

Command-driven Decentralized Event Processing Approach for Monitoring
Networked Android & Windows Devices

Sirojan Tharmakulasingam, Nirushan Rathakrishnan,Nirosh Jayaratnam, Jeyatharsini Jeyaganeshan,
Gihan Dias

Department of Computer Science and Engineering, University of Moratuwa.
Kadubedda 10400, Sri Lanka.

{sirojan.11, nirushan.11, nirosh.11, jeyatharsini.11, gihan}@cse.mrt.ac.lk

ABSTRACT

We live in an era where we rely on devices for most

of our activities. Organizations use huge amount of

devices for their business operations and activities.

Those devices are used by different types of

personnel where there are no control over their

proper usage. In order to ensure their proper usage,

the devices should be monitored. Most of these

devices used in organizations are connected via

network. Monitoring of networked devices require

certain amount of resources from devices and

network bandwidth based on the transmission of

data. Our research mainly focuses on monitoring the

networked devices efficiently in terms of required

resources and bandwidth. We use decentralized

event processing approach in which partial event

processing (command-driven, lightweight

processing) happens at the devices and remaining

processing (complex event processing) happens at

the central node where events from all devices are

collected. Major objective of command-driven

lightweight processing on the devices is to truncate

unwanted events for current context of monitoring in

order to save the required bandwidth and resource

utilization of devices. This paper presents our

implemented system for monitoring Windows &

Android devices based on this approach and

achieved gain in resource utilization and bandwidth.

KEYWORDS

Event Monitoring, Complex Event Processing,

Agents, Siddhi, Apache Thrift, Android Devices,

Windows Devices

1 INTRODUCTION

Nowadays number of devices in use at

organizations and business institutions are

exponentially increasing. Each of those devices

generates huge collection of events based on the

intervention with operator of that device. If an

organization wants to ensure the proper usage of

their devices, they need to monitor devices by

analysing events that are generated by those

devices. Since it is not feasible to monitor all the

devices separately, organizations need a

centralized controller to monitor and control the

devices.

The research experiences with monitoring

systems over the years show that there is a

danger of turning monitoring systems into

databases. It seems that collecting and sending

events to a central server in the system is often

done without analysing whether the data is

relevant to the current context of analysing or

not. There are some previous researches based

on some static pre-processing techniques which

are not aware of current context of monitoring.

As a consequence, the event processing system

requires a huge amount of processing power and

network bandwidth for transmission. It also

loses its function of providing meaningful

information to the current monitoring task. This

means that the system needs to be designed in a

way that the event data is systematically filtered,

collected, checked, aggregated, and used

according to the current demand. Experiences

have shown that it is very important to develop

ISBN: 978-1-941968-34-5 ©2016 SDIWC 18

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

such a system in a participatory way, meaning

that the outlines, the procedures of the system

should be agreed upon by international

standards.

The major challenge in implementing such a

system is heterogeneity in devices. Devices can

be varied based on their hardware, architecture

and operating systems. The proposed solution in

this paper uses separate agents to run on

heterogeneous devices. In general, most of the

devices generate huge amount of events with

high transaction rates. Therefore huge amount of

resources such as memory, processor cycles, and

high network bandwidth are needed for storing,

processing, and exchanging information

between devices and central node. To overcome

this issue, agents are used in the proposed

solution which are responsible for collecting

event data from devices on which they are

running and performing command-driven

lightweight event processing. These agents

should not impose load on the devices. In

addition to that, agents should be bandwidth-

efficient. Since we are using decentralized event

processing approach, agents perform partial,

command-driven, lightweight event processing

on the devices in order to reduce the load on the

devices as well as required bandwidth to send the

processed event to central node for further

complex processing. As the result of complex

event processing at central node, unintentional

activities, policy violations and potential threats

can be detected.

Our event monitoring system Hydra has been

implemented based on the aforementioned

approach. Agent and Central Node are the two

major components of our system. Agent runs on

the device, collects data and event logs, and

performs some lightweight processing based on

the commands given by Central Node. Since the

scope of this research is limited to Windows PCs

and Android devices, we have developed two

types of agents: Windows agent and Android

agent. Central Node acts as a controller of agents

and it is also capable of doing complex event

processing in order to trigger real time alerts.

The rest of the paper is organized as follows.

Section 2 discusses about some important data &

events that can be collected for monitoring of

Android Devices. While section 3 discusses

about data collection & log collection from

Windows devices and outlines some useful

events that can be used for monitoring those

devices, section 4 describes our command driven

light weight processing approach that we used in

our Android agent and Windows agent. Section

5 provides the outline of our central node

implementation details. Section 6 contains the

discussion about communication protocol that

we used to establish communication between

agents and central node. Section 7 summarizes

the experimental results of the implemented

system and presents some sample scenarios

where our system can be used. The final section

8 provides an outlook to future directions of this

research.

2 ANDROID DATA COLLECTION

Mobile devices usage is rising exponentially in

today’s business context. Google, Apple,

Research in Motion (RIM), and Microsoft are

the major players in the mobile device market. A

survey says that, Google Android ranked as the

top smartphone platform with 82.8% market

share in 2015 [1]. Research In Motion (RIM) is

Figure 1. Our Solution

ISBN: 978-1-941968-34-5 ©2016 SDIWC 19

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

an exception as corporate customers can deploy

a BlackBerry Enterprise Server and setup their

devices to send mobile data to the central server

so that central server will collect and do an

analysis. Most of the organizations consider

transitioning from RIM to new smartphone

systems which in turns strengthen the

requirement of a monitoring system for mobile

devices.

As per the emerging requirement in monitoring

the mobile devices, first requirement is to collect

the important events and data from mobile

devices which could be useful in monitoring. In

our research, we limited our scope to Android

devices since they cover a major portion in

mobile device usage.

Application installation/removal, browser

navigation, browser search, calendar event, call

log, contact list, device accounts, device ID,

GPS location, MMS, picture gallery, screen lock

status, SMS and third-party application logs are

the events collected for Android forensics [2].

In the latest Android versions (Jelly Bean or

higher), third party applications are not allowed

to access Android log files without root access.

In addition to the above-mentioned data, we

collected running processes list and their

resource utilization such as CPU usage, RAM

usage, and network usage. Along with that, we

also focused on collecting the available sensor

data. All these collected data will be sent through

a lightweight processing module which is

controlled by the commands given by the central

node. After the partial processing, if the network

connection is available then partially processed

data will be sent to the central node. Else, it will

be locally stored in a SQLite database. Locally

stored data will eventually reach the central node

when the connection becomes available. This

approach prevents event losses if there is a

network interruption between agent and central

node.

3 WINDOWS DATA COLLECTION

In Windows, performance counters can be used

to collect information about the performance of

operating system, applications, services, and

drivers. There are roughly one thousand

performance counters that together reflect the

current state of the system. Those performance

counters can be accessed using Windows

registry API. Since working directly with the

registry is too complex, Microsoft provides a

more abstract API called Performance Data

Helper (PDH) which can be used to access

performance counters. PDH is responsible to

access the performance counters in the registry

and the conversion of their raw values into

appropriate numbers.

The registry collects values from performance

counters using kernel and makes them accessible

directly or using Performance Data Helper

(PDH) library. A research team has built a

system named WatchTower using PDH.

WatchTower is a system that simplifies the

collection of Windows performance data for

monitoring and usage profiling of Windows

machines. Their approach towards this large

amount of data is to treat it as a dimensionality

reduction problem, where each counter

corresponds to a dimension [3]. The major

problem of this approach is that only

performance data is considered to build a

monitoring tool and their dimensionality

reduction technique is static. The dimensions are

already predefined without the awareness of

real-time monitoring task. Our system Hydra

collects Windows event logs in addition to

performance data such as running processes, and

their CPU, memory, and network usage, total

CPU, memory, and network usages using PDH

library for precise monitoring. Collecting

performance data using PDH library is reliable

and less overhead. In contrast to their approach,

our solution is dynamic (context-aware) which

uses command-driven processing. Because of

this dynamic nature, agents only send the

relevant data to the central node. This increases

ISBN: 978-1-941968-34-5 ©2016 SDIWC 20

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

the accuracy of monitoring tasks as well as

improves the efficiency of the system in terms of

resource utilization.

3.1 Windows Log Collection

Event logging is significant to detect errors, to

find out the cause behind the error, and to

prevent the error from recurring. The event

logging service receives events from various

sources and stores them in a single collection

called an event log [4]. Monitoring and

analysing of event logs should be automated to

make system administrators’ life easy since the

number of Windows event logs has grown over

the years [5].

Windows provides facility in Event Viewer to

setup own Event Log Notification System for

automation to export and to filter log entries and

then to email or save it in a text file. It is

inadequate for monitoring large size network

because it only supports limited static

functionalities. Since it is configured using static

scripts, there is no awareness about current

monitoring task in the process of log collection.

This leads to a chance that irrelevant logs for the

current analysis also get collected and it will be

sent through the network. Because of this,

bandwidth usage of system is high and human

intervention is heavily required for detailed

analysis. In contrast, our solution tries to

minimize the required bandwidth and human

intervention by having command-driven

context-aware log collection and complex event

processing techniques such as pattern matching

respectively.

There are two identified alternatives to collect

logs from Windows. Logs can be collected in

binary format from unallocated space or using

Event Logging API from allocated space.

Polling log data at regular intervals from

allocated space using programming interface

immediately after logging of events is preferred

over getting logs from unallocated space.

Because getting logs earlier helps to predict

some bad outcomes before they occur or at least

immediately after their occurrence. So our agent

uses Event Logging API to automate the process

of collecting of events.

Centralized collection of log data from Windows

PCs is important because processing event logs

on local machine is not safe due to intensive or

non-intensive failures of local machines. P.

K.Sahoo, R. K. Chottray and S. Pattnaiak [6]

have proposed a solution to centralize event

logs. Their system retrieves Windows event

logs, translates them to Syslog format, and sends

to a central server. It stores in a database after

processing them based on a set of rules that

specified in the Winsyslog configuration. Syslog

messages can be displayed by Windows GUI

and reports are generated automatically based on

data from database by “monitor ware console”.

Above solution requires more bandwidth as it

sends all the logs without doing any processing

in order to reduce its size. In their research,

centrally collected logs are only used to generate

some reports regarding the statistical

information of the collected logs. However,

those collected logs can be utilized to detect

unintended activities and any kind of policy

violations by doing further processing. In our

solution, we process those collected logs

partially on agents based on central node

commands and then partially processed logs are

transferred to central node for complex event

processing in order to detect anomalies.

Stephan Grell and Olivier Nano [7] have

implemented a system to monitor large scale

internet services using central node with

Complex Event Processing Engine(CEP) as it is

able to do fast and real time in-memory

processing of events (filtering, grouping and

aggregating) as long as resource consumption

are kept within limits. In our solution also, a CEP

engine is used at central node for complex event

processing and lightweight processing engines

are used in distributed agents. We limit the

resource consumption of distributed devices by

switching central node commands based on

ISBN: 978-1-941968-34-5 ©2016 SDIWC 21

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

resource availability of networked devices. For

instance, once the remote device is running out

of resources we skip processing on that device

and do entire processing in the central node. In

our solution, load is dynamically balanced by

central node commands.

Even though events are processed on the

distributed nodes in the solution of Stephan Grell

and Olivier Nano [7], processing is done without

knowing the current demand or context. But in

our solution, central node sends command which

consists the events to be considered and

summarization level to process events in

dynamic manner based on the current demand as

well as restrictions. Our agents are capable of

handling those commands and they can provide

data as per those commands. This is the main

value addition in our product.

3.2 Useful Events for Analysis in Windows

Logs

Each event can be categorized under one of the

five event types: error, warning, information,

success audit, and failure audit. Events marked

as errors and warning are more important than

other categories for analysis purpose.

Spotting the Adversary with Windows Event

Log Monitoring [8] recommends some

important events to be collected that can be

helpful in monitoring devices. It identifies some

suspicious event IDs related with events of

application whitelisting, application crashes,

system or service failures, Windows update

errors, Windows firewall, clearing event logs,

software and service installation, account usage,

kernel driver signing, group policy errors,

Windows defender activities, mobile device

activities, external media detection, printing

services, pass the hash detection, and remote

desktop logon detection. In our research, we

make use of those events while collecting and

detecting unusual events.

Russ Anthony [9] talks about some of important

observations related with process creation events

which can be useful for monitoring devices.

Even though process creation seems to be not

important due to the high frequency of its

occurrence, it is important to identify the process

names for long string of empty spaces,

misspelled words, and non-standard path in

order to detect suspicious processes. Other than

that he talks about events related to privilege

escalation which is also very useful since this

might be an entry step for an attack or violation.

As stated in this section, these are some of the

useful events considered in our solution, which

are useful in detecting policy violations,

intellectual property theft, misuse, and any

attack simulations.

4 COMMAND-DRIVEN LIGHTWEIGHT

PROCESSING

Processing events in a resource constrained

environment is the major challenge which

should be addressed here. Since the devices have

limited resources and capabilities, a special care

is needed in designing of event processing

module. Because of this we have designed

lightweight, bandwidth-aware and resource

utilization-aware event processing modules for

agents which can be controlled by commands

given by central node. Because of the awareness

about bandwidth and resource utilization, event

processing plan is switched time to time in the

devices based on the resource availability and

demand. In order to have this awareness, central

node continuously monitors resource utilization

of connected devices and sends commands to

agents based on that. For instance, event

processing on some devices can be completely

skipped especially when resource utilization is

high in those devices and high-bandwidth is

available to transmit data. This kind of dynamic

adjustment is possible in our system since we

use command-driven approach and distributed

event processing between remote devices and

central node based on load.

ISBN: 978-1-941968-34-5 ©2016 SDIWC 22

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

In our agent-based system, agents run on devices

that need to be monitored. Agents consist of a

data collector designed for a particular platform

and a lightweight event processing engine. Other

than the agents, we are having central node

which is dedicated for complex event processing

and event analysis. Since commands are

dynamically sent to agents from central node,

our lightweight processing modules in the agents

need to act based on those commands and get

back the results to central node. So our

lightweight processing modules are designed in

such a way that we can deploy dynamic

commands. Based on the deployed commands,

our agents collect specified events, perform

processing at a specified level, and send those

partially processed events to central node for

further analysis. Since all the connected agents

are fully controlled by central node commands,

the output of the agents are very relevant to

current monitoring task, and as a result of that,

irrelevant resource consumptions can be

avoided.

4.1 Command-driven Lightweight Processing

on Android Agent

Command-driven pre-processing module of

Android agent is written in Java. Since we

collect a bunch of data from Android devices as

mentioned in section 2 of this paper, there is a

demand to reduce the size of data that needs to

be transferred to the central node in order to

reduce the required bandwidth. A lightweight

command-driven module is included in the agent

to achieve this demand.

The lightweight processing engine of Android

agent is capable of filtering and aggregating data

based on the given filtering parameters and

aggregation time limit respectively. These

parameters are given by central node commands

based on the current demand of monitoring

tasks. Based on these parameters the partial

processing happens on android devices in order

to reduce the size of data that need to be

transferred, and then partially processed data is

transferred to central node for further analysis.

4.2 Command-driven Lightweight

Processing on Windows Agent

Command-driven pre-processing module of

Windows agent is written in C++. Since C++ is

the native language for Windows platform, it is

very easy to access the native APIs for event

collection. It increases the performance of the

agent and reduces load on the device.

The lightweight processing engine in Windows

agent also has same features as Android agent in

order to process the performance data collected

from Windows. In addition to performance data,

we also collect log data from Windows devices.

In Android devices, we can’t collect logs of third

party application due to the restriction in the

latest Android versions. Pre-processing of log

data is also a prominent task that needs to be

done since the size of the log file is large. It will

take huge bandwidth to transfer as raw data to

the central node. Therefore, only the relevant

events which specified in the previous section

Figure 2. High level architecture of Android Agent

ISBN: 978-1-941968-34-5 ©2016 SDIWC 23

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

should be extracted out efficiently from the log

files and transferred to the central node.

As per the discussion above, our lightweight

processing module of Windows agent can do

different levels of summarization.

Summarization of event logs uses the

information and attribute hierarchy of event

logs. Event logs may contain information related

to provider, object, subject, network, layer,

filter, change, callout, application, access

request, rules, errors, processes, logon type,

impersonation level, account for which logon

failed, failures, new logon and detailed

authentication. All of these information have

their own attributes. Based on the importance

level, some of the information are dropped

during high level summarization and some of the

attributes are dropped during medium level

summarization. Attributes or information to be

dropped have been determined from previous

researches. Attributes or information to be

dropped is determined with the help of previous

researches. Attributes or information which are

highlighted in the analysis can’t be dropped even

in high level summarization. Low informative

details can be dropped during the processing on

devices since they are less important for

analysis. It saves required bandwidth by only

sending the content-rich information to the

central node.

5 CENTRAL NODE

This is a central instance which includes a

complex event processing engine, registration

module for remote devices, and bandwidth plus

resource aware command application module. It

contains an embedded database where the rules

for the complex event processing engine can be

persisted. Each module is allocated for their own

set of responsibilities. Device registration

module keeps track of registered devices as well

as the connections regardless of the mobility of

those devices. Command application module

continuously keeps track of the available

bandwidth for each connection and resource

utilization of remote devices. Based on those

contexts, it switches the commands that are sent

to remote agents. Based on received commands,

agents crawl data from remote devices and

partially process it and send it as an event stream

to the central node.

 The data stream which is pushed by agents from

remote devices is directly fed into CEP Engine

in the central node. We found Siddhi [10] and

Esper [11] are the two CEP engines which

provide required functionalities for Complex

event processing. While Esper has restricted

some features in commercial license Siddhi is

fully open source application. In addition to that,

Siddhi performs much better than Esper in terms

of throughput [12]. Siddhi also provides CEP

query support. We can send events using Apache

Thrift [13], web services, Java message service,

and emails. Because of these competitive

advantages of Siddhi over Esper, we use Siddhi

engine for complex event processing in our

central node.

Central node is facilitated with user interface to

write the CEP rules for the engine as well as to

configure the event processing parameters for

the agents in order to do the analysis with the

objective of detecting policy violations,

intellectual property theft, misuse,

embezzlement, sabotage, and espionage. By

writing custom rules and patterns, device Figure 3. High level architecture of Windows Agent

ISBN: 978-1-941968-34-5 ©2016 SDIWC 24

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

monitoring can be conducted with reduced

utilization of resources, which is the major

objective of this research.

There are four major alternatives in the event

processing commands that are chosen by central

node based on the available bandwidth and

resources.

Table 1. Alternative Event Processing Plans &

Conditions

6 COMMUNICATION PROTOCOL

Since this product is most concerned with

performance and efficiency, native programing

languages are used to develop the agents.

Windows Agent is developed in C++ and

Android Java is used to develop Android agent.

The central node is developed using Java.

Therefore, a standard cross platform

communication protocol is required in order to

establish the communication between the agents

and central node for command and data

transmissions.

Remote Procedure Calls (RPC) can be used to

establish the communications between the

agents and the central node. Apache Thrift [13]

software framework is used to build RPC servers

and clients that will help to communicate

seamlessly across programming languages. This

enables the server side to be written in Java,

when one client is written in C++ to run on

windows platform and other client is written in

Android Java to run on Android platform. There

are several alternatives for Apache thrift such as

Protocol buffers [14], JSON-RPC [15] and Avro

[16]. In contrast to the Apache Thrift, Protocol

buffers doesn’t generate ready to use servers.

JSON-RPC has a significant amount of

communication overhead than Apache thrift.

Error handling and extensibility support are also

good in Apache thrift than Avro. These

comprehensive advantages of Apache thrift

make it fit for our monitoring system.

7 EXPERIMENTAL RESULTS

We deployed our agents in a lab and

continuously profiling its resource utilization.

The below graphs show the average utilization

of resources at the remote nodes by agents.

Figure 5. Average RAM usage of agents

 Available Resources in Remote
Devices

Low High

A
v

a
il

a
b

le

B
a

n
d

w
id

th

Low Skip processing at
devices, Send
predefined critical
events only

Allow significant
amount of
processing at
devices

High Skip processing at
devices and send
all events

Allow user
defined
commands

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

C
P

U
 u

sa
g

e
%

time/hour

Average CPU Usage of Agents

AndroidAgent WindowsAgent

0

10000

20000

30000

40000

50000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

k
B

time/hour

Average RAM Usage of Agents

AndroidAgent WindowsAgent

Figure 4. Average CPU usage of agents

ISBN: 978-1-941968-34-5 ©2016 SDIWC 25

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

CPU & RAM utilization by agents seems to be

fair because those are very small fragments of

available resources. RAM usage is a bit high for

Windows agent since we process both log data

and performance data where in Android agent

we only consider performance and sensor data.

Figure 6. Average sent data from agents

Figure 7. Average received data to agents

Send & received data also seems to be fair

because it only requires very little amount of

bandwidth compared to other existing systems.

Send & received data is a bit high for Windows

agent since we send the processed log data as

mentioned above. The above graph shows the

data reduction due to the partial processing on

remote devices. If partial processing is not

performed in remote devices, the required

bandwidth becomes significantly high due to

high data transfer. So, using command-driven

decentralized event processing approach gives

significant gain in resource utilization and

bandwidth consumptions.

We deployed our Windows agent onto 10
Windows PCs at the university lab and
monitored important events for 5 days. The
graph below shows the statistics.

Figure 8. Important events detected

These are some important events which are

detected by Windows agent during 5 days.

Agents are capable of detecting these kind of

important events based on central node

commands and transfer them to central node for

further analysis. When our system is asked to

detect any policy violations or unintentional

activities, it uses these important event

collection to detect the anomalies.

Figure 9. Statistics of Central Node commands

switching

The graph above shows the statistics of different

commands sent by the central node over time

based on the available network bandwidth and

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

R
ec

ei
v

ed
 D

a
ta

 (
k

b
p

s)

time/hour

Average Received Data of Agents

AndroidAgent WindowsAgent

0

5

10

15

20

25

30

35

40

Day1 Day2 Day3 Day4 Day5

N
u

m
b

er
 o

f
ev

en
ts

Days

Windows Agent - Important events

LOGON_FAILURES

SUCCESS_LOGIN

ACCOUNT_USAGE

APPLICATION_CRASHES

INSTALLATIONS

REMOTE_LOGIN

0
1
2
3
4
5
6
7
8
9

10:19:12 12:43:12 15:07:12

Id
 o

f
W

in
d

o
w

s
M

a
ch

in
es

Time (hh:min:sec)

Central Node - Switching Commands

Allow user defined commands at agent

Skip processing at devices & send all events

Skip processing at devices & Send predefined critical events only

Allow significant amount of processing at devices

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

S
en

t
D

a
ta

 (
k

b
p

s)

time/hour

Average Sent Data of Agents

AndroidAgent WindowsAgent

ISBN: 978-1-941968-34-5 ©2016 SDIWC 26

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

resource availability in the remote devices. Since

our system itself can dynamically adjust, it could

be able to use the available resources efficiently

in order to achieve its monitoring tasks.

7.1 Example Application Scenarios

Our system can be used in detection of any

attack simulation. We simulated a Denial of

Service (DoS Attack) which is an attempt to

make a computer resource unavailable to its

intended users. In our case, we have detected

UDP flood attack using our system. UDP flood

is based on sending the overwhelming number

of UDP packets to random ports on a remote

host. We have used LOIC Tool [17] to perform

the UDP flood attack. The tool takes the IP of

the target machine and performs the attack. We

have mounted the attack on port 80 since

firewalls cannot prevent that attack because they

can’t distinguish good traffic from DoS attack

traffic. Our system can detect these kind of

attacks by monitoring the network traffic pattern

continuously via agents and alert if there is an

anomaly detected.

Let’s consider another scenario where an online

exam is conducted in a university. Students are

not permitted to access any lecture notes (via

power point slides or pdf documents). In order to

monitor any violations, we can simply write a

rule in our central node such that if an agent

notifies any foreground processes other than one

web browser or more than one tab is used in that

web browser then our system detects that as a

violation of the specified rule and fires a real

time alert.

Since complex event processing engine is

provided with Event Processing Language

(EPL) which is a declarative language for

dealing with high frequency time-based event

data, we could be able to write customized rules

(Organization policies, suspicious event

patterns) based on our requirements. Then our

system will alert any violations on deployed

rules.

8 FUTURE WORK

Future research on this event processing system

includes development of agents for other

platforms such as Linux, Mac, iOS and IoT

(Internet of Things) devices as same as already

developed for Windows and Android agents.

Those agents should be compatible with the

existing protocol. Since our communication

protocol is Apache thrift and it supports cross

platform communication, the extension of this

solution to other platforms will not be a rough

task to do.

Machine learning assisted rule generation

module can be added in the central node. Since

we are having light weight processing engine in

the agents and complex event processing engine

in the central node, it will be better to have such

an automated rule generation module. This will

be an additional step up in the journey of

automated monitoring of devices in a distributed

environment.

9 CONCLUSION

The system developed through this research

serves as a prototype for monitoring system in a

distributed environment. The major objective of

this research is to develop agents which can

survive in resource constraint environment and

provide the relevant data based on the current

context instructed by the central node. From the

collected data we could be able to detect some

policy violations, attack simulations, and misuse

of resources. Since we collect data from native

APIs of Windows and Android as much as

possible, this research also serves as a guide for

accessing the data through native APIs. Presence

of complex event processing technology

enhances the real time monitoring since it is a

convenient technology to process events and

discover complex patterns among multiple

streams of event data through filtering,

grouping, aggregating the event streams. In this

Post-PC era, it is very much useful to have such

ISBN: 978-1-941968-34-5 ©2016 SDIWC 27

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

automated monitoring systems to detect the

unintended activities.

REFERENCES

[1] IDC Research, Smartphone OS Market Share, 2015 Q2

[Online]. Available: http://www.idc.com/prodserv/

smartphone-os-market-share.jsp.

[2] J. Grover, “Android forensics: Automated data

collection and reporting from a mobile device,” Digital

Investigation, vol. 10, pp. S12–S20, 2013.

[3] M. Knop, J. Schopf, and P. Dinda, “Windows

Performance Monitoring and Data Reduction using

WatchTower,” Proceeding 11th IEEE Symp. High-

Performance Distrib. Comput., pp. 1–14, 2002.

[4] Microsoft Corporation, Windows API Index [Online].

Available: https://msdn.microsoft.com/en-us/ library/

windows/desktop/ ff818516(v=vs.85).aspx.

[5] M. D. Mullinix, “An Analysis of Microsoft Event

Logs”, December 2013.

[6] P. K.Sahoo, R. K. Chottray, and S. Pattnaiak,

“Research Issues on Windows Event Log,” Int. J. Comput.

Appl., vol. 41, no. 19, pp. 40–48, 2012.

[7] S. Grell and O. Nano, “Experimenting with complex

event processing for large scale Internet services

monitoring,” Complex Event Processing for the future,

2008.

[8] Network Components and Applications Division,

National Security Agency, United States of America,

‘Spotting the Adversary with Windows Event Log

Monitoring’. [Online]. Available: https://cryptome.org/

2014/01/nsa-windows-event.pdf.

[9] Russ Anthony, “Detecting Security Incidents Using

Windows Workstation Event Logs,” SANS Institute, June.

2013.

[10] Sriskandarajah Suhothayan, Isuru Loku Narangoda,
Subash Chaturanga. “Siddhi-CEP - high performance
complex event processing engine,” 2011.

[11] A. Mathew, “Benchmarking of Complex Event
Processing Engine – Esper,” 2014.

[12] Sriskandarajah Suhothayan, Isuru Loku Narangoda,

Subash Chaturanga. “Siddhi: A Second Look at Complex

Event Processing Architectures,” November 2011 ACM

978-1-4503-1123-6/11/1.

[13] Randy Abernethy. The Programmer’s Guide to

Apache Thrift. MEAP12.Manning Publications, 2015.

[14] Google Inc, Protocol Buffers: What Are Protocol

Buffers? GOOGLE. Google Developers [Online]. April 2,

2012. Available: https://developers.google.com/protocol-

buffers/.

[15] JSON-RPC Working Group. (2013) JSON – RPC:

Specifications. JSON-RPC Google Group [Online]

Available: http://www.jsonrpc.org/specification.

[16] Jim Scott, “Avro – More Than Just A Serialization

Framework”, Chicago Hadoop Users Group, April 2012.

[Online]. Available: https://vimeo.com/ 40776630.

[17] Verma, Deepanker. "LOIC (Low Orbit Ion Cannon) -

DOS Attacking Tool - Infosec Resources". InfoSec

Resources. N.p., 2011. Web. 23 Jan. 2016. Available:

http://resources.infosecinstitute.com/loic-dos-attacking-

tool/

ISBN: 978-1-941968-34-5 ©2016 SDIWC 28

Proceedings of the Third International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM2016), Thessaloniki, Greece, 2016

