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Abstract— Radio Frequency Identification (RFID) is rapidly 

developing technology which has greatly revolutionized our lives 

around the globe. In RFID scheme, the most leading and 

foremost issue is of security and confidentiality. An efficient and 

successful way to provide secure transmission is to implement 

authentication protocols. Pseudorandom Number Generators 

(PRNGs) plays an important role for security which not simply 

introduces randomness but also strengthens the diffusion 

properties of protocols. Unfortunately, the existence of PRNGs in 

authentication protocols increases the size of the tag which 

ultimately boosts up the cost of those tags. In this paper, the 

efficient hardware implementation of numerous Lightweight 

PRNGs (Linear Congruential Generator, Linear Feedback Shift 

Register, AKARI-1, AKARI-2, Gold-code sequence generator) 

has been performed. Then a novel ultra-lightweight pseudo-

random number generator ‘Extremely Lightweight PRNG’ (EL-

PRNG) using Recursive Hash has been proposed and optimally 

implemented. We have used XILINX Design suite for circuit 

synthesis and experimental results (for the targeted device virtex-

6). Experimental results show that proposed EL-PRNG requires 

fewer resources than its contending PRNG. 

Index Terms— Lightweight PRNGs, LCG, LFSR, AKARI-1, 

AKARI-2, Gold code generator, recursive hash.  

 

I. INTRODUCTION 

RFID is an empowering innovation permitting universal 

remote tracking and sensing. It consists of three core entities: 

Transponder (tag), Reader (transceiver) and back-end 

database. The reader reads the information of the tag through a 

wireless channel and also acknowledges to the back-end 

database. Due to the wireless transmission between the tag and 

reader, the medium or the channel is vulnerable to many 

security attacks. Thus, the RFID systems face the critical 

problem of security. Many authentication protocols have been 

proposed previously in order to resist the security attacks.  

Generally tag acknowledge with an invariable value which 

gives chance to antagonist to track the data.  For this purpose, 

Random Number Generators (RNGs) are needed to introduce 

the randomness. The RNGs are unpredictable and have no 

pattern so due to inefficiency of these RNGs they substituted 

the Pseudorandom Number Generators (PRNGs). This is 

intended to produce a sequence of numbers which is usually 

based on a mathematical algorithm. If the algorithm and its 

initial states are known it can be predictable. After the 

addition of these PRNGs to the authentication protocols, the 

output goes beyond the limit of low-cost RFID tags. This is 

because of the increasing area of the tag which ultimately 

makes the cost of the tag higher. It is needed to propose and 

design lightweight PRNGs. In this paper, Linear Congruential 

Generator (LCG), Linear Feedback Shift Register (LFSR), 

AKARI-1, AKARI-2 and Gold Code generator have been 

discussed. Previously many researchers have designed the 

lightweight PRNGs. In [1], Zulfikar et.al described the circuit 

design of Linear Congruential Generator (LCG) and also its 

implementation on Field Programmable Gate Array (FPGA). 

In [2], Honorio Martin et.al projected two lightweight PRNGs 

that are AKARI-1 and AKARI-2. These generators can chase 

the requirements of low-cost RFID tags. Mohamad Merhi et.al 

analyzed the security of the PRNG which is used in the 

authentication protocol of the new NXP MIFARE Ultra light 

C in [3]. In [3], it is explained that any bad properties originate 

in PRNG would have to compromised the protection of the 

entire authentication protocol. Honorio Martin et.al described 

the efficient ASIC implementation of two lightweight 

authentication protocols that are Burmester-Munilla Protocol 

and Chien-Huang Protocol which covers the standard of EPC-

C1G2 RFID tags [4]. They used low-demanding PRNGs 

(AKARI-1 and AKARI-2) and proposed its implementation 

architectures. They concluded that the PRNG consumes a 

significant area of the entire protocol and their proposed 

protocols are sufficient for low-cost RFID tags. 

The rest of the paper is organized in such a way that the 

section II presents the Lightweight Pseudorandom Number 

Generators in which their algorithms have been described. The 

hardware schematics of all the lightweight PRNGs have been 

shown in section III. The statistical properties of lightweight 

PRNGs have also been checked through the randomness test 

suite (NIST, DIEHARD and ENT) and this is discussed in 

section IV. At the end, the results have been displayed in 

section V. 

 

II. LIGHTWEIGHT PSEUDORANDOM NUMBER GENERATORS 

Radio Frequency Identification (RFID) is widely deployed in 

billions of units yearly on everything which has made a 

significant impact. The major hurdle to this technology is 

security.  Lightweight Pseudorandom Number Generators 
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have been introduced in authentication protocols which deal 

with the attacks of malicious antagonist. Below is the 

description of lightweight PRNGs: 

1. Linear Congruential Generator (LCG): 

 
The design of LCG was introduced by Lehmer [1]. It is 

represented by a sequential formula: 

�ܻ+ଵ = ሺܽ �ܻ + ܿሻ݉(1)                                    ݉݀݋ 

In equation 1, �ܻ+ଵ  is randomly generated number, ܽ  is 

multiplicative constant, ܿ is additive constant and �ܻ is initial 

seed or value and ݉ is modulus. This involves the arithmetic 

operations like addition, multiplication and modulus. There 

are types of LCGs on the basis of multiplicative constant “ܿ”. 
If this constant is zero, it is called Multiplicative LCG and if 

constant is not equal to zero; it is known as Mixed LCG. The 

very first operation in LCG is multiplication of the initial seed �ܻ   with the multiplicative constant ܽ . Then the result adds 

with the additive constant ܿ. After that the answer is compared 

with modulus ݉. If the answer is greater than the value of  ݉ , 

it would be the random number and if the answer is less than 

the value of  ݉ , the modulus would be taken and that would 

be the random number. 

 

2. Linear Feedback Shift Register (LFSR): 

 
LFSR is another technique to generate pseudorandom 

numbers. LFSR is a shift register whose input bit is a linear 

function of the previous bit [5]. So the bit-wise exclusive OR 

operation is used. The output of LFSR depends on the value of 

input seed. As register having a finite number of states, 

therefore the sequence of random numbers repeats itself after 

a cycle. The period of LFSR is ʹ� − ͳ, where n represents the 

number of shift register. Figure 1 shows the block diagram of 

LFSR which is based on number of shift register.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Block diagram of LFSR 

 

3. AKARI-X: 

 
In [2] and [4], the implementations of AKARI-1 and AKARI-

2 have been described. Initially, the concept of T-function was 

introduced. T-function is a mapping from n-bit words to n- bit 

words in which, for each Ͳ ≤ ݇ ≤ ݊, bit ݇ of the output can 

depend only on bits Ͳ, ͳ, … ݇ of the input. T-functions include 

bitwise operation like XOR, OR and AND. Unfortunately; 

these functions are insecure and not reliable. In order to 

overcome this hurdle non-linear filter functions are used in 

implementing the AKARI-X to introduce high degree of 

diffusion. In both designs of AKARI-1 and AKARI-2, the 

sequence of lower halves of the ݊ output bits shows the final 

output. 

3.1:  AKARI-1 

In AKARI-1, a single filter function is used which repeats 

itself about ݇ = ͸Ͷ times. Honorio Martin et.al has proposed 

two architectures for AKARI-1 in [2]. The first architecture 

(AKARI-1A) tries to reduce the number of clock cycles which 

is needed to generate an output. In order to achieve the 

execution of operation in only one cycle, different ݊  bit 

operation blocks are used. Finite state machine implemented 

the control of input and output block. The aim of the second 

architecture (AKARI-1B) is to decrease the overall chip area 

by using an adder with half number of bits (݊/ʹ) additionally 

the control implemented by the Finite State Machine. This 

technique requires more clock cycles as the sum takes 3 

cycles. By using the adder of half bits, this engages the use of 

some multiplexers. So it is needed to seek a balance between 

adder size and number of multiplexers used. Figure 2 shows 

the Pseudo-code of AKARI-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Pseudo-code of AKARI-1 

3.2: AKARI-2  

In AKARI-2, two filter functions are combined in order to 

reduce the number of iterations in the repeating cycle. Each 

function is iterated about ݇ = ʹͶ  times. The three 

 

 

 

 

 

1 2 3 4 

ܣ = ܣ + ሺሺܣ ∗ ሻܣ ∨ ͷሻ ܤ = ܤ + ሺሺܤ ∗ ሻܤ ∨ ͳ͵ሻ ܼ =  ܣ

ܼ = ሺܼ ب ͳሻ + ሺܼ ا ͳሻ + ܼ +  ܤ

AKARI-1 

Initialize ࡭ and ࡮ of n-bits 

For ݇ from 0 to 63  

Output n/2 bits 

Lower half of ܼ 
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architectures of AKARI-2 have been explored. It is seen that 

the first two architectures are same as the AKARI-(1A) and 

AKARI-(1B). The first architecture (AKARI-2A) aims to 

reduce the number of clock cycles and the second architecture 

(AKARI-2B) attempts to enhance the occupied area.  There is 

another architecture that is AKARI-2C which is proposed to 

minimize even more the area with more of the number of 

clock cycles. In this design, the area of the adder is divided by 

4. Below is the Pseudo-code of AKARI-2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Pseudo-code of AKARI-2 

4. Gold code generator: 

 
A Gold code is also known as Gold sequence. It is category of 

binary sequence which is named after Robert Gold. It is an 

admired and attractive set of sequences that generates a large 

number of unique codes. A Gold sequence is built by the XOR 

of two m-sequences with the same clocking.  

The required Gold sequences can only be produced by 

preferred pairs of m-sequence [9]. A set of Gold codes possess 

of the sequences    {ܽ, ܽ′, ܽ ⊕ ܽ′, ܽ ⊕ �ܽ′, ܽ ⊕ �ଶܽ′, … , ܽ ⊕��−ଵܽ′}  , in which � is the delay element. This � shows a 

one-bit shift of ܽ′ relative to  ܽ. The shift register generates the 

Gold codes with initial state of all- ones vector set in both 

registers. The resulting sequences are XORed to produce one 

Gold Sequence. At this time, there is three set sequences. In 

order to gain the rest of sequences, the second of the first two 

sequences is shifted by one bit and executed the XOR 

operation again and this repeats till all the possible shifts occur 

and produces a new sequence in the set. For a preferred pair of 

5-bit shift registers, a new Gold sequence is produced from 0 

to 30. The period of any code in a Gold set and the m-

sequence is � = ʹ� − ͳ. There are a total of � + ʹ codes in 

any family of Gold Codes.  The Gold sequences which are 

generated by a preferred pair are bounded by |ܴ| ≤ ʹሺ�+ଵሻ/ଶ +ͳ for ݊ odd and |ܴ| ≤ ʹሺ�+ଶሻ/ଶ + ͳ for ݊ even. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Block diagram of Gold Code generator  

5. EL-PRNG: 

 
EL-PRNG is the novel lightweight PRNG which we had 

proposed. In order to implement EL-PRNG we used recursive 

hash function. In [10], Umar Mujahid et.al proposed a novel 

ultra-lightweight authentication protocol RCIA using 

recursive hash. It is described that only three major operations 

are used in RCIA protocol: bitwise AND, XOR and left 

rotation ,ܣሺݐ݋ܴ   ሻ. It also consists of a new non-triangularܤ

function Recursive Hash (ܴℎ). The computation of Recursive 

Hash (ܴℎ) is described as follows. 

Consider a “n” bit string ܵ,  ܵ = ଶݏଵݏ  �ݏ … , �ݏ ∈ {Ͳ,ͳ}, � = ͳ,ʹ, … , ݊ 

Then three steps are performed to compute Rh(S): 

1) Split the string ܵ into “�” number of chunks 
which is same number of bits “݈” per chunk. 

ܣ = ܣ + ሺሺܣ ∗ ሻܣ ∨ ͷሻ ܤ = ܤ + ሺሺܤ ∗ ሻܤ ∨ ͳ͵ሻ ܼ =  ܤ^ܣ

ܼ = ሺܼ ا ͳሻ + ሺ(ܼ + ሺͲݔͷ͸ܤܣͲܣሻ) > ͳሻ ܻ =  ܼ^ܤ

ܻ = ሺሺܻ ب ͳሻ + ሺܻ ا ͳሻ + ܻ + ሺͲݔ͹ʹܣͶ�ܤሻሻ ܼ = ܼ^ܻ 

AKARI-2 

Initialize ࡭ and ࡮ of n-bits 

For ݇ from 0 to 24 

For ݇ from 0 to 24 

Output n/2 bits 

Lower half of z 

                        

                        

                        

 
 

1 2 5 3 

1 

4 

3 2 4 5 
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2) Calculate a seed (index of chunk) for 

recursive hash by computing ܴ = ݊ଵ ⊕ ݊ଶ 

then the seed is equal to ݐݓሺܴሻ ݉݀݋ �. 

3) This seed will choose the chunk “��” from 
the decimated string ܵ, then XOR operation 

is performed between the selected 

chunk  "��"  with the rest of chunks except 

the selected chunk. Then ��  will left rotate 

with itself: “ܴݐ݋ሺ�� ,  .”ሺ��ሻሻݐݓ
In this way, we can calculate the Recursive Hash (Rh) 

function. The "ܴݐ݋ሺܣ,  If there is no bit .ܤ with respect to the number of one’s in ܣ ሻ" performs the cyclic left rotation ofܤ

in ܤ which is equal to one then no operation would performed. 

So in ܴݐ݋ሺܣ,  ሻ represents the hamming weightܤሺݐݓ ,ሻሻܤሺݐݓ

of ܤ. We can generate a random number by using recursive 

hash function. The random seed will produce a random 

number. The algorithm is given in figure 5. In this figure, a 

16-bit string ܵ is assumed. This string is decimated into four 

chunks ݈. As the seed is 2 so the second chunk ݇ଶ is selected 

for the rotation purpose. Now the XOR operation will perform 

between the selected chuck  ݇ଶ  and all rest of other chunks 

except itself. This ݇ଶ will be left rotated with respect to the 

number of ones in it. This procedure computes the recursive 

hash function (Rh). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Algorithm of Recursive Hash  

III. HARDWARE SCHEMATICS OF LIGHTWEIGHT PRNGS 

In this section, we illustrated the hardware schematics of the 

lightweight PRNGs which have been described above. The 

hardware of all lightweight PRNGs has been implemented on 

XILINX ISE Design suite 14.5 using the Verilog language. 

The sequences of PRNGs are generated according to these 

schematic diagrams.  

1. Linear Congruential Generator (LCG): 

The figure 6 shows the schematic diagram of LCG. On the left 

portion, there is memory which is introduced with the values 

of  ܽ, ܿ, ݉ and �ܻ . There is also a sequencer which controls 

the access to the memory. In the middle of the diagram, we 

have the Arithmetic Logic Unit which performs the operations 

of multiplication, addition and modulus. The Arithmetic Logic 

Unit has two inputs. One input is from the stored values in the 

memory and the other is control 1 between the  �ܻ and the 

value stored in the register. There is another control- 2 which 

decides the operation that should be used from the Arithmetic 

Logic Unit (ALU). The result obtained after the execution of 

the equation (1) stores in register and is a random number. We 

have implemented 32-bit architecture of this generator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Schematic diagram of LCG 

2. Linear Feedback Shift Register (LFSR): 

The hardware schematic of LFSR is given in figure 7. It is 

shown that LFSR performs two operations that are XOR and 

shifting. There are five registers in which values stores and 

shift to next register.  The initial seed introduces with “CLK”, 
the sequencer controls the access to the registers. There are 

two inputs which are given to the ALU. The control-1 selects 

between the initial seed and output value stored in reg4. There 

is also a clock-2 which is given so that the operations will 

trigger every time with it. In every clock, XOR and shift 

operations perform simultaneously. The sequence of clock 

pulses controls the shift register operation. The output is 

obtained by reg4 and it is a random number. 

 

Assume ܵ = ͳͲͲͳͲͲͳͲͳͲͳͳͲͳͳͳ, ݀݁݁ݏ = ʹ, ݊ = ͳ͸, ݈ = Ͷ, � = ݇ଵ, ݇ଶ, … , ݇ସ 

Step1:           ݇ଵ          ݇ଶ        ݇ଷ        ݇ସ 

 

Step2: As ݀݁݁ݏ = ʹ, so ݇ଶ chunk will be selected for ܴℎ. 

Step3: Perform XOR between ݇ଶ and all other chunks 

except itself and left rotate ݇ଶ, ܴݐ݋ሺ݇ଷ,  ሺ݇ଷሻሻݐݓ

                           1001 0010 1011 0111 

                   ⨁    0010          0010 0010 

,ሺ݇ଷݐ݋ܴ 0101 1001      -   1011                                  ሺ݇ଷሻሻ         0100                 ܴℎሺܵሻ   1011 0100 1001 0101ݐݓ
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r MUL 

ADD ܿ ݉ 
Sequence

r 

 �ݕ
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m-bits 
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1001 0010 1011 0111 
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Fig. 7.  Schematic diagram of LFSR 

3. AKARI-X: 

In figure 8, the general schematic diagram of AKARI-X series 

has been shown. In the figure, it is shown that there is a 

sequencer, memory, register and Arithmetic Logic Unit 

(ALU). Input seed introduces in sequencer and this is 

controlled by a clock. The ALU performs the operation of 

multiplication, addition, OR, XOR and left and right rotation. 

One input of ALU decides the operation which is to be 

performed. The other input is control-1 which selects between 

the stored value in the register and input seed from the 

sequencer. The output is the half of the ݊- bits which are the 

bits of initial seed. So the lower half bits of the output is taken 

as a random number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Schematic diagram of AKARI-X 

 

4. Gold code generator: 

The basic functionality of a gold code generator is similar to 

LFSR. In gold code generator, the sequences of two LFSRs 

are XORed. Then one sequence of first LFSR performs XOR 

with the shifted sequence of second LFSR. In this way, the 

output of gold code generator is generated. The schematic of 

gold code can be seen in figure 9. In figure 9, two LFSR 

blocks are given which are the inputs of multiplexer. The 

control-1 selects between the two inputs. ALU consists of 

XOR and shift operation. Clock is given to ALU which 

triggers both operation turn by turn.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Schematic diagram of gold code generator 

5. EL-PRNG: 

      A novel generator EL-PRNG used recursive hash function. 

In recursive hash two main operations are performing: XOR 

and left rotation. Below in figure 10, is the schematic of EL-

PRNG. A string decimated into chunks and through the 

calculated seed, a chunk is selected which performs XOR 

operation with rest of chunks. Control-1 selects between the 

selected chunk and rest of chunks and then the required 

operations would perform. Clock is given to ALU to trigger it. 

 

 

 

 

 

 

 

Fig. 10.  Schematic diagram of EL-PRNG 
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IV. RANDOMNESS TEST ANALYSIS 

The statistical properties of the output sequences which are 

generated by the lightweight PRNGs are also checked from 

the three batteries of statistical randomness test suites. These 

tests include: ENT [6], DIEHARD [7] and NIST [8]. The 

result of analysis is given in table 1. 

 

4.1:  ENT 

The ENT test consists of six tests. ENT represents the quality 

of randomness in a given system. If the more entropy is fed 

into a value then that value will be more random.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2: DIEHARD 

DIEHARD test consists of 18 test suite and each test has some 

P value. The value of P is different for each test. Some of it is 

to be measured to analyze the random behaviour for the entire 

sequence. Diehard test run on file of at least 80 million of bits. 

    

4.3: NIST 

The NIST batteries test consists of 15 tests, developed by 

random number sequence to test the random binary sequence 

produced by hardware for cryptographic application based 

random number or Pseudo random number generator. 

As it is shown in table 1 that all the implemented PRNGs have 

passed the randomness tests, this shows that they all are 

random in nature. It means that they produce random 

sequences. Entropy, compression rate, arithmetic mean and 

Monto Carlo estimation � are included in the ENT test suite. 

The randomness analysis of PRNGs displays the statistical 

properties of generators. 

 

V. RESULTS 

Section V describes the results of the implemented lightweight 

PRNGs. We have designed the 32-bits architectures of PRNGs 

and done a detailed analysis on the synthesized circuits. After 

the implementation, design summary of each generator is 

obtained. All the PRNGs are compared on the basis of these 

design summaries. In table 2, the design summaries of all 

lightweight PRNGs are reviewed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The comparison is done on the basis of logic utilization. 

The number of occupied slices, number of slices flip-flops, 

number of 4-input LUTs and number of bonded IOBs are 

taken as logic utilization. It can be seen that LCG used 279 

numbers of slices, 43 numbers of flip-flops, 528 LUTs and 98 

IOBs. In contrast to it, the number of slices, flip-flop, LUTs 

and IOBs which are used by LFSR is 20, 32, 32 and 66 

respectively. AKARI-1 and AKARI-2 both used more 

amounts of devices. AKARI-1 used 261 slices, 166 flip-flops, 

449 LUTs and 162 IOBs, while AKARI-2 used 641, 255, 

1220 and 162 slices, flip-flop, LUTs and IOBs respectively. It 

is noted that the gold code generator consumes 42 slices, 64 

flip-flops, 68 LUTs and 134 IOBs. The novel generator named 

EL-PRNG took 146 slices, 341 flip-flops, 341 LUTs and 67 

IOBs. According to table 2, EL-PRNG utilized much less 

devices. This shows that this could be an extremely 

lightweight PRNG.  

 

Table 1: Randomness analysis with ENT, NIST and DIEHARD of PRNGs 

Randomness 

tests 

LCG LFSR AKARI-1 AKARI-2 GOLD 

CODE 

EL-PRNG 

Entropy 7.99999 7.742279 7.99997 7.99997 7.8899 7.9988 

Compression 

rate 
0% 2.9% 0% 0% 2% 0.1% 

Arithmetic 

mean 
127.5040 124.1337 127.4929 127.5098 124.2238 127.5174 

Monto carlo 

estimation � 
3.14058 3.22583 3.14320 3.14236 3.2269 3.1424 

NIST pass pass pass pass Pass Pass 

DIEHARD pass pass pass pass pass Pass 
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VI. CONCLUSION  

In this paper, we have introduced a novel lightweight 

pseudorandom number generator (EL-PRNG) using primitive 

recursive hash function. This proposed PRNG proves that it is 

extremely random in nature. In EL-PRNG, there are two main 

operations used: XOR and left rotation. According to the 

results, we have proved that EL- 

PRNG is the most lightweight in nature. As it is extremely 

lightweight, ultimately the cost of generator would also be 

reduced. Due to its sufficient features, EL-PRNG becomes the 

best choice for a very low cost RFID tags. 
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Table 2: Design Summary of lightweight Pseudorandom Number Generators 

Logic 

utilization  

LCG LFSR AKARI-1  AKARI-2 GOLD 

CODE 

EL-PRNG 

No. of slices 279 20 261 641 42 146 

No. of slices 

flip-flop 

43 32 166 255 64 341 

No. of 4-

input LUTs 

528 32 449 1220 68 341 

No. of 

bonded 

IOBs 

98 66 162 162 134 67 
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