
Implementation and Evaluation of Simultaneous Session
Limitation Mechanism

Ryo SHIBAHARA, Hiroki TONE and Keizo SAISHO

Kagawa University

2217-20 Hayashi-cho, Takamatsu 761-0396, Japan

s18g470@stu.kagawa-u.ac.jp, s17g472@stu.kagawa-u.ac.jp, sai@eng.kagawa-u.ac.jp

ABSTRACT

Responsiveness of Web servers is lowered

when they are overloaded caused by a lot of re-

quests from clients. Moreover, Web servers are

required to be not only available but also sta-

ble responsiveness especially for interactive Web

application. In this paper, a mechanism which

limits the number of simultaneous sessions us-

ing firewall is proposed in order to provide sta-

ble Web services. The mechanism consists of

authentication server, firewall and user identi-

fication server. Authentication server authenti-

cates user and registers IP address of his ma-

chine with firewall when the number of current

simultaneous sessions is less than the specified

number. After this, authenticated users can ac-

cess Web server. By using firewall, it is possible

to not only limit the num- ber of simultaneous

sessions but also block malicious attacks such

as DoS attack. However, users can access the

Web server without authentication when they

use same NAT environment or proxy server as

authenticated users. User identification server

detects access from unauthenticated users and

blocks them. This paper describes implementa-

tion of user authentication server and user iden-

tification server, and evaluation of them. From

results of evaluations, we confirm that user au-

thentication server can authenticate and user

identification server has tolerance of attack with

unauthenticated users.

KEYWORD

Access Limitation, User Authentication, Fire-

wall, User Identification, Web Service

1 INTRODUCTION

In recent years, various Web services are pro-

vided. Moreover, a lot of users can use Web

services anywhere and anytime with the spread

of smart phones. As the number of users in-

creases, requests to Web servers also increase.

When excessive requests issue to Web server,

it is overloaded. As a result, responsiveness of

services is lowered and these services may not

available at the worst case. Thus, we decided to

develop simultaneous session limitation mech-

anism that limits the number of simultaneous

sessions from authenticated users to solve such

situation. The mechanism consists of authen-

tication server, firewall and user identification

server. By using firewall, it is possible to not

only limit the number of simultaneous sessions

but also block malicious attacks such as DoS at-

tack. Authentication server authenticates user

and registers IP address of his machine with fire-

wall when the number of current simultaneous

sessions is less than the specified number. After

this, authenticated users can access Web server.

However, users can access the Web server with-

out authentication when they use same NAT

environment or proxy server as authenticated

users. User identification server detects access

from unauthenticated users and blocks them.

We use cookie to identify sessions. By check-

ing cookie, user identification server can detect

whether session is formally authenticated. This

paper describes implementation of user authen-

tication server and user identification server and

evaluation of them.

2 RELATED WORKS

In [1], a system is aiming to reduce load of the

Web server is proposed. This system is achieved

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 24



that all requests to origin Web server are redi-

rected to the CAPTCHA nodes. The results of

experiments show that the latency has increased

but the load of the Web server has been reduced

and the average response time has been signif-

icantly improved, compared to the case of ac-

cessing the Web server directly. This research is

the same as our research in reducing the load on

the web server. It cannot cope with many users

accessing simultaneously, but our research can.

There are researches that relaxes user frustra-

tion even when Web server is overloaded[2][3].

In [2], WebQ, a system to improve user experi-

ence when accessing overloaded Web servers, is

proposed. Users accessing a server protected by

WebQ receive a HTTP redirect response speci-

fying a wait time in the virtual queue, and are

automatically redirected to the web server upon

expiration of the wait time. The results of exper-

iments show that requests can be processed nor-

mally and response time is also improved even

if the load of Web server protected by the pro-

posed system exceeds the capacity of the Web

server. In [3], the mechanism which contin-

ues important services by lowering the quality

of unimportant services rather than restricting

users access when Web server is overloaded is

proposed. From the results of experiments, it

has been confirmed that the proposed approach

is effective when Web server is overloaded. Our

research can block the malicious attacks, but

they cannot block.

In [4], a study is aiming to improve the https

server performance. This study proposes ci-

pher suite selection algorithm to meet the dif-

ferent demands for security and response time

and strategy which reduces the response time for

higher priority requests and guarantees the re-

sponse time for lower priority requests, while re-

ducing the average system response time. From

the results of experiments, it has been con-

firmed that this study proves the efficiency of

the method, and when the server load is high,

the advantage of the strategy is more obvious.

Our research restricts the number of sessions for

improving responsiveness to allowed users, but

they use strategy for improving performance.

In [5], a system is aiming to defense against

DDoS attacks. This system employs cloud-side

proactive and reactive defenses to combat DDoS

attacks that may target it. In the proactive

defese, coordination server attempts to protect

against botnet reconnaissance by periodically

changing (via DNS) proxy IP addresses. In the

reactive defense, all clients are supposed to use

proxies that are overloaded could be periodi-

cally reassigned to (shuffled among) the attacked

proxies at random to detect attackers. From

the results of experiments with some cases, it

has been confirmed this system’s performance.

Our research blocks accesses to Web server using

firewall when it reaches upper limit, but their

system uses proactive and reactive defenses of

shuffling client-to-server assignments.

There are researches that do access control

for security and performance[6][7][8]. In [6], new

fine-grained two-factor authentication (2FA) ac-

cess control system with the necessity of both a

user secret key and a lightweight security device

is proposed. From the results of detailed secu-

rity analysis and simulation, it has been con-

firmed to achieve the desired security require-

ments and to demonstrate the practicability of

the proposed 2FA system. In [7], a 2-level fuzzy

admission control algorithm to improve system

throughput is proposed. The first level named

load controller judges the load situation of each

tier by the resource consumption and requests

delay. The second level named admission con-

troller decides the admission rate of the current

session by probability statistics. The experi-

ments show that the algorithm can overcome the

limitation of general admission control strategies

and improve the system throughput. In [8], a

design pattern for improving the performances

of a distributed access control mechanism has

been proposed. This mechanism has a central

authorisation service. A client requests permis-

sion to access some services form the central au-

thorisation service through LocalController. At

this time, the LocalController caches authori-

sation information. When the client requests

permission again, the LocalController permits

the request using cached authorisation infor-

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 25



mation. This drastically decreases the number

of requests to the central authorisation service.

The observations of the runtime behaviour of

various occurrences of such a design pattern on

real software systems have shown a drastic in-

crease in performance when compared with a

straightforward simpler implementation. Our

research uses access control with user authen-

tication and firewall.

3 SIMULTANEOUS SESSION LIM-

ITATION MECHANISM

Figure 1 shows proposed the simultaneous ses-

sion limitation mechanism. It consists of au-

thentication server, firewall, user identification

server. The authentication server (Auth server)

authenticates restricted users. The firewall (IPF

server) has additional functions that automati-

cally update filtering rules. The user identifi-

cation server (UI server) denies requests from

unauthorized users. SS server really provides

some kind of Web service. All users are sup-

posed to access SS server via IPF server and UI

server. The overview steps to access SS server

from user are shown below.

1. User requires access right to Auth server.

2. Auth server authenticates the user by his

account and password and check the num-

ber of current sessions.

3. If the number is lower than upper limit then

IPF server changes filtering rules and the

Auth server informs UI server of the session

information of the authenticated user.

Figure 1: Structure of Simultaneous Session

Limitation Mechanism

4. Auth server informs the user of SS server’s

URL.

5. The user accesses to the URL. The access

goes to UI server by DNS setting.

6. UI server checks the session information.

If the check is passed then UI server ac-

cesses SS server and return result to the

user. Otherwise, UI server sends the user

the Web page which prompt to be authen-

ticated.

4 DESIGN

We describe design of Auth server and UI

server explained in the previous section.

4.1 Auth Server

Auth server has databases to manage user and

session. We considered the two following prob-

lems at the time of design.

• Protect Auth server from DoS attack

• Protect databases from malicious attack

It is possible to solve DoS attack problem by

setting multiple Auth servers. However, this

method causes synchronizing problem because

each Auth server has databases. Thus, we in-

troduce reverse proxy servers for Auth server.

All accesses to Auth server are done via them.

By restricting the number of accesses to Auth

server at reverse proxy servers, Auth server can

avoid overload. It is thinkable that reverse proxy

servers deny accesses when the number of re-

quests per second exceeds the specific number.

Moreover, all accesses are denied when the num-

ber of simultaneous sessions exceeds the upper

limit.

It is possible to avoid direct accesses from DoS

attackers by setting Auth server inside firewall.

This can also solve the second problem. The

steps to access SS server by using reverse proxy

are shown in Figure 2. The number and title

correspond to the number and title in Figure 2.

1. Access

User accesses any reverse proxy servers.

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 26



Figure 2: Steps to access SS server

2. Redirect to Auth server

User accesses Auth server by redirecting.

3. Login

Auth server authenticates user.

4. Refer session DB

When the authentication succeeds, Auth

server obtains the number of current ses-

sions by referring session DB, and then

checks whether it exceeds the upper limit

or not.

5. Register session information

If the check is passed, Auth server registers

session information to session DB. Session

information has cookie, IP address, expired

time and so on.

6. Update filtering rules

IPF server updates filtering rules accord-

ing to the session information stored in ses-

sion DB every 1 second. The operations are

done every second. When the new session

information is registered session DB, it is

applied filtering rules at least after 1 sec-

ond.

7. Send session information

Auth server sends UI server session infor-

mation every 1 second.

8. Inform SS server’s URL

Auth server informs SS server’s URL via

reverse proxy server.

9. Access to informed URL

User accesses to Informed URL.

10. Check IP address

IPF server passes the access to UI server if

the access is permitted.

11. Check cookie

UI server checks cookie included the access.

12. Access to SS server

If the check is passed, UI server accesses SS

server and returns the result to him. Other-

wise, UI server sends the user the Web page

which prompt to be authenticated.

4.2 UI Server

In the simultaneous session limitation mech-

anism, UI server identifies authenticated users

by checking cookie. We considered two meth-

ods. The first method is to manage cookies us-

ing database. The database is built on the UI

server and stores cookies. The second method

is to manage cookies using file. If cookies are

managed by a single file, search time increases as

the number of cookies increases. By distributing

cookies into multiple files using hash method,

search time can be reduced. The file name that

stores a cookie is the hash value calculated from

the value of cookie. We call the former method

DB method and latter method HASH method.

5 FUNCTIONAL TEST OF USER

AUTHENTICATION METHOD

We performed functional test for authentica-

tion method.

5.1 Experiment Environment and Check

Points

Figure 3 shows the experiment environment.

We use virtual machines for reverse proxy server,

Auth server, UI server and SS server. IPF server

is physical machine which also hypervisor on

which UI server and SS server run. Specifica-

tions of hypervisors are also shown in Figure 3.

We implemented Auth server and reverse proxy

server. We implemented only access deny func-

tion which denies when the number of simulta-

neous sessions reaches upper limit. In future,

we will implement access deny function. The

following points are tested by actually accessing

from browsers.

• User can be authenticated and access SS

server.

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 27



• User can’t access SS server if the number of

simultaneous sessions reaches upper limit.

• Reverse proxy server can deny accesses if

the number of simultaneous sessions has al-

ready reached upper limit.

Figure 3: Experiment environment of functional

test

5.2 Experiment Procedure

In this experiment, upper limit of the

number of simultaneous sessions is set

2. This experiment uses three browsers:

Google Chrome(user1), Safari(user2) and

Firefox(user3). Since they store cookie indepen-

dently, their sessions are identified individually.

It is possible to use them on the same client.

The steps to perform functional test are shown

below.

Step-1 Users access to Auth server via reverse

proxy server simultaneously with their

browsers.

Step-2 user1 sends his account and password to

Auth server.

Step-3 user2 sends his account and password to

Auth server.

Step-4 user3 sends his account and password to

Auth server.

Step-5 user3 accesses to Auth server via reverse

proxy server.

5.3 Result

Figure 4 to 8 show results of Step-1 to Step-5,

respectively. Figure 4 shows the user1’s screen

only because the screen is slightly different, but

the same content. At Step-2 and Step-3, user1

and user2 were authenticated successfully and

got the response from SS server as shown Fig-

ure 5 and 6. On the other hand, user3 got

the response from Auth server as shown Fig-

ure 7. Access to SS server from user3 was de-

nied even though authentication of user3 suc-

ceeded because the number of simultaneous ses-

sions reached upper limit. In this experiment,

upper limit is 2. At Step-5, reverse proxy server

denied the access from user3 because the num-

ber of simultaneous sessions already reached the

Figure 4: Login screen

Figure 5: Success to access SS server (user1)

Figure 6: Success to access SS server (user2)

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 28



Figure 7: Failure to access SS server (user3)

Figure 8: Denies accessing to Auth server by

reverse proxy server

upper limit and sent the message showing rea-

son for the denial as shown Figure 8. The re-

sults show that our authenticates method works

as designed.

6 PERFORMANCE EVALUATION

OF UI SERVER

In this section, performance of UI server using

two methods are examined. One is DB method

and the other is HASH method.

6.1 Experiment Environment

Figure 9 shows experiment environment. All

servers and user clients are built as virtual ma-

chines on hypervisors which specifications are

shown in Table 1. User clients are built on hy-

pervisor1 and hypervisor2, UI server is built on

hypervisor3 and SS servers are built on hypervi-

sor4 and hypervisor5. UI server uses Nginx[9],

Lua[10] and lua-nginx-module[11]. SS servers

use Apache2.4.18[12]. The reason for using mul-

tiple SS servers to prevent them from becoming

bottleneck.

Figure 9: Experiment environment

CPU Memory

Hypervisor1 Intel Core i5-3470 16GB

Hypervisor2 Intel Core i5-4460 16GB

Hypervisor3 Intel Xeon E5-2620 32GB

Hypervisor4 Intel Xeon E5-2620 32GB

Hypervisor5 Intel Xeon E5-2620 32GB

Table 1: Specification of hypervisor

6.2 Experiment Procedure

We performed two experiments. One exam-

ines throughput of UI server, the other exam-

ines capacity of blocking accesses from malicious

users.

This first experiment uses 5 user clients and

10 SS servers. The scenario is shown below. The

number of accesses per second from each client

is increases by N every 30 seconds from 20 ac-

cesses per second up to E (maximum number of

accesses per second).

The second experiment uses 6 user clients and

10 SS servers. 1 user client plays authenticated

users and issues accesses with fixed number of

access per second (C). Other user clients play

malicious users and issue accesses with same

manner as the first experiment. We call ac-

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 29



cesses from authenticated user and malicious

user AccessA and AccessM .

6.3 Experiment Result

Figure 10 and 11 show the result of the

first experiment with DB method and HASH

method, respectively. In this experiment, N is

20 and E is 600. Total N and E are 100 and

3000, since the number of clients is 5. There are

some differences in results among clients. These

figures are of the client showing the average re-

sult. Histogram in figures shows the number of

responses per second and the scale is shown by

left vertical axis. Green part shows successful

responses and red part shows failed responses.

Line graph shows the number of requests wait-

ing for response and the scale is shown by right

vertical axis. Horizontal axis shows times of day.

First, we examine the result of DB method.

In Figure 10, access failure has begun around

300 seconds from the start of experiment (1,100

accesses per second) and the number of requests

waiting for response gradually increases. Only

about to 250 (= 50× 5 clients) accesses per sec-

ond were successful after 360 seconds (1,300 ac-

cesses per second).

Next, we examine the result of HASH method.

In Figure 11, access failure has begun around

480 seconds from the start of experiment (1,700

Figure 10: Using database method

Figure 11: Divided files using hash method

accesses per second) and the number of requests

waiting for response also gradually increases.

After this, the number of successful accesses

per second was decreased gradually and finally

reached about 1,750 (= 350× 5 clients).

Figure 12 and 13 show the result of the sec-

ond experiment with DB method and HASH

method, respectively. In this experiment, C is

100, N is 20 and E is 1,800. Total N and E are

100 and 9000, since the number of clients play-

ing malicious users is 5. These figures show the

number of responses to authenticated user’s.

First, we examine the result of DB method.

In Figure 12, failure of AccessA per second has

begun around 480 seconds from the start of ex-

periment (1,700 AccessM s per second). After

this, the number of successful AccessA per sec-

ond is about 30 (30%).

Next, we examine the result of HASH method.

In Figure 13, failure of AccessA per second has

begun around 2220 seconds from the start of ex-

periment (7,500 AccessM s per second). How-

ever, the number of AccessA failures per second

was less than equal to 3 from log analysis.

From the first experiment, HASH method can

process accesses about 1.6 times of DB method

when all accesses are issued from authenticated

users. From the second experiment, the toler-

ance of malicious access of HASH method is

much higher than that of DB method. We

Figure 12: Using database method

Figure 13: Divided files using hash method

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 30



think that HASH method has enough capacity

and tolerance of malicious accesses.

7 CONCLUSION

We proposed simultaneous session limita-

tion mechanism and implemented reverse proxy

server, authentication server and user identifica-

tion server that are comprised it. Reverse proxy

server and authentication server cooperate to

authenticate users and to limit the number of

sessions. We confirmed that these functions

work correctly. We also implemented two user

identification methods, DB method and HASH

method, for user identification server. From the

results of experiments, HASH method is supe-

rior to DB method and has enough capacity and

tolerance of malicious accesses.

Future works is shown below.

• Performance evaluation of authentication

server

• Implementation of user authentication

mechanism using multiple authentication

servers to cope with concentration of au-

thentication

• Implementation of access deny function

References

[1] Ahmad T. Al-Hammouri, Zaid Al-Ali,

Basheer Al-Duwairi, “ReCAP: A dis-

tributed CAPTCHA service at the

edge of the network to handle server

overload”, Transactions on Emerging

Telecommunications Technologies 2017,

https://doi.org/10.1002/ett.3187

[2] Bhavin Doshi, Chandan Kumar, Pulkit

Piyush, Mythili Vutukuru, “WebQ: A vir-

tual queue for improving user experience

during web server overload”, 2015 IEEE 23rd

International Symposium on Quality of Ser-

vice (IWQoS), pp.135-140, 2015

[3] ZiYou Wang, MingHui Zhou, Hong Mei,

“Towards a degradation-based mechanism

for adaptive overload control”, 19th Asia-

Pacic Software Engineering Conference

(APSEC 2012), pp.52-60, 2012

[4] Lu Yan, Haojiang Deng, Xiao Chen, Xi-

aozhou Ye, “Service Differentiation Strat-

egy Based on User Demands for Https

Web Servers”, 2018 IEEE 16th Interna-

tional Conference on Software Engineer-

ing Research, Management and Applications

(SERA), pp.189-194, 2018

[5] Yuquan Shan, George Kesidis, Daniel Fleck,

“Cloud-Side Shuffling Defenses against

DDoS Attacks on Proxied Multiserver Sys-

tems”, CCSW ’17 Proceedings of the 2017

on Cloud Computing Security Workshop,

pp.1-10, 2017

[6] Joseph K. Liu, Man Ho Au, Xinyi Huang,

Rongxing Lu, Jin Li, “Fine-Grained Two-

Factor Access Control for Web-Based Cloud

Computing Services”, IEEE Transactions on

Information Forensics and Security, Vol.11,

No.3, pp.484-497, 2016

[7] Pan Dan, Gan Hong, “Building of Multi-

Tier Web Server Access Control Design and

Research”, Proceedings of the 2nd Informa-

tion Technology and Mechatronics Engineer-

ing Conference (ITOEC 2016), pp.422-427,

2016

[8] Emiliano Tramontana, “A Design Pattern

for Improving the Performances of a Dis-

tributed Access Control Mechanism”, Pro-

ceedings of 5th Asian Conference on Pattern

Languages of Programs (AsianPLoP 2016),

pp.80-88, 2016

[9] Nginx, https://nginx.org/en/

[10] lua, https://www.lua.org/

[11] lua-nginx-module,

https://github.com/openresty/

lua-nginx-module

[12] Apache, https://httpd.apache.org

Proceedings of The Fifth International Conference on Electronics and Software Science ICESS2019, Japan, 2019

ISBN: 978-1-941968-58-1 ©2019 SDIWC 31




