
Efficient Hardware Implementation of Lightweight

Pseudorandom Number Generators

Umar Mujahid, Yusra Mahmood, M.Najam-ul-Islam, Atif Raza Jafri

Department of Electrical Engineering

Bahria University

Islamabad, Pakistan

(umar.mujahid@bui.edu.pk)

Abstract— Radio Frequency Identification (RFID) is rapidly

developing technology which has greatly revolutionized our lives

around the globe. In RFID scheme, the most leading and

foremost issue is of security and confidentiality. An efficient and

successful way to provide secure transmission is to implement

authentication protocols. Pseudorandom Number Generators

(PRNGs) plays an important role for security which not simply

introduces randomness but also strengthens the diffusion

properties of protocols. Unfortunately, the existence of PRNGs in

authentication protocols increases the size of the tag which

ultimately boosts up the cost of those tags. In this paper, the

efficient hardware implementation of numerous Lightweight

PRNGs (Linear Congruential Generator, Linear Feedback Shift

Register, AKARI-1, AKARI-2, Gold-code sequence generator)

has been performed. Then a novel ultra-lightweight pseudo-

random number generator ‘Extremely Lightweight PRNG’ (EL-

PRNG) using Recursive Hash has been proposed and optimally

implemented. We have used XILINX Design suite for circuit

synthesis and experimental results (for the targeted device virtex-

6). Experimental results show that proposed EL-PRNG requires

fewer resources than its contending PRNG.

Index Terms— Lightweight PRNGs, LCG, LFSR, AKARI-1,

AKARI-2, Gold code generator, recursive hash.

I. INTRODUCTION

RFID is an empowering innovation permitting universal

remote tracking and sensing. It consists of three core entities:

Transponder (tag), Reader (transceiver) and back-end

database. The reader reads the information of the tag through a

wireless channel and also acknowledges to the back-end

database. Due to the wireless transmission between the tag and

reader, the medium or the channel is vulnerable to many

security attacks. Thus, the RFID systems face the critical

problem of security. Many authentication protocols have been

proposed previously in order to resist the security attacks.

Generally tag acknowledge with an invariable value which

gives chance to antagonist to track the data. For this purpose,

Random Number Generators (RNGs) are needed to introduce

the randomness. The RNGs are unpredictable and have no

pattern so due to inefficiency of these RNGs they substituted

the Pseudorandom Number Generators (PRNGs). This is

intended to produce a sequence of numbers which is usually

based on a mathematical algorithm. If the algorithm and its

initial states are known it can be predictable. After the

addition of these PRNGs to the authentication protocols, the

output goes beyond the limit of low-cost RFID tags. This is

because of the increasing area of the tag which ultimately

makes the cost of the tag higher. It is needed to propose and

design lightweight PRNGs. In this paper, Linear Congruential

Generator (LCG), Linear Feedback Shift Register (LFSR),

AKARI-1, AKARI-2 and Gold Code generator have been

discussed. Previously many researchers have designed the

lightweight PRNGs. In [1], Zulfikar et.al described the circuit

design of Linear Congruential Generator (LCG) and also its

implementation on Field Programmable Gate Array (FPGA).

In [2], Honorio Martin et.al projected two lightweight PRNGs

that are AKARI-1 and AKARI-2. These generators can chase

the requirements of low-cost RFID tags. Mohamad Merhi et.al

analyzed the security of the PRNG which is used in the

authentication protocol of the new NXP MIFARE Ultra light

C in [3]. In [3], it is explained that any bad properties originate

in PRNG would have to compromised the protection of the

entire authentication protocol. Honorio Martin et.al described

the efficient ASIC implementation of two lightweight

authentication protocols that are Burmester-Munilla Protocol

and Chien-Huang Protocol which covers the standard of EPC-

C1G2 RFID tags [4]. They used low-demanding PRNGs

(AKARI-1 and AKARI-2) and proposed its implementation

architectures. They concluded that the PRNG consumes a

significant area of the entire protocol and their proposed

protocols are sufficient for low-cost RFID tags.

The rest of the paper is organized in such a way that the

section II presents the Lightweight Pseudorandom Number

Generators in which their algorithms have been described. The

hardware schematics of all the lightweight PRNGs have been

shown in section III. The statistical properties of lightweight

PRNGs have also been checked through the randomness test

suite (NIST, DIEHARD and ENT) and this is discussed in

section IV. At the end, the results have been displayed in

section V.

II. LIGHTWEIGHT PSEUDORANDOM NUMBER GENERATORS

Radio Frequency Identification (RFID) is widely deployed in

billions of units yearly on everything which has made a

significant impact. The major hurdle to this technology is

security. Lightweight Pseudorandom Number Generators

ISBN: 978-1-941968-18-5 ©2015 SDIWC 17

have been introduced in authentication protocols which deal

with the attacks of malicious antagonist. Below is the

description of lightweight PRNGs:

1. Linear Congruential Generator (LCG):

The design of LCG was introduced by Lehmer [1]. It is

represented by a sequential formula:

�ܻ+ଵ = ሺܽ �ܻ + ܿሻ݉(1) ݉݀݋

In equation 1, �ܻ+ଵ is randomly generated number, ܽ is

multiplicative constant, ܿ is additive constant and �ܻ is initial

seed or value and ݉ is modulus. This involves the arithmetic

operations like addition, multiplication and modulus. There

are types of LCGs on the basis of multiplicative constant “ܿ”.
If this constant is zero, it is called Multiplicative LCG and if

constant is not equal to zero; it is known as Mixed LCG. The

very first operation in LCG is multiplication of the initial seed �ܻ with the multiplicative constant ܽ . Then the result adds

with the additive constant ܿ. After that the answer is compared

with modulus ݉. If the answer is greater than the value of ݉ ,

it would be the random number and if the answer is less than

the value of ݉ , the modulus would be taken and that would

be the random number.

2. Linear Feedback Shift Register (LFSR):

LFSR is another technique to generate pseudorandom

numbers. LFSR is a shift register whose input bit is a linear

function of the previous bit [5]. So the bit-wise exclusive OR

operation is used. The output of LFSR depends on the value of

input seed. As register having a finite number of states,

therefore the sequence of random numbers repeats itself after

a cycle. The period of LFSR is ʹ� − ͳ, where n represents the

number of shift register. Figure 1 shows the block diagram of

LFSR which is based on number of shift register.

Fig. 1. Block diagram of LFSR

3. AKARI-X:

In [2] and [4], the implementations of AKARI-1 and AKARI-

2 have been described. Initially, the concept of T-function was

introduced. T-function is a mapping from n-bit words to n- bit

words in which, for each Ͳ ≤ ݇ ≤ ݊, bit ݇ of the output can

depend only on bits Ͳ, ͳ, … ݇ of the input. T-functions include

bitwise operation like XOR, OR and AND. Unfortunately;

these functions are insecure and not reliable. In order to

overcome this hurdle non-linear filter functions are used in

implementing the AKARI-X to introduce high degree of

diffusion. In both designs of AKARI-1 and AKARI-2, the

sequence of lower halves of the ݊ output bits shows the final

output.

3.1: AKARI-1

In AKARI-1, a single filter function is used which repeats

itself about ݇ = ͸Ͷ times. Honorio Martin et.al has proposed

two architectures for AKARI-1 in [2]. The first architecture

(AKARI-1A) tries to reduce the number of clock cycles which

is needed to generate an output. In order to achieve the

execution of operation in only one cycle, different ݊ bit

operation blocks are used. Finite state machine implemented

the control of input and output block. The aim of the second

architecture (AKARI-1B) is to decrease the overall chip area

by using an adder with half number of bits (݊/ʹ) additionally

the control implemented by the Finite State Machine. This

technique requires more clock cycles as the sum takes 3

cycles. By using the adder of half bits, this engages the use of

some multiplexers. So it is needed to seek a balance between

adder size and number of multiplexers used. Figure 2 shows

the Pseudo-code of AKARI-1.

Fig. 2. Pseudo-code of AKARI-1

3.2: AKARI-2

In AKARI-2, two filter functions are combined in order to

reduce the number of iterations in the repeating cycle. Each

function is iterated about ݇ = ʹͶ times. The three

1 2 3 4

ܣ = ܣ + ሺሺܣ ∗ ሻܣ ∨ ͷሻ ܤ = ܤ + ሺሺܤ ∗ ሻܤ ∨ ͳ͵ሻ ܼ = ܣ

ܼ = ሺܼ ب ͳሻ + ሺܼ ا ͳሻ + ܼ + ܤ

AKARI-1

Initialize ࡭ and ࡮ of n-bits

For ݇ from 0 to 63

Output n/2 bits

Lower half of ܼ

ISBN: 978-1-941968-18-5 ©2015 SDIWC 18

architectures of AKARI-2 have been explored. It is seen that

the first two architectures are same as the AKARI-(1A) and

AKARI-(1B). The first architecture (AKARI-2A) aims to

reduce the number of clock cycles and the second architecture

(AKARI-2B) attempts to enhance the occupied area. There is

another architecture that is AKARI-2C which is proposed to

minimize even more the area with more of the number of

clock cycles. In this design, the area of the adder is divided by

4. Below is the Pseudo-code of AKARI-2:

Fig. 3. Pseudo-code of AKARI-2

4. Gold code generator:

A Gold code is also known as Gold sequence. It is category of

binary sequence which is named after Robert Gold. It is an

admired and attractive set of sequences that generates a large

number of unique codes. A Gold sequence is built by the XOR

of two m-sequences with the same clocking.

The required Gold sequences can only be produced by

preferred pairs of m-sequence [9]. A set of Gold codes possess

of the sequences {ܽ, ܽ′, ܽ ⊕ ܽ′, ܽ ⊕ �ܽ′, ܽ ⊕ �ଶܽ′, … , ܽ ⊕��−ଵܽ′} , in which � is the delay element. This � shows a

one-bit shift of ܽ′ relative to ܽ. The shift register generates the

Gold codes with initial state of all- ones vector set in both

registers. The resulting sequences are XORed to produce one

Gold Sequence. At this time, there is three set sequences. In

order to gain the rest of sequences, the second of the first two

sequences is shifted by one bit and executed the XOR

operation again and this repeats till all the possible shifts occur

and produces a new sequence in the set. For a preferred pair of

5-bit shift registers, a new Gold sequence is produced from 0

to 30. The period of any code in a Gold set and the m-

sequence is � = ʹ� − ͳ. There are a total of � + ʹ codes in

any family of Gold Codes. The Gold sequences which are

generated by a preferred pair are bounded by |ܴ| ≤ ʹሺ�+ଵሻ/ଶ +ͳ for ݊ odd and |ܴ| ≤ ʹሺ�+ଶሻ/ଶ + ͳ for ݊ even.

Fig. 4. Block diagram of Gold Code generator

5. EL-PRNG:

EL-PRNG is the novel lightweight PRNG which we had

proposed. In order to implement EL-PRNG we used recursive

hash function. In [10], Umar Mujahid et.al proposed a novel

ultra-lightweight authentication protocol RCIA using

recursive hash. It is described that only three major operations

are used in RCIA protocol: bitwise AND, XOR and left

rotation ,ܣሺݐ݋ܴ ሻ. It also consists of a new non-triangularܤ

function Recursive Hash (ܴℎ). The computation of Recursive

Hash (ܴℎ) is described as follows.

Consider a “n” bit string ܵ, ܵ = ଶݏଵݏ �ݏ … , �ݏ ∈ {Ͳ,ͳ}, � = ͳ,ʹ, … , ݊

Then three steps are performed to compute Rh(S):

1) Split the string ܵ into “�” number of chunks
which is same number of bits “݈” per chunk.

ܣ = ܣ + ሺሺܣ ∗ ሻܣ ∨ ͷሻ ܤ = ܤ + ሺሺܤ ∗ ሻܤ ∨ ͳ͵ሻ ܼ = ܤ^ܣ

ܼ = ሺܼ ا ͳሻ + ሺ(ܼ + ሺͲݔͷ͸ܤܣͲܣሻ) > ͳሻ ܻ = ܼ^ܤ

ܻ = ሺሺܻ ب ͳሻ + ሺܻ ا ͳሻ + ܻ + ሺͲݔ͹ʹܣͶ�ܤሻሻ ܼ = ܼ^ܻ

AKARI-2

Initialize ࡭ and ࡮ of n-bits

For ݇ from 0 to 24

For ݇ from 0 to 24

Output n/2 bits

Lower half of z

1 2 5 3

1

4

3 2 4 5

ISBN: 978-1-941968-18-5 ©2015 SDIWC 19

2) Calculate a seed (index of chunk) for

recursive hash by computing ܴ = ݊ଵ ⊕ ݊ଶ

then the seed is equal to ݐݓሺܴሻ ݉݀݋ �.

3) This seed will choose the chunk “��” from
the decimated string ܵ, then XOR operation

is performed between the selected

chunk "��" with the rest of chunks except

the selected chunk. Then �� will left rotate

with itself: “ܴݐ݋ሺ�� , .”ሺ��ሻሻݐݓ
In this way, we can calculate the Recursive Hash (Rh)

function. The "ܴݐ݋ሺܣ, If there is no bit .ܤ with respect to the number of one’s in ܣ ሻ" performs the cyclic left rotation ofܤ

in ܤ which is equal to one then no operation would performed.

So in ܴݐ݋ሺܣ, ሻ represents the hamming weightܤሺݐݓ ,ሻሻܤሺݐݓ

of ܤ. We can generate a random number by using recursive

hash function. The random seed will produce a random

number. The algorithm is given in figure 5. In this figure, a

16-bit string ܵ is assumed. This string is decimated into four

chunks ݈. As the seed is 2 so the second chunk ݇ଶ is selected

for the rotation purpose. Now the XOR operation will perform

between the selected chuck ݇ଶ and all rest of other chunks

except itself. This ݇ଶ will be left rotated with respect to the

number of ones in it. This procedure computes the recursive

hash function (Rh).

Fig. 5. Algorithm of Recursive Hash

III. HARDWARE SCHEMATICS OF LIGHTWEIGHT PRNGS

In this section, we illustrated the hardware schematics of the

lightweight PRNGs which have been described above. The

hardware of all lightweight PRNGs has been implemented on

XILINX ISE Design suite 14.5 using the Verilog language.

The sequences of PRNGs are generated according to these

schematic diagrams.

1. Linear Congruential Generator (LCG):

The figure 6 shows the schematic diagram of LCG. On the left

portion, there is memory which is introduced with the values

of ܽ, ܿ, ݉ and �ܻ . There is also a sequencer which controls

the access to the memory. In the middle of the diagram, we

have the Arithmetic Logic Unit which performs the operations

of multiplication, addition and modulus. The Arithmetic Logic

Unit has two inputs. One input is from the stored values in the

memory and the other is control 1 between the �ܻ and the

value stored in the register. There is another control- 2 which

decides the operation that should be used from the Arithmetic

Logic Unit (ALU). The result obtained after the execution of

the equation (1) stores in register and is a random number. We

have implemented 32-bit architecture of this generator.

Fig. 6. Schematic diagram of LCG

2. Linear Feedback Shift Register (LFSR):

The hardware schematic of LFSR is given in figure 7. It is

shown that LFSR performs two operations that are XOR and

shifting. There are five registers in which values stores and

shift to next register. The initial seed introduces with “CLK”,
the sequencer controls the access to the registers. There are

two inputs which are given to the ALU. The control-1 selects

between the initial seed and output value stored in reg4. There

is also a clock-2 which is given so that the operations will

trigger every time with it. In every clock, XOR and shift

operations perform simultaneously. The sequence of clock

pulses controls the shift register operation. The output is

obtained by reg4 and it is a random number.

Assume ܵ = ͳͲͲͳͲͲͳͲͳͲͳͳͲͳͳͳ, ݀݁݁ݏ = ʹ, ݊ = ͳ͸, ݈ = Ͷ, � = ݇ଵ, ݇ଶ, … , ݇ସ

Step1: ݇ଵ ݇ଶ ݇ଷ ݇ସ

Step2: As ݀݁݁ݏ = ʹ, so ݇ଶ chunk will be selected for ܴℎ.

Step3: Perform XOR between ݇ଶ and all other chunks

except itself and left rotate ݇ଶ, ܴݐ݋ሺ݇ଷ, ሺ݇ଷሻሻݐݓ

 1001 0010 1011 0111

 ⨁ 0010 0010 0010

,ሺ݇ଷݐ݋ܴ 0101 1001 - 1011 ሺ݇ଷሻሻ 0100 ܴℎሺܵሻ 1011 0100 1001 0101ݐݓ

ܽ

MOD

registe

r MUL

ADD ܿ ݉
Sequence

r

 �ݕ

Control-

Control-2

m-bits

m-bits

m-bits m-bits

Output

(m-bits)

1001 0010 1011 0111

ISBN: 978-1-941968-18-5 ©2015 SDIWC 20

Fig. 7. Schematic diagram of LFSR

3. AKARI-X:

In figure 8, the general schematic diagram of AKARI-X series

has been shown. In the figure, it is shown that there is a

sequencer, memory, register and Arithmetic Logic Unit

(ALU). Input seed introduces in sequencer and this is

controlled by a clock. The ALU performs the operation of

multiplication, addition, OR, XOR and left and right rotation.

One input of ALU decides the operation which is to be

performed. The other input is control-1 which selects between

the stored value in the register and input seed from the

sequencer. The output is the half of the ݊- bits which are the

bits of initial seed. So the lower half bits of the output is taken

as a random number.

Fig. 8. Schematic diagram of AKARI-X

4. Gold code generator:

The basic functionality of a gold code generator is similar to

LFSR. In gold code generator, the sequences of two LFSRs

are XORed. Then one sequence of first LFSR performs XOR

with the shifted sequence of second LFSR. In this way, the

output of gold code generator is generated. The schematic of

gold code can be seen in figure 9. In figure 9, two LFSR

blocks are given which are the inputs of multiplexer. The

control-1 selects between the two inputs. ALU consists of

XOR and shift operation. Clock is given to ALU which

triggers both operation turn by turn.

Fig. 9. Schematic diagram of gold code generator

5. EL-PRNG:

 A novel generator EL-PRNG used recursive hash function.

In recursive hash two main operations are performing: XOR

and left rotation. Below in figure 10, is the schematic of EL-

PRNG. A string decimated into chunks and through the

calculated seed, a chunk is selected which performs XOR

operation with rest of chunks. Control-1 selects between the

selected chunk and rest of chunks and then the required

operations would perform. Clock is given to ALU to trigger it.

Fig. 10. Schematic diagram of EL-PRNG

XOR

SHIFT

Reg4

CLK

Initial

Seed

Reg1

Reg2

Reg0

Clk-2

O/P

Reg3

reg

OR

ADD

MUL

ROT

Lower
Half

(n/2)

CLK

Input seed

Control-1

Control-2

Output

 Output

LFSR

Block-1

LFSR

Block-2

XOR

Shift

Clock

C-1

Chunks

Selected

chunks

XOR

ROT

MOD

String C-1

ISBN: 978-1-941968-18-5 ©2015 SDIWC 21

IV. RANDOMNESS TEST ANALYSIS

The statistical properties of the output sequences which are

generated by the lightweight PRNGs are also checked from

the three batteries of statistical randomness test suites. These

tests include: ENT [6], DIEHARD [7] and NIST [8]. The

result of analysis is given in table 1.

4.1: ENT

The ENT test consists of six tests. ENT represents the quality

of randomness in a given system. If the more entropy is fed

into a value then that value will be more random.

4.2: DIEHARD

DIEHARD test consists of 18 test suite and each test has some

P value. The value of P is different for each test. Some of it is

to be measured to analyze the random behaviour for the entire

sequence. Diehard test run on file of at least 80 million of bits.

4.3: NIST

The NIST batteries test consists of 15 tests, developed by

random number sequence to test the random binary sequence

produced by hardware for cryptographic application based

random number or Pseudo random number generator.

As it is shown in table 1 that all the implemented PRNGs have

passed the randomness tests, this shows that they all are

random in nature. It means that they produce random

sequences. Entropy, compression rate, arithmetic mean and

Monto Carlo estimation � are included in the ENT test suite.

The randomness analysis of PRNGs displays the statistical

properties of generators.

V. RESULTS

Section V describes the results of the implemented lightweight

PRNGs. We have designed the 32-bits architectures of PRNGs

and done a detailed analysis on the synthesized circuits. After

the implementation, design summary of each generator is

obtained. All the PRNGs are compared on the basis of these

design summaries. In table 2, the design summaries of all

lightweight PRNGs are reviewed.

The comparison is done on the basis of logic utilization.

The number of occupied slices, number of slices flip-flops,

number of 4-input LUTs and number of bonded IOBs are

taken as logic utilization. It can be seen that LCG used 279

numbers of slices, 43 numbers of flip-flops, 528 LUTs and 98

IOBs. In contrast to it, the number of slices, flip-flop, LUTs

and IOBs which are used by LFSR is 20, 32, 32 and 66

respectively. AKARI-1 and AKARI-2 both used more

amounts of devices. AKARI-1 used 261 slices, 166 flip-flops,

449 LUTs and 162 IOBs, while AKARI-2 used 641, 255,

1220 and 162 slices, flip-flop, LUTs and IOBs respectively. It

is noted that the gold code generator consumes 42 slices, 64

flip-flops, 68 LUTs and 134 IOBs. The novel generator named

EL-PRNG took 146 slices, 341 flip-flops, 341 LUTs and 67

IOBs. According to table 2, EL-PRNG utilized much less

devices. This shows that this could be an extremely

lightweight PRNG.

Table 1: Randomness analysis with ENT, NIST and DIEHARD of PRNGs

Randomness

tests

LCG LFSR AKARI-1 AKARI-2 GOLD

CODE

EL-PRNG

Entropy 7.99999 7.742279 7.99997 7.99997 7.8899 7.9988

Compression

rate
0% 2.9% 0% 0% 2% 0.1%

Arithmetic

mean
127.5040 124.1337 127.4929 127.5098 124.2238 127.5174

Monto carlo

estimation �
3.14058 3.22583 3.14320 3.14236 3.2269 3.1424

NIST pass pass pass pass Pass Pass

DIEHARD pass pass pass pass pass Pass

ISBN: 978-1-941968-18-5 ©2015 SDIWC 22

VI. CONCLUSION

In this paper, we have introduced a novel lightweight

pseudorandom number generator (EL-PRNG) using primitive

recursive hash function. This proposed PRNG proves that it is

extremely random in nature. In EL-PRNG, there are two main

operations used: XOR and left rotation. According to the

results, we have proved that EL-

PRNG is the most lightweight in nature. As it is extremely

lightweight, ultimately the cost of generator would also be

reduced. Due to its sufficient features, EL-PRNG becomes the

best choice for a very low cost RFID tags.

REFERENCES

[1] Zulfikar, Hubbul Walidainy, “Design and
Implementations of Linear Congruential Generator into

FPGA ”, International Journal of Electronics
Communication and Computer Engineering, Vol. 5, No.

4, pg (809-813), 2014.

[2] Honorio Martin, Enrique San Millan, Luis Entrena, Pedro

Peris-Lopez and Julio Cesar Hernandez Castro. “AKARI-
X: a Pseudorandom number generator for secure

lightweight systems”, 17th
 International On-line Testing

Symposium (IOLTS), pg (228-233), 2011.

[3] Mohamad Merhi, Julio Cesar Hernandez- Castro and

Pedro Peris- Lopez, “Studying the Pseudorandom
Number Generator of a low-cost RFID tags”, IEEE
International Conference on RFID-Techonology and

Applications, pp.(381-385), 2011.

[4] Honorio Martin, Enrique San Millan, Pedro Peris-Lopez

and Juan E. Tapiador, “Efficient ASIC Implementation
and Analysis of Two EPC-C1G2 RFID Authentication

Protocols”, IEEE Sensors Journal, VOL. 13, NO. 10, Pg
(3537-3547), October, 2013.

[5] Purushottam Y. Chawke, R.V.Kshirsagar, “Design of 8
and 16 bit LFSR with maximum length feedback

polynomial using Verilog HDL”, Proceedings of 13th
 IRF

International Conference, Pg (105-107), India, 2014.

[6] J. Walker. Randomness Battery [Online]. Available:

http://www.fourmilab.ch/random/

[7] G. Marsaglia. The Marsaglia Random Number CDROM

Including the Diehard Battery of Tests of Randomness

[online]. Available: http://stat.fsu.edu/pub/diehard.

[8] A. Rukhin, J. Soto, J. nechvatal, M. Smid, E. Barker, S.

Leigh, M. Levenson, M. Vangel, D. Banks, A. Hecket, J.

Dray. A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic

Applications, Gaitherburg, MD, USA [Online]. Available:

http://csrc.nist.gov/rng/

[9] William Stallings, Wireless Communications, 2
nd

 edition,

2002.

[10] Umar Mujahid, M. Najam-ul-Islam, M. Ali Shami,

“RCIA: A New Ultralightweight RFID Authentication
Protocol Using Recursive Hash”, International Journal of

Distributed Sensor Networks, Volume 2015.

[11] Umar Mujahid, M. Najam-ul-Islam, Qurat-ul-Ain, Yusra

Mehmood, “A novel Lightweight Pseudorandom Number
Generator for Passive RFID systems”, 17th

 IEEE

International Multi Topic Conference (INMIC), 2014.

[12] Umar Mujahid, M. Najam-ul-Islam “Ultralightweight

Cryptography for Passive RFID systems”, International

Journal of Communication Networks and Information

Security, Vol.6. no.3, 2014.

[13] Umar Mujahid, M. Najam-ul-islam. et al. ,”A novel
pseudorandom number generator for passive RFID

systems”, 17th IEEE-International multi topic conference

(INMIC-2014), Karachi Pakistan.

Table 2: Design Summary of lightweight Pseudorandom Number Generators

Logic

utilization

LCG LFSR AKARI-1 AKARI-2 GOLD

CODE

EL-PRNG

No. of slices 279 20 261 641 42 146

No. of slices

flip-flop

43 32 166 255 64 341

No. of 4-

input LUTs

528 32 449 1220 68 341

No. of

bonded

IOBs

98 66 162 162 134 67

ISBN: 978-1-941968-18-5 ©2015 SDIWC 23

http://www.fourmilab.ch/random/
http://stat.fsu.edu/pub/diehard
http://csrc.nist.gov/rng/

