

A Protection Architecture for Malicious JavaScripts on Web Browsers

Woung Jang, Jonghun Jung, Myoungsun Noh, Kyungho Jung, and Chaetae Im
Internet Incidents Response Technology Team

Korea Internet & Security Agency
IT Venture Tower, Jungdaero 135, Songpagu, Seoul, Korea.

 Email : {jangw2232, jjh2640, nmsnms, khc, chtim }@kisa.or.kr

ABSTRACT

‘Web-based Cyber Attacks’ for leaking private
information or making target system to denial of
service (DoS) are arising. Traditional Web-based
cyber attacks hide malwares in the Web pages to
make it install and make the client under control.
Nowadays, however, these attacks have evolved to
‘Script-based Cyber Attacks’ which infect the
visitors just by accessing a certain Web page, not
using malwares. Traditional Web-based cyber
attacks can be protected by detecting malwares, but
script-based cyber attacks cannot be protected by
the former method because no malwares are
detected. Therefore, new architecture is necessary to
prevent malicious behaviors on Web browsers. In
this paper, a protection architecture is introduced to
detect the connection requests for URLs which are
used by the attacker, to detect Web pages which
have malicious scripts, and to prevent the execution
of the malicious JavaScript codes.

KEYWORDS

Script-based Cyber Attacks; Browser-level
Protection Architecture; Browser Helper Objects
(BHO).

1 INTRODUCTION

‘Web-based Cyber Attacks’ have been
continually increased for attackers to leak
private information or making target system to
denial of service (DoS) by infecting malwares
to visitors through web sites. As shown in Fig.
1, however, in case of the 6.25 cyber attack to
Web pages of government organizations in
South Korea in 2013, a new type of cyber
attack called ‘Script-based Cyber Attack’

happened which makes Distributed DoS
(DDoS) attack to the Web pages by the visitors,
without infection of malwares. Traditional web-
based cyber attacks can be protected by
detecting the download of malwares, but the
script-based cyber attacks cannot be protected
by the former method because of not using
malwares. Furthermore, with the spread of
HTML5 environments, various types of attacks
can appear by using new features supported in
the HTML5 standard, such as Web sockets or
Web workers. Therefore, a new architecture is
necessary to prevent the script-based attack on
Web browsers.

Fig. 1. DDoS Attack by Malicious JavaScript code

Most of the Web browsers support browser

extensions to expand some intended functions
or modify Web pages. Therefore, with an
appropriate browser extension, we can protect
the malicious JavaScript codes by scanning the
Web pages before it rendered. In this paper, a
protection architecture based on the browser
extension is introduced to detect the connection
requests for URLs which are previously used
by attacks, to detect the Web pages which have
malicious JavaScript codes, and to prevent the
execution of the malicious JavaScript codes by
blocking APIs which are essential for the
attack.

Proceedings of the International Conference on Cyber-Crime Investigation and Cyber Security, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 20

2 BACKGROUNDS & RELATED WORK

The protection methods can be classified into
three that is in Fig. 1. The first one is the
protection in the first step, blocking the
insertion of malicious JavaScript codes to an
attack server. The second one is the protection
in the second step, blocking the connection to
the attack server or the download of malicious
JavaScript codes on the network. The last one is
the protection in the third step, blocking the
execution of the malicious JavaScript codes on
the client browser.

The first method should consider the routes
of inserting malicious JavaScript codes, or the
malicious server made for the attack. However,
this method will not be introduced in this paper
because of focusing the main topic of this
paper.

The second method has some advantages that
the protection system on the network can stand
without installing the additional agent program
on the client, and it can cover the whole users
on the network to which the system is applied.
This method should consider about an
appropriate architecture for detecting malicious
code in the user traffic, which include
identification an Web session on the network
traffic, extraction and analysis of malicious
JavaScript codes on the Web page, and
notification to the detected user. Furthermore,
the system on the network which has this
architecture should have high analyzing speed
for providing low latency to the users, because
the analysis engine on the protection system
should analyze huge amount of JavaScript
codes on the network, and the collected codes
are text string, not just binary stream. And also,
the system should consider many exceptions on
the network for stable operation.

Moshchuk et al. introduces SpyProxy [1],
which is a system to detect malicious behaviors
by loading Web pages directly on a browser in
a virtual machine. The system made an effort
for low latency of users by containing Web
cache and proxy, which sends partial safe

contents to the clients. But, this system need an
additional agent program on the clients. Li et al.
proposes WebShield [2], which suggests a
method that could run the system not dependent
on the additional agent program on the client.
But the system uses sandboxes for each client
on the network to make content analysis
precise, and the whole sandboxes requires huge
memory on the system. To this end, the system
has limited performance that could analyze the
contents of at most 70 users.

The third method, the protection method of
blocking the malicious JavaScript codes on the
client browser, on the other hand, it makes each
user install an additional software which makes
the user uncomfortable in some sense.
Nevertheless, this approach can detect the
browser events and analyze the content easily,
and it does not have to deploy additional
network equipment on the network. Therefore,
we follow this approach in this paper.

There are two approaches to realize this
method. One is to detect each connection
request by requested URL which has been used
previously by the attacker, and the other one is
to detect malicious JavaScript codes by
analyzing the downloaded contents. The former
method is used by Webcheck [3] and
SiteAdvisor [4]. This method is intuitive and
fast, but have a weakness in case of changing
attack site frequently. The latter method is used
in JSAND [5] suggested by Agten et al.
Specifically, they suggest a method that makes
the sandbox for blocking malicious behaviors
of third-party JavaScript codes in the contents
by monitoring the downloaded Web contents.
This method makes it possible to block the
third-party JavaScript codes, but if the
malicious JavaScript codes are in the main
script in the Web page, it is impossible to
detect. This paper suggests an architecture that
applies two methods at the same time.

3 PROPOSED ARCHITECTURE

The method of blocking the malicious
JavaScript codes using the browser extension

Proceedings of the International Conference on Cyber-Crime Investigation and Cyber Security, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 21

depends on Web browser. If detection module
has a dependency in the type of browser, this
architecture have low expendability and
reusability in the multi browser environment.

Therefore, we propose the architecture that
the detection module take a part in an
independent program to communicate each
browser extensions.

Fig. 2. Proposed architecture (abstract)

In the abstracted architecture in Fig. 2, agent

program can communicate each browser
extensions. These extensions can request
analysis for URLs at the time that the client
requested, and JavaScript codes in the Web
page before the codes are executed.

Fig. 3. Proposed architecture (full)

As shown in Fig. 3, browser extensions have

two modules, and agent program have four
modules. The descriptions about each
component are in the next chapters.

3.1 Browser Extension

To catch the events on the browser and
prevent the execution of malicious JavaScript
codes, the browser extension consists of two

modules. The event listener catches the browser
events, and the post processor modifies
JavaScript codes which are defined as
malicious code. In Fig. 4, it shows the type of
events on Internet Explorer. [6]

Fig. 4. Browser events (Internet Explorer)

At the time of URL requested, the event

listener can catch the browser event named
BeforeNavigate2, so the Browser Helper Object
(BHO) can request the agent program to
identify the URL. At the time of just before
executing JavaScript codes in the Web page,
the event listener can catch the browser event
named BeforeScriptExecute, so the BHO can
request the agent program to identify that the
JavaScript codes in the page are malicious or
not.

At the post processer, it receive the analysis
result and take appropriate action. If the
requested URL is on the blacklist, the post
processor can block the connection, or redirect
to an extra page followed by the policy. If the
requested Web page has malicious JavaScript
codes, it modifies the JavaScript codes follows
by the analysis result which has the modified
codes not to execute it, or block the whole page
or redirect to an extra page followed by the
policy. In Fig. 5, it shows the example of
notification on detection of the malicious
JavaScript codes, and the modified Web page
not to execute the JavaScript codes.

Proceedings of the International Conference on Cyber-Crime Investigation and Cyber Security, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 22

Fig. 5. Example screenshot. (Internet Explorer)

3.2 Agent Program

To support various types of browser
extensions, the agent program is outside of Web
browser. The agent program consists of three
modules and one database for detection.

The malicious URL detection module has a
role to identify the requested URL on the
browser is malicious or not from the analysis
request message. When this module find the
requested URL is malicious, it responses the
result which contains the policy to post process.
And it make the notification GUI notify the
result to the client user. Blacklist URLs are
updated regularly from the external database.

The malicious JavaScript detection module
has a role to identify the malicious JavaScript
codes in the requested Web page by matching
the malicious JavaScript code signature. When
this module find the requested Web page is
malicious, it responses the result which
contains the deletion point on the JavaScript
code and the policy to post process. This
module finally make the notification GUI notify
the result to the client user.

The Notification GUI module has a role to
notify the analysis result to client user when it
is malicious. This notification contains detected
time, detected URL, type of malicious
behavior, and processed policy.

4 CONCLUSION & FUTURE WORK

In this paper, the prevention architecture is
introduced for blocking malicious JavaScript
codes on Web browsers by browser extensions
and an agent program. Because this architecture
depends on the signature matching with the
detected signature information, it is important
to maintain and update the types of attack
signatures. Therefore, it is necessary to identify
new attack types by monitoring regularly, and
to improve the detection rate of malicious
JavaScript codes by extracting signatures on the
attack script samples. Furthermore, because
experiments on this architecture have not been
conducted sufficiently, additional tests should
be conducted with optimization of the
developed software.

ACKNOWLEDGEMENT

This work was supported by the ICT R&D
Program of MSIP/IITP. [14-912-06-002, The
Development of Script-based Cyber Attack
Protection Technology]

REFERENCES

[1] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble,
and H. M. Levy, "SpyProxy: Execution-based Detection
of Malicious Web Content," in Proc. of USENIX
Security, 2007.
[2] Z. Li, Y. Tang, Y. Cao, V Rastogi, Y. Chen. And B.
Liu, "WebShield: Enabling Various Web Defense
Techniques without Client Side Modifications," in Proc.
of NDSS, 2011.
[3] WebCheck, Korea Internet & Security Agency.
Available: http://webcheck.kisa.or.kr
[4] SiteAdviser. McAfee. Available:
http://www.siteadvisor.com
[5] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L.
Desmet, and F Piessens, "JSand: Complete Client-side
Sandboxing of Third-party JavaScript without Browser
Modifications," in Proc. of the 28th Annual Computer
Security Applications Conference, 2012.
[6] DWebBrowserEvents2 interface, MSDN, Microsoft.
Available : http://msdn.microsoft.com/en-
us/library/aa768283(v=vs.85).aspx

Proceedings of the International Conference on Cyber-Crime Investigation and Cyber Security, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 23

