR = 720 ms, TE = 33.1 ms, flip 
angle 52° , FOV = 208×180  mm, 72  slices, 

2.0×2.0  mm in plane resolution. Our fMRI 
data have been applied by low level pre-
processing: removal of spatial artifacts and 
distortions, within-subject cross-modal 
registrations, reduction of the bias field, and 
normalization to standard space [10]. To the 
preprocessed fMRI data, we applied voxel-wise 
z-score transformation, followed by averaging 
over each anatomical region of interests (aROI) 
to obtain robust features against the large inter-
subject variability of brain activities. AROIs 
were determined by the automated anatomical 
labeling method [11] for each subject, which 
utilized the anatomical predefinition in terms of 
templates in the WFU PickAtlas [12]. After 
these preprocesses, the dimension per fMRI 
scan was 116. 
 
Each of the eighty subjects performed all of 
seven tasks: emotion, gambling, language, 
motor, relational, social and working memory 
(WM), for two runs, and each cognitive task 
continued for different time duration (see Table 
1). The experimental design of each task is 
summarized below. See Barch et al., [13] for 
more details. 
 
1. Emotion: this task was a modified version 

of Hariri et al., [14]. Participants were 
required to match one of two 
simultaneously presented images with a 
target image (angry face or fearful face). 

2. Gambling: participants guessed the 
number on a card in order to win or lose 
money. See Delgado et al., [15] for more 
details. 

3. Language: after listening to a brief story, 
participants were asked a two-alternative 
forced choice question about the topic of 
the story. See Binder et al., [16] for more 
details. 

  

 Emotion Gambling Language Motor Relational Social WM 
Scans 176 253 316 284 232 274 405 
Duration 2:16 3:12 3:57 3:34 2:56 3:27 5:01 

Table 1. Number of scans per run and run duration (min). 
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4. Motor: participants were requested to 
move one of five body parts (left or right 
finger, left or right toe, or tongue) 
instructed by a visual cue [17]. 

5. Relational: this task was a modified 
version of Smith et al., [18]. Participants 
answered a second-order question between 
two pairs of objects, whether or not these 
pairs share the mismatch dimension 
(texture or shape) across the pair. 

6. Social: participants were asked if objects 
in video clips interacted in some way or 
not. These videos were taken from either 
Castelli et al., [19] or Wheatley et al., [20]. 

7. Working memory: two-back working 
memory task and zero-back working 
memory task with four different types of 
picture stimuli (places, tools, faces or body 
parts). 

 
2.2 Decoding with Deep Learning 
 
The objective of deep neural network leaning 
was to acquire the input-output relationship 
with the input being the fMRI signals and the 
output being their labeled task classes, i.e., the 
category of cognitive task performed by the 
participants. For example, each fMRI scan 
during the participant performed the emotion 
task was labeled as ‘emotion class’. Then, the 
deep neural network was required to solve the 
classification problem into seven classes 
according to the supervised learning framework. 
As shown in Table 1, the number of scans in a 
single run was different between the tasks. To 
avoid harmful influence stemming from this 
difference in the data number, we resized the 
number of samples by randomly sub-sampling 
for each participant, hence the number of 
samples per run became 176, common for all 
tasks. This number 176 was the same as the 
smallest scan number per run among the seven 
tasks. Hence, the total sample number in the 
dataset was 176×2×80  for each class. The 
architecture and learning method of deep neural 
networks used in this study are similar to those 

previously used in the MNIST classification 
experiments of Hinton et al., [21]. 
 
A neural network was configured as a feed-
forward network incorporating 𝐿 hidden layers. 
The internal potential of the 𝑖-th unit in the 𝑙-th 
hidden layer 𝑎!

(!) 𝑙 = 1,⋯ 𝐿  is given as a 
weighted summation of its inputs: 
 

𝑎!
(!) = 𝑤!"

(!)
!!!!

!!!

𝑧!
(!!!) + 𝑏!

(!) (1) 

where 𝑤!"
(!) and 𝑏!

(!) are a weight and a bias. 𝑛! 
is the number of units in the 𝑙-th hidden layer, 
which was set at   𝑛! = 500 for any 𝑙 > 0. 𝒛(!) 
denotes the input vector 𝒙 to the network, hence 
𝑛!  equals to the input's dimension d(=116) . 

𝒛(!) = 𝑧!
(!),⋯ , 𝑧!!

(!) !
 represents the output of 

the 𝑙-th hidden layer and is given by applying a 
nonlinear activation function f  to the internal 
potential as 

𝑧!
(!) = 𝑓 𝑎!

(!) . (2) 
 
Here, ReLU [22], a piecewise linear function 
max 0, 𝑥 , was used for the activation function 
𝑓. Usage of ReLU for the activation function 
has a couple of advantages; its piecewise 
linearity can save the computational cost to 
calculate its derivative, and its non-saturating 
character prevents the learning algorithm from 
halting due to gradient vanishing of nonlinear 
activation functions. 
 
The last hidden layer was connected to the 
softmax (output) layer, so that the output from 
the 𝑘-th unit of the output layer was interpreted 
as the posterior probability of class 𝑘, given by 
 

𝑃 𝑌 = 𝑘 𝒙,𝑾

=
exp 𝑤!"

!!
!!! 𝑧!

(!) + 𝑏!

exp 𝑤!!!
!!
!!! 𝑧!

(!) + 𝑏!!!
!!!!

 (3) 
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where 𝐾(= 7) is the number of classes, and 𝑾 
denotes all the parameters (weights and biases). 
𝑌 is a random variable signifying the class to 
which 𝒙 belongs.  
 
We used a negative log-likelihood as the cost 
function of the learning  
 

𝐿 𝑾 = − log𝑃 𝑌! = 𝑡! 𝒙!,𝑾
!

!!!

 (4) 

 
where 𝒙!, 𝑡! ,⋯ , 𝒙! , 𝑡!  constituted the 
given dataset. 𝑡 ∈ 1,⋯ ,𝐾  denotes a class 
label. To minimize the above cost function, 
minibatch stochastic gradient descent (MSGD) 
with a momentum was introduced so that the 
stochastic gradient descent was performed 
every 100 samples: 
 
𝑾! = 𝑾!!! + 𝒗! (5) 

𝒗! = 𝑝!𝒗!!! − 1 − 𝑝! 𝜂!
𝜕𝐿! 𝑾
𝜕𝑾 𝑾!𝑾!!!

 (6) 

 
where 𝐿!  is the cost function for the cached 
subset of 100 samples in the minibatch, and 𝜂! 
and 𝑝! are the learning rate and the momentum 
rate, respectively. The learning rate 𝜂! started 
with 𝜂!, then was exponentially decreased as 
𝜂! = 𝑟𝜂!!! . The momentum rate 𝑝!  was 
increased linearly from 𝑝! to 𝑝!"" = 0.99; after 
100 times updates, 𝑝! was fixed at 𝑝!"". When 
searching for appropriate values of the hyper-
parameters 𝜂!, 𝑟,𝑝!, 𝑙 , we used random search 
rather than grid search [23], in which 𝜂!, 𝑟, 𝑝! 
and 𝑙  were randomly sampled from their 
individual uniform distributions on the intervals 
1.0, 20.0 , 0.95, 0.9999 , 0.4, 0.6  and 
3.0, 20.0  respectively. The best parameters 

were chosen among 9  combinations of 
𝜂!, 𝑟,𝑝!, 𝑙 . 

Each weight was initialized as a small value 
randomly sampled from a zero-mean normal 
distribution with the standard deviation of 0.01, 

and biases were initialized to zero. During 
learning, the weight vector of each hidden unit 

𝑤!!
(!),⋯ ,𝑤!!!!!

(!) !
 was not allowed to make its 

𝐿! norm larger than a fixed positive constant 𝑚. 
If the 𝐿! norm of the weight vector got larger 
than 𝑚 after each update, it was simply divided 
by the norm and then multiplied by 𝑚. This 
upper bound setting of the norm enabled the 
initial learning rate to be fairly large, by which 
we expected accelerated learning. Early 
stopping was also adopted. If the decoding 
accuracy for the validation dataset did not 
increase for 200 learning epochs, then learning 
was terminated. Even if the early stopping did 
not occur, the whole learning procedure was 
terminated after 5000 learning epochs. 

For avoiding over-fitting, we used the dropout 
technique [21]. During training, the activity 𝑧!

(!) 
was randomly replaced by 0 with probability 𝑝. 
We set 𝑝 = 0.5  for hidden units and 0.2  for 
inputs. This dropping out of activities plays a 
role of regularization and is expected to prevent 
the decoder from acquiring subject-specific 
features. When testing the trained neural 
network, on the other hand, all the nodes were 
activated, but their weights were multiplied by 
1− 𝑝, to make the mean activity level of each 
network element consistent between the 
training phase and the test phase (see Fig. 1). 

The trained neural network was tested by 
unseen data. Since in this study we expect the 
deep neural network can extract subject-
independent features based on training from the 
large-scale fMRI database, we examined 
subject-transfer decoding performance. In 
specific, we executed 8-fold cross validation, or 
equivalently, leave-10-subjects-out cross 
validation: the whole dataset of 80  subjects 
were repeatedly separated into a training dataset 
of 70  subjects and a test dataset of the 
remaining 10 subjects. In addition, 10 subjects 
were randomly taken from the training dataset 
of 70 subjects to construct a validation dataset, 
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which was in turn used for determining hyper-
parameters and early stopping criterion. 

 

 

3 RESULTS 

First, we compared the decoding accuracy of 
the deep neural networks with those of other 
baseline methods. We trained three neural 
networks with one, two and three hidden layers, 
and another network with two hidden layers 
(𝐿 = 2)  without dropout and with sigmoid 
activation functions; the last one was to know 
the improvement achieved by the dropout and 
ReLU. As baseline methods, logistic (softmax) 
regression, which corresponds to 0-hidden layer 
neural network, and SVMs with linear kernel 
and RBF kernel were trained; SVMs were 
configured to be one-versus-the-rest multi-class 

classifiers. Deep neural networks and logistic 
regression were implemented by Theano [24], 
and we used a learning kit ‘scikit-learn’ [25] for 
SVM. Hyper-parameter was determined such to 
maximize the decoding accuracy for validation 
dataset. Since the number of hyper-parameters 
was different between the competitor methods, 
nine sets of hyper-parameter values were 
examined and the best set was selected in each 
method. The logistic regression had a learning 
rate hyper-parameter, and the linear-kernel 
SVM had a regularization hyper-parameter 𝐶. 
The RBF-kernel SVM had a couple of hyper-
parameters, a regularization parameter 𝐶 and a 
kernel coefficient 𝛾; in this case, we used grid 
search for the best combination of 𝐶 and 𝛾 over 
3×3 = 9 patterns. The results are summarized 
in Fig. 2. The three neural networks with 
dropout and ReLU activation showed 
reasonably good decoding accuracy of more 
than 45%. Their decoding accuracies were 
higher than those by the other baseline methods 
and the chance level of 14.29%(=100%/7). 
Especially, the deep neural network with two 
hidden layers exhibited the best decoding 
accuracy of 48.  24%. Linear methods, the 
logistic regression and the linear-kernel SVM, 
showed poor decoding accuracies comparable 
to the chance level, clearly showing the 
advantage of the non-linear decoding methods. 
These results suggest that the deep neural 
networks were more effective in extracting 
subject-independent features within its non-
linear architecture, leading to higher subject-
transfer decoding accuracies. 

Second, we examined how the subject-transfer 
decoding performance behaved when the 
number of subjects included in the training 
dataset was increased from 20 to 70. In this 
evaluation, we compared the deep neural 
network with two hidden layers 𝐿 = 2  and 
the RBF-kernel SVM. For each number of the 
training subjects, we took 10  subjects to 
construct a validation dataset to tune the hyper-
parameters. The results are displayed in Fig. 3. 

Training� Tes)ng*

Outputs*

Inputs*

Hidden*

Hidden*

Subjects*for*training� Subjects*for*tes)ng�

Figure 1. Training and testing a deep neural network 
in subject transfer decoding. (Left) When training a 
deep neural network, we used a dropout technique for 
regularizing the neural network learning; when 
learning a single example in the training dataset, a half 
of hidden units and 20% of input units were ignored 
without emitting their outputs to the network or 
learning. (Right) When testing the trained deep neural 
network, all the units were activated, whereas the 
weights of the hidden units were lowered into their 
halves to be balanced with the training situations. Due 
to the setting of subject transfer decoding, the test data 
were from the test subjects other than the training 
subjects included in the training dataset. 
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As the number of training subjects increased, 
the performance of the deep neural network 
also increased as expected; this would be owing 
to the improvement of subject-independent 
features extracted by the network as the number 
of training subjects increased. Although the 
same character was observed in the SVM 
learning, its performance was consistently 
inferior to that by the deep neural network. This 
result implies that the subject-transfer decoding 
would become more practical if we can access 
to larger brain signal databases including even 
larger number of subjects. Such good usability 
of ‘big data’ was naturally incorporated by the 
non-linear learning scheme based on deep 
neural networks. 

Fig. 4 shows the time-series of the decoder’s 
prediction by the deep neural network with two 
hidden layers, which showed the best subject-
transfer decoding accuracy in the 8-fold cross-
validation. We show the average of the 
decoder’s outputs, corresponding to the average 
posterior probability that the task is belonging 
to each of the seven classes, along the time 
profile of sessions of each task class. This result 
shows that some cognitive tasks (e.g., 
language) were relatively easy to discriminate, 
but some others (e.g., WM) were somehow 
difficult. Such discriminability would be 
dependent on the distance in the feature space 
between task classes. Moreover, we observe 
some zig-zag patterns in the decoder’s class 

 

Figure 2. Comparison of decoding accuracy 
between the deep neural networks and other 
decoding methods; they are logistic regression 
(yellow), which corresponds to 0-hidden layer 
neural network, SVMs with linear kernel and RBF 
kernel (blue), and deep neural networks (NN) with 
one, two, and three hidden layers (light red). The 
training of the neural networks were performed with 
ReLU and dropout. For reference, decoding 
accuracy of NN without dropout and with sigmoid 
activation functions is also shown (magenta). Each 
error bar is the 95% confidence interval of the 
decoding accuracy. A red dotted line denotes the 
chance level. 

 
Figure 3. The accuracy (in terms of the subject 
transfer decoding accuracy) against the number of 
subjects included in the training dataset. The red 
and blue curves depict the accuracy of deep 
neural network (number of hidden layers, 𝐿 = 2) 
and SVM with RBF kernel, respectively. The red 
and blue shaded regions correspond to the 95% 
confidence intervals. 
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prediction, as typically seen in panels (d), (e) 
and (f). These patterns occurred because there 
were resting states between two subsequent task 
sessions. That is, the decoder, which is nothing 

detected difference in the brain activities 
between task periods and resting periods in a 
data-driven manner.  

 
 

 

Figure 4. The time-series of the class prediction by the deep neural network with two hidden layers. We show 
the average of the decoder’s outputs, corresponding to the average posterior probability that the task is belonging 
to each of the seven classes, along the time profile of sessions of each task class: (a) emotion, (b) gambling, (c) 
language, (d) motor, (e) relational, (f) social, or (g) WM. Each single time-series in each panel corresponds to the 
decoder’s output representing the respective posterior probability for each of the seven classes, whose color is 
defined in the inset. The shaded color denotes the standard deviation. 
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4 CONCLUSION 

In this study, we proposed to use deep neural 
network learning for constructing task 
classification decoders trained by a large 
dataset from a public fMRI database. The 
trained decoders were also available for 
subject-transfer decoding. As a result, our 
approach based on deep learning achieved the 
higher decoding accuracy than other baseline 
methods, and got even improved as the number 
of training subjects increased. We thus 
concluded the deep neural network learning 
was ready for obtaining subject-independent 
non-linear features from a ‘big-data’ of brain 
activities, and then for applying to subject-
transfer decoding, which is an important 
methodology for making the brain-machine-
interface more practical in realistic situations. 
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