
TRAINING FEED-FORWARD ARTIFICIAL NEURAL NETWORKS FOR
PATTERN-CLASSIFICATION USING THE HARMONY SEARCH ALGORITHM

Ali Kattan
IT Department, College of Science

Ishik University
100 Meter Street, Erbil, Iraq

ali.kattan@ishikuniversity.net

Rosni Abdullah
School of Computer Sciences
Universiti Sains Malaysia
11800 Penang, Malaysia

rosni@cs.usm.my

ABSTRACT
The Harmony Search algorithm is relatively a young

stochastic meta-heuristic that was inspired from the
improvisation process of musicians. HS has been
successfully applied as an optimization method in
many scientific and engineering fields and was reported
to be competitive alternative to many rivals. In this
work a new framework is presented for adapting the
HS algorithm as a method for the supervised training of
feed-forward artificial neural networks with fixed
architectures. Implementation considers a number of
pattern classification benchmarking problems and
comparisons are made against the traditional Back
Propagation training method and an evolutionary based
genetic algorithm training method. Results show that
the proposed Harmony Search based method has
attained results that are on par or better than those of
Back Propagation and Genetic Algorithm. However BP
seems to have better fine-tuning capabilities than the
proposed HS-based method but might take longer
overall training time.

Keywords: harmony search, feed-forward neural
network, pattern classification, supervised training.

1. INTRODUCTION

The Harmony Search (HS) algorithm is a
relatively young evolutionary stochastic global
optimization (SGO) method [1]. This method
draws its inspiration not from biological or
physical processes but from the improvisation
process of musicians. As an optimization method,
HS was reported to be a competitive alternative to
other SGO methods [2] and has been applied
successfully in many applications in engineering
and industry [3-7]. A significant amount of
research has already been carried out on the
application of HS for solving various optimization
problems [2, 4, 5, 8, 9]. The search-mechanism of
HS has been explained analytically within a
statistical-mathematical framework [10] and HS as
an SGO method is being compared against other
evolutionary based methods such as genetic

algorithm (GA) [2, 4]. Feed-forward artificial
neural networks (FFANN) are considered to be
powerful tools in the area of pattern classification
[11]. A universal FFANN approximators for
arbitrary finite-input environment measures can be
built using only a single hidden layer [12]. Using a
dataset composed of patterns along with the target
value of each, the supervised training process of an
artificial neural network (ANN) is concerned with
adjusting the individual weights between each of
the individual ANN neurons until we can achieve
the the desired output. Supervised ANN training
would usually require numerous cycles where
training data is used by an algorithm to adjust the
weights accordingly [13]. Evolutionary ANN
training models such as GA is the result of
combining an evolutionary optimization algorithm
with the ANN learning process [14]. Search
features of these learning models contrast with
those of the standard gradient-descent Back
Propagation (BP) in that it is not trajectory-driven,
but population driven. They overcome many of the
inefficiencies of trajectory-driven methods such as
local minima entrapment by promoting exploration
of the search space [15].
In this work a framework is presented to adapt and
model the HS algorithm as new evolutionary-
based training method for FFANNs with fixed
architectures. Experiments are carried out on a set
of pattern classification benchmarking problems
and comparisons are made against BP and GA
based training methods. It is worth to mention that
there are many HS variants that have been already
introduced in the literature [16-18]. These variants
basically propose different enhancements to that of
the original HS algorithm proposed by Lee and
Geem [6], which is referred to as “classical” [10].
This work considers adapting the classical HS only.
This paper is organized as follows: section 2
presents some related works. Section 3 presents
the basic HS algorithm and explains its main
concepts. Section 4 introduces the proposed

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 84

method and section 5 presents the experimental
results. The conclusions are given in section 6.

2. RELATED WORKS

The BP learning method became a popular method
to train FFANN [19, 20]. The algorithm is a
trajectory-driven technique that is analogous to an
error-minimizing process. In spite of the fact that
trajectory-driven training techniques date back to
more than three decades, many recent works still
consider such training methods [21-26]. BP
learning requires the neuron transfer function to be
differentiable and suffers from the possibility of
falling into local minima. The method is also
known to be sensitive to the initial weight settings
where many weight initialization techniques have
been proposed to lessen such a possibility [27-29].
The training of FFANNs using evolutionary-based
training model is the result of combining an
evolutionary optimization algorithm such as GA
[30], ant colony optimization [31], particle swarm
optimization [32] and improved bacterial chemo-
taxis optimization [33], with the ANN learning
process. Search features of these learning models
contrast with those of the standard gradient-
descent BP in that it is not trajectory-driven, but
population driven. Using a suitable network
representation, the process of supervised training
using an evolutionary method involves performing
several iterations in order to minimize or
maximize a certain fitness function [34-36]. Such
optimization process would usually stochastically
generate vectors representing the network’s weight
values including biases, calculate the fitness for
the generated vectors and tries to keep those
vectors that give better fitness values in that
model’s population. It is also possible to include
the network structure in such representation where
the structure can also evolve [32]. The cycle is
repeated to generate new offspring and eventually
after several iterations the training process is
halted based on some criteria [37]. The optimal or
near optimal solution is given by the best member
of population, characterized by having the best
fitness value.
Several types of fitness functions have been used
in the evolutionary ANN supervised training
models. The common factor between all of these
fitness functions is the use of ANN output error
where the goal is usually to minimize such error.
This is the difference in value between the actual

and expected output and it can be represented in
different forms. The most common fitness
functions are those that are based on the sum of
square errors (SSE) or the mean square error (MSE)
formula [30, 34, 36, 38-41]. SSE has also been
used as a criterion function in trajectory-driven
supervised training methods such as BP [13, 27].
Dorsey et al [34] have designed a Genetic
Adaptive Neural Network Training (GANNT)
algorithm that uses SSE as the main fitness
function . GANNT is still being referenced and
used in some relatively recent works [42, 43].
Instead of using a binary string representation for
the population members, the FFANN inter-node
weights are combined to form a real-value vector,
or a string, representing the chromosome such that
each weight value of this string is an atomic unit.
It has been shown that the binary representation is
neither necessary nor beneficial and it limits the
effectiveness of the GA [44]. Each population
string in this case would represent a complete set
of FFANN weights. Experiments were conducted
on several problems implemented using a fixed 3-
layer FFANN structure. Alba et al [35] has
conducted a comparative study on some GA
hybrid FFANN training methods against two
gradient descent methods. He used the ANN
Squared Error Percentage (SEP) and the
Classification Error Percentage (CEP) as two
fitness functions indicating that both should be
reported in the field of ANN research.
Experiments were also conducted on a 3-layer
fixed FFANN pattern classifier. Kim et al [36]
presented a modified GA for fast training FFANN.
He represented the FFANN as weighted digraph,
with no closed paths, described by an upper or
lower adjacency matrix with real valued elements.
Nodes are supposed to be in a fixed order
according to layers. The population would contain
a number of such adjacency matrices and the GA
crossover is to be carried out row wise or column
wise on these matrices.

3. THE HARMONY SEARCH ALGORITHM

The HS algorithm is a meta-heuristic SGO method
similar in concept to other SGO methods in terms
of combining the rules of randomness to imitate
the process that inspired it. The method can handle
discrete and continuous variables with similar ease
[6]. HS concept is based on the improvisation
process of musicians in a band. Improvisation

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 85

occurs when each musician tests and plays a note
on his instruments such that the resultant tones are
considered by an aesthetic quality measure as in
harmony with the rest of the band. Each
instrument would have a permissible range of
notes that can be played representing the pitch
value range of that musical instrument.
To improvise a new harmony, each musician
would either play a totally new random note from
the permissible range of notes, play an existing
note from memory, or play a note from memory
that is slightly modified. Only good improvised
harmonies are kept and remembered by musicians
till better ones are found and replace the worst
ones. Each note played by a musician represents
one component of the solution vector of all
musician notes and as shown in Figure (1). The
perfect solution vector is found when each
component value is optimal based on some
objective function evaluated for this solution
vector [45].

Figure 1. Music improvisation process for a harmony in a
band of seven

The Harmony Memory (HM) is a matrix of the
best solution vectors attained so far. The harmony
memory size (HMS) is set prior to running the
algorithm. The number of components in each
harmony vector N is analogous to the tone’s pitch,
i.e. note, values played by N musical instruments.
N represents the total number of decision variables.
If continuous decision variables are considered
then each pitch value is drawn from a pre-specified
permissible range of values. The ranges’ lower and
upper limits are specified by two vectors xL and xU
both having the same length N. Each harmony
vector is also associated with a harmony quality
value (i.e. fitness) based on an objective function
f(x). The modeling of HM is shown in Figure (2).
In order to improvise a new vector (harmony),
each decision variable (instrument) is considered
separately. HS uses two probabilistic parameters to
reflect playing choices. These are the Harmony

Memory Considering Rate (HMCR) and the Pitch
Adjustment Rate (PAR). The former determines
the probability of selecting a value (playing a pitch)
from memory or selecting a totally new random
one drawn from the permissible range for that
decision variable. The latter, PAR, determines the
probability of whether the value that is selected
from memory is to be adjusted or not. The
adjustment value for each decision variable is
drawn from the respective component of a
Bandwidth vector B having the size N. The
adjustment process should guarantee that the
resultant value is within the permissible range
specified by xL and xU. The pseudo code for the
classical HS algorithm is given in Figure (3). The
HS algorithm would require the initialization of a
number of parameters. These are HMS, HMCR,
PAR as well as the vectors B and [xL, xU]. In
addition, a maximum number of improvisations
(MAXIMP) should be set for which the algorithm
terminates.

4. THE PROPOSED METHOD

HS is being compared to other evolutionary SGO
methods in particular GA were the FFANN
training techniques of the latter have been
discussed thoroughly in the literature and
comparisons are made against trajectory-driven
methods such as BP [38-40, 42, 44, 46]. In GA-
based training methods, the training process
translates to using suitable FFANN weights
representation, fitness function and termination
condition(s).

Figure 2. The modeling of HM with N decision variables

Initial parameter settings are also required.
Inspired by these, HS could be used as an FFANN
training method by adapting it to handle these
three issues such that they suit the functionality of
the HS algorithm and satisfy the requirements

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 86

mandated by the FFANN supervised training
process. Each of these issues is addressed below
and an adapted HS-based FFANN training
algorithm is proposed.

FFANN Data Representation

Considering the concept behind the GA-based
training methods, harmony vectors can be thought
of as being the network’s weights where each
vector represents a complete set of FFANN
weights. As presented earlier in section 2, there are
two common candidate real-valued FFANN
weight representations that could be utilized; the
vector-based representation [34] and the adjacency
matrix-based representation [36]. The former
vector-based representation lends itself more
suitably for the HS algorithm. However, the
algorithm must be adapted to deal with common
ranges specified by vectors [xL, xU] and B since
FFANN weights have common value ranges and
are not discrete decision variables of an
optimization problem. To adapt for such situation,

the HM representation in this case can be thought
of as having different musicians all of whom are
using the same musical instrument. Using the same
musical instrument will imply that the instruments
will have a common pitch range. Thus the
component values of both [xL, xU] and B are the
same for all decision variables in this case and
there will be no need to use these two vectors.
These can be simply replaced by the scalar range
[xL, xU] and the value B. The adapted HM
representation is shown in Figure (4) where the
vector W represents the improvised FFANN
weight values.
Each harmony vector in HM is represented using
the vector representation from the GANNT
algorithm [34] and as illustrated in Figure (5). The
vector represents a complete set of FFANN
weights including biases. Neurons respective
weights are listed in sequence assuming a fixed
FFANN structure.

Figure 3. The classical HS algorithm

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 87

Figure 4. Adapted HM representation for FFANN training

Figure 5. Weight vector representation of a sample FFANN

4.2 Fitness Function

With SSE being one of the most commonly used
fitness functions for evolutionary-based supervised
training, it is selected as main quality measure for
the proposed HS-based training algorithm. Since
this work considers pattern-classification problems,
CEP is selected as a second quality measure to
complement the raw error values given by SSE
and report in a high-level the quality of the trained
network. SSE, as the main fitness, is the measure
on which the HM vectors are to be sorted on from
best to worst with the best being the harmony with
the least SSE value. Thus for an improvised
harmony, i.e. FFANN weight vector, to be
accepted, its SSE value must be smaller than the
worst one in the current HM. SSE could be used as
the sole fitness function in the algorithm. However,
considering the possibility that lower SSE values
do not necessarily give a better classification
ability, CEP is also used to lessen such possibility

and would be computed for each harmony vector.
The justification can be explained by considering
the winner-take-all approach used for the pattern-
classification problems considered. FFANNs used
for pattern-classification have more than one
output unit in its output layer to designate
“classes” or “groups” belonging to a certain type
[12, 47]. The unit that produces the highest output
among other units would indicate the winning
class, a technique that is known the “winner-take-
all” [27, 48]. Lower CEP values are not
necessarily associated with lower SSE values. This
stems from the fact that even if the SSE value is
small, it is the winner class, i.e. the output neuron
with the highest value, which determines the result
of the classification process.
In order to accept the newly improvised harmony,
a condition based on its SSE and CEP value must
be devised. A condition whereby the newly
improvised FFANN weight vector is to be less in
terms of both SSE and CEP from that of the worst
in HM is too stringent and might take long time to
converge or obtain results far from optimal. Such
conclusion was based on some early empirical
tests in the early stages of this work. A less
stringent quality test would be for the newly
improvised FFANN weight vector to have SSE
value less than that of the worst in HM and a CEP
value that is less than or equal to the average CEP
value of HM. Both of these quality measures are to
ensure that only better harmonies are to replace
worst ones.
In order to compute SSE and CEP, forward-pass
calculations must be performed on the given
FFANN structure. This is a repetitive process that
involves loading the whole training dataset. This
would require a process by which the network
weights, represented by the harmony vector, are to
be loaded into the FFANN to perform such
computation. The FFANN architecture must be
therefore flexible to allow loading different weight
vectors during the HS algorithm initialization and
improvisation processes. SSE, given in (1), will be
associated with each HM vector to represent its
harmony quality. The forward-pass calculations
for each neuron involve finding the sum of input
signals and then applying the neuron transfer
function. These are given in (2) and (3) using the
bipolar sigmoid as the neuron transfer function
[27].

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 88

SSE = (ti
p ! zi

p)2
i=1

S

"
p=1

P

" (1)

where
P : total number of training patterns
S : total number of output units (classes)
t : target output
z : actual output

!

y = wixi
i=1

n+1

" (2)

!

z = F(y) =
2

1+ e"y
"1

(3)

where
xi : input value from unit i of previous layer
(output of that unit)
wi : the weight between this neuron and unit i of
previous layer (wn+1 represents bias)
y : sum of the neuron’s input signals
n+1: total number of input connections including
bias
F(y) : neuron transfer function (bipolar sigmoid)
z : neuron output

CEP is the percentage of incorrectly classified
patterns for the whole training dataset and as given
in (4). CEP would be used to complement SSE raw
error values since CEP reports in a high-level
manner the quality of the trained ANN [35].

!

CEP =
EP

P
" 100% (4)

where
EP: total number of incorrectly recognized training
patterns
P : total number of training patterns

In the proposed implementation SSE is used as the
main fitness function assisted by CEP as a second
fitness measure. If the newly improvised harmony
vector has a lower SSE value than the worst
harmony in HM and its calculated CEP value is
lower or equal to the average CEP of HM, then the
newly improvised harmony vector is accepted and
inserted in HM discarding the current worst vector.

4.3 Termination Condition

Training termination in HS is determined solely by
the value of MAXIMP. The choice of this value is
a subjective issue that is based on experience and
has nothing to do with the quality of the best-
attained solution.

4.4 HS Initial Parameters Settings

The classical HS involves the initialization of
certain number of parameter values before running
the algorithm. These are HMS, HMCR, PAR, [xL,
xU], B and MAXIMP. The initial value setting for
each is discussed below from an FFANN training
perspective.
Based on the fact that HM resembles the short-
term memory of musicians, the use of small values
for HMS is recommended where previous findings
showed an independence to the value of HMS and
that no single choice is superior to others [17].
Considering the FFANN data representation
introduced earlier, a higher value of HMS would
increase the overall computation time since the
calculations of the fitness function would be
required for each HM vector during the
initialization process. The overall computation
time for each vector would be proportional to the
total number of FFANN weights and the total
number of training patterns. The value HMS=10
was encountered in many parameter estimation
problems [9, 49]. A smaller value of HMS=5 was
used for some integer programming problems [17].
Higher values are also used [6, 50]. The HMS
value selection should consider the total number of
FFANN weights as well as the size of the training
dataset. Considering evolutionary-based FFANN
training, it was indicated that a population size of
10 is large enough for most FFANN problems to
get good results [51].
For HMCR, several HS optimization problems
used the value of 0.9 or higher [6, 50, 52]. Based
on the work in [17], it is recommended to use large
values for HMCR such that HMCR ≥0.9 if the
problem has high dimensionality, which translates
to the total number of FFANN weights in this case.
The lengths of the decision vectors considered in
this work are larger than those used for the
aforementioned HS optimization applications.
PAR and B are the key parameters in the
improvisation process. PAR values ranging
between 0.3 and 0.45 were encountered in many

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 89

applications [6, 45, 52]. It is recommended to use
relatively small values for PAR such that PAR≤0.5.
[17]. The bandwidth vector B draws values from
permissible ranges represented by the two vectors
[xL, xU]. Since FFANN weight values have a
common range as discussed earlier, fixed ranges
are used for all decision variables instead for the
vectors xL, xU and B. Thus we would have the
scalar range [xL, xU] and the scalar value B. The
latter specifies the range of permissible weight
adjustments given by the range [-B,B]. These
parameters would depend on the permissible
weight value range used by the FFANN as well as
the application.
Training termination in HS is determined solely by
the value of MAXIMP. The choice of this value is
a subjective issue and values like 5000, 10000 or
higher were commonly used in many applications
[17, 50, 52]. Higher values would usually generate
more accepted improvisations. MAXIMP values
are chosen based on experience and the nature of
the application.

4.5 The Adapted HS-based Training Algorithm

The adapted classical HS training algorithm is
given as pseudo code in Algorithm (1) and the
standard HS harmony vector improvisation
process is given in Algorithm 2. In Algorithm 1,
initialization is performed in Line 1 and 2. Line 3
would involve iterating through the whole training
set for each initial vector in order to compute the
harmony vector’s respective SSE and CEP. This is
written as one line of code here for simplicity.
Once the CEP values for all harmony vectors are
obtained, the HM average CEP is computed in line
4. Line 6 through 21 is the actual HS stochastic
iterative process to improvise weight vectors. The
process involves improvising a new harmony
vector, loading it into the FFANN and performing
the feed-forward computations to find the
respective SSE and CEP using the training dataset.
The improvisation process, given in Algorithm (2),
is made via a call in Line 7. Line 17 would test the
quality of the new improvised vector as discussed
earlier. If the new harmony is accepted it will
replace the worst vector in the current HM and a
new average CEP of the HM is computed. The
whole process is then repeated until termination
occurs once the maximum number of iterations is
reached as specified by MAXIMP value.

5. EXPERIMENTS

In order to demonstrate the performance of the
proposed method, four different pattern-
classification benchmarking problems were
obtained from the UCI Machine Learning
Repository1 [53] for the experimental testing and
evaluation as given in Table (1). These problems
are taken from different fields including biology,
engineering, forensic science and medical research.
One of the main reasons behind choosing these
problems is that they had no missing values in
their given datasets. In addition these problems
have been commonly used in the literature
addressing different aspects such as classification
techniques, recognition accuracy, overall training
time, best architecture, etc. The last two datasets,
namely Glass and Thyroid, are also characterized
by having smaller class percentages compared to
the rest of the class for that problem. For instance,
Thyroid classes “hyber-function” and
“subfunction” contain smaller number of patterns
in comparison with the “normal” class. This is also
true for the second, third and fourth classes of the
Glass problem. The aim in this case is to test the
fine-tuning capabilities of the proposed training
method.
A 3-layer FFANN was designed for each problem
to work as a pattern classifier. The output layer has
a number of output neurons that is equal to the
number of classes used in each problem. Each
pattern in the dataset is associated with a target
integer value representing the target class. The
winner-take-all fashion [13, 35] was used to
indicate the FFANN output winning class. All
neurons use the bipolar sigmoid transfer function
and the datasets values were normalized to be in
the range of [-1, 1]. A common practice is to split
the dataset to use 80% of the patterns as training
set and the rest for post training out-of-sample
testing set [31, 54]. The training and testing sets
were made to include equal percentages of each
class. The selected classification problems given in
Table (1) are listed in an ascending order based on
the number of weights required by each problem’s
FFANN structure.
The initial parameter settings for the BP, GA and
the proposed HS-based training methods are
summarized in Table (2). For BP a low learning
rate value was used since such value would

1 For datasets downloads and their full citations see
http://archive.ics.uci.edu/ml

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 90

generally achieve a better trained network [55].
The Nguyen-Widrow weight-initialization
technique was adopted to lessen the possibility of
converging to a local minimum [27]. For GA, an
implementation of GANNT [34, 42, 43] was
utilized with the parameters values suitable for the
problems considered in this work. HS initial
parameter values were based on the discussions of
the previous section. Both GA and HS would have
the same population size in this case. The [xL, xU]
range is selected to give a bigger search space for
HS-based method to explore which is also taken as
the same initialization range for GA. The B value
was determined based on several independent tests
considering the selected [xL, xU] range values.
Since termination in HS depends entirely on the
subjective selection of MAXIMP, two values were
investigated, a low value of 5000 and a higher
value of 20000. The program creates a log file
during run-time to record the algorithm relevant
parameter values upon each accepted
improvisation. Java 6 was used for implementation
and all experiments were carried out on the same
computer. Ten independent training sessions for
each of the selected problems were run for each
training method. The best out of these ten are those
solutions that give the highest overall recognition
ratio in the least amount of total training time and
these are listed here in Table (3) and Table (4).
Some of the table fields are “not applicable” to BP
and GA where those are marked as (N.A.). The
“Total Accepted” column for BP and GA
represents the actual number of iterations
performed by the method. CEP is calculated in BP
but it is not used in the output error calculations
for this method and serves only as a comparison
measure.
In spite the fact that the attained SSE and CEP
values of BP for each of the four problems are
lower than those obtained by the proposed method,
the proposed method performed better in terms of
the percentages of the overall correctly recognized
classes and the overall training time in three out of
four problems. The lower SSE values achieved by
some problems have resulted in losing some of the
network’s generalization ability due to
overtraining. This is caused by using too many
training cycles as specified by MAXIMP causing
the network to adjust it weighs more specifically to
the training set and loses its generality [56].
In terms of the overall recognition percentage,
results are close or better than those achieved

using BP and GA. In general, a higher MAXIMP
value would yield more accepted improvisations
and as indicated by the “Total Accepted” column
in the results’ tables. Checking the results tables in
terms of the selected MAXIMP value and the
overall recognition percentage, it is obvious that
choosing a higher value for some problems would
result in attaining better results such as the case
with the Ionosphere problems while it is the
opposite for the other problems where overtraining
is exhibited.
The overall recognition percentages obtained by
the proposed HS-based training method is either
better or close to those obtained by BP and GA.
For those problems where HS didn’t perform best
the overall training time for HS is less in
comparison with the others. BP has scored higher
in the Thyroid problem although it took much
longer overall training time. GA on the other hand
has achieved a close overall recognition
percentage with the least time among all but at the
expense of having poor fine-tuning capabilities in
terms of the classes recognition ratios. BP seems
to have better target classes’ recognition
percentages in both the Glass and the Thyroid
problems.
Some of the target classes of these two problems
have relatively low percentages in their training
datasets compared to others as given earlier in
Table (1). The HS-based method has scored zero
percent recognition for some of the target classes
in these two problems, while BP maintains much
higher values. BP is a local search method that can
better fine-tune the final result even if the number
of training patterns is relatively smaller. Having a
larger total number of training patterns, as the case
with Thyroid, would give the additional advantage
of refining the solution. The proposed HS-based
training method seem to lack such fine-tuning
capability considering such problems but can
attain a close overall recognition percentage in less
overall training time.

6. CONCLUSIONS

The supervised training of FFANN using the
adapted classical HS algorithm gave better or close
overall recognition percentages than the same
FFANN trained using the BP or GA based training
methods. However, BP seems to have better fine-
tuning capabilities in FFANN classification
problems with higher number of classes. Such

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 91

fine-tuning capabilities are more apparent in
problems having large datasets giving BP an extra
advantage to further fine-tune the solution. The
maximum number of improvisations determines
the FFANN training convergence state for the
proposed HS-based method where this is the sole
termination condition in HS. The choice of this
value is a subjective issue and large values could
result in overtrained networks while smaller values
might miss a better solution.
Future work should consider devising a better way
of determining the convergence state based on the
quality of the attained best solution. Hybridizing
HS with another local search method could be
utilized to detect such convergence state and
achieve better fine-tuning capabilities. Such
technique has been already used in many other
evolutionary FFANN training rivals and is

inevitable to use in order to enhance the proposed
method. If larger FFANN with larger datasets are
to be considered then the intrinsic parallel nature
of FFANN calculations would invite the use of a
parallel implementations to speed up the fitness
function calculations resulting in a reduction in the
overall training time required by HS.

ACKNOWLEDGMENT

This research is supported by UNIVERSITI
SAINS MALAYSIA and has been funded by the
Research University Cluster (RUC) grant titled by
“Reconstruction of the Neural Microcircuitry or
Reward-Controlled Learning in the Rat
Hippocampus” (1001/PSKBP/8630022).

1 Initialize the algorithm parameters
2 Initialize HM with random weight values drawn

from [xL,xU]
3 Do feed-forward computation for each vector

to find SSE and CEP
4 Find HM average CEP
5 Begin
6 For imp=1 to MAXIMP do
7 Call: Improvise new harmony vector x
8 Load x weights into the FFANN
9 SSE=0, Class Error CE = 0

10 For each training pattern do
11 Apply training pattern to FFANN input
12 Compute the feed-forward phase,

find the Error E
13 SSE= SSE + E^2
14 If the class is not recognized

then CE = CE + 1
15 EndFor
16 CEP= CE/Total Patterns * 100
17 If x SSE < worst vector SSE AND

x CEP <= HM average CEP then
18 Replace worst harmony vector with x
19 Recalculate HM average CEP
20 EndIf
21 EndFor
22 Best solution is given by the best

harmony in HM
23 End

Algorithm 1. pseudo code for the HS-based FFANN supervised raining

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 92

1 Create new harmony vector x’ of size N
2 For i=0 to N do
3 RND = Random(0,1)
4 If (RND<=HMCR)

 //harmony memory consideration
5 RND = Random(0,HMS)
6 x'(i) = HM(RND,i)

 //harmony memory access
7 RND = Random(0,1)
8 If (RND<=PAR) //Pitch Adjusting
9 x’(i) = x’(i) + Random(-B,B)
10 x’(i) = min(max(x’(i),xL),xU)
11 EndIf
12 Else //random harmony
13 x'(i) = Random(xU,xL)
14 EndIf
15 EndFor
16 Return x’

Algorithm 2. pseudo code for improvising new harmony vector

Table 1. Dataset Features

Dataset Name FFANN
Structure

Total
Weights

Patterns Total Class Percentages
(Class index: percentage)

Training Testing

IRIS
Iris Dataset:
Predict class of iris plant based on
certain plant measurements.

4-5-3 43 120 30 0: 33.33% setosa
1: 33.33% versicolour
2: 33.33% virginica

IONOSPHERE
Ionosphere Dataset:
Classification of radar returns from
the ionosphere corresponding to the
complex values returned by the
function resulting from the complex
electromagnetic signal.
The original dataset had 34 input
features; however the third feature is
a constant value of 9.0 for all
instances and therefore removed.

33-4-2 146 280 71 0: 64:10 good
1: 35.90 bad

GLASS
Glass Identification Dataset:
From USA Forensic Science Service
where 6 types of glass defined in
terms of their oxide content. The
original dataset had 7 classes but the
dataset did not include any instance
of this 7th class and thus only 6.

9-12-6 198 171 43 0: 32.71% f. building
1: 35.51% non. f. building

2: 7.94% vehicle
3: 6.07% containers
4: 4.21% tableware

5: 13.55% headlamp

THYROID
Thyroid Disease Dataset:
Detect thyroid function based on
certain biological features.

21-15-3 378 5,760 1,440 0: 92.57% normal
1: 5.14% hyper-function

2: 2.29% subfunciton

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 93

Table 2. List of parameters used by training algorithms

M Parameter Values
BP Learning Rate

Momentum
Initial Weights

Initialization Method
Stopping Criterion

0.008
0.7
[-0.5, 0.5]
Nguyen-Widrow
SSE difference<= 1.0E-4

GA Population Size
Crossover

Mutation Probability
Value Range

[min,max]
Stopping Criterion

10
At k=rand(0,N), no
crossover for k=0
0.01
[-250, 250]
50% domination of a fitness
value

HS HMS
HMCR

PAR
B

[xL, xU]
MAXIMP

10
0.97
0.3
5.0
[-250, 250]
5000, 20000

Table 3. Results for Iris and Ionosphere datasets

Set M Training Testing

MAXIMP SSE CEP Total
Accepted

Last
Accepted
Iteration #

Last
Accepted

Time

Overall
Time

Overall
Recog. %

Class
Recog. %

IR
IS

H
S

5000 21.6 0.83% 127 4564 0:02:32 0:02:46 96.67% 100.00%
100.00%
90.00%

20000 18 1.67% 162 2390 0:01:18 0:10:51 96.67% 100.00%
100.00%
90.00%

B
P

N.A. 7.85 0.83% 1254 N.A. N.A. 0:07:29 96.67% 100.00%
100.00%
90.00%

G
A

 N.A. 96 10% 66 N.A. N.A. 0:00:34 90.00% 100.00%
90.00%
80.00%

IO
N

O
SP

H
ER

E H
S

5000 128 6.07% 151 4773 0:03:49 0:04:00 91.55% 100.00%
76.00%

20000 106.4 5.00% 170 19463 0:20:46 0:21:20 94.37% 97.83%
88.00%

B
P N.A. 8.52 0.56% 1628 N.A. N.A. 0:24:43 95.77% 100.00%

88.00%

G
A

 N.A. 152 6.79% 2244 N.A. N.A. 0:35:57 94.37% 100.00%
84.00%

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 94

Table 4. Results for Glass and Thyroid datasets

Set M Training Testing

 MAXIMP SSE CEP Total
Accepted

Last
Accepted
Iteration #

Last
Accepted

Time

Overall
Time

Overall
Recog. %

Class
Recog. %

G
LA

SS

H
S

5000 489.06 38.6% 108 4984 0:03:52 0:03:53 76.74% 92.86%
46.67%
0.00%

33.33%
0.00%

100.00%
20000 355.86 29.82% 177 19798 0:20:18 0:20:31 72.09% 85.71%

80.00%
0.00%
0.00%

50.00%
100.00%

B
P

N.A. 218.06 18.71% 662 N.A. N.A. 0:06:08 67.44% 35.71%
100.00%
33.33%
33.33%
50.00%

100.00%

G
A

N.A. 544 42.11% 6123 N.A. N.A. 1:17:00 67.44% 85.71%
73.33%
0.00%
0.00%
0.00%

100.00%

TH
Y

R
O

ID

H
S

5000 3211.2 7.24% 67 4829 2:37:43 2:43:18 92.78% 9.09%
0.00%

100.00%
20000 3146.4 6.94% 94 19464 10:47:19 11:05:04 92.71% 9.09%

0.00%
99.92%

B
P

N.A. 450.23 1.33% 4201 N.A. N.A. 22:11:47 97.22% 78.79%
68.92%
99.25%

G
A

 N.A. 3416 7.42% 167 N.A. N.A. 1:58:49 92.57% 0.00%
0.00%

100.00%

REFERENCES

[1] Z. W. Geem, J. H. Kim, and G. V. Loganathan,

"A New Heuristic Optimization Algorithm:
Harmony Search," Simulation, vol. 72, pp. 60-68,
2001.

[2] P. Tangpattanakul and P. Artrit, "Minimum-time
trajectory of robot manipulator using Harmony
Search algorithm," presented at the 6th
International Conference on Electrical
Engineering/Electronics, Computer,
Telecommunications and Information
Technology (ECTI-CON 2009) Pattaya, Thailand,
2009.

[3] Z. W. Geem, Music-Inspired Harmony Search
Algorithm: Theory and Applications vol. 191:
Springer, 2009.

[4] J.-H. Lee and Y.-S. Yoon, "Modified Harmony
Search Algorithm and Neural Networks for
Concrete Mix Proportion Design," Journal of
Computing in Civil Engineering, vol. 23, pp. 57-
61, 2009.

[5] Z. W. Geem, "Harmony Search Applications in
Industry," in Soft Computing Applications in
Industry. vol. 226/2008, ed: Springer Berlin /
Heidelberg, 2008, pp. 117-134.

[6] K. S. Lee and Z. W. Geem, "A New Meta-
heuristic Algorithm for Continuous Engineering
Optimization: Harmony Search Theory and
Practice," Computer Methods in Applied
Mechanics and Engineering, vol. 194, pp. 3902-
3933, 2005.

[7] R. Forsati, A. T. Haghighat, and M. Mahdavi,
"Harmony search based algorithms for
bandwidth-delay-constrained least-cost multicast
routing," Computer Communications, vol. 31, pp.
2505-2519, 2008.

[8] W. S. Jang, H. I. Kang, and B. H. Lee, "Hybrid
Simplex-Harmony search method for
optimization problems," presented at the IEEE
Congress on Evolutionary Computation (CEC
2008) Trondheim, Norway, 2008.

[9] H. Ceylan, H. Ceylan, S. Haldenbilen, and O.
Baskan, "Transport energy modeling with meta-
heuristic harmony search algorithm, an

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 95

application to Turkey," Energy Policy, vol. 36, pp.
2527-2535, 2008.

[10] A. Mukhopadhyay, A. Roy, S. Das, S. Das, and A.
Abraham, "Population-variance and explorative
power of Harmony Search: An analysis,"
presented at the Third International Conference
on Digital Information Management (ICDIM
2008) London, UK, 2008.

[11] U. Seiffert, "Training of Large-Scale Feed-
Forward Neural Networks," presented at the
International Joint Conference on Neural
Networks, Vancouver, BC, Canada, 2006.

[12] X. Jiang and A. H. K. S. Wah, "Constructing and
training feed-forwardneural networks for pattern
classifcation," Pattern Recognition, vol. 36, pp.
853-867, 2003.

[13] M. H. Hassoun, Fundamentals of Artificial
Neural Networks. Massachusetts: MIT Press,
Cambridge, 1995.

[14] W. Gao, "Evolutionary Neural Network Based on
New Ant Colony Algorithm," presented at the
International Symposium on Computational
Intelligence and Design (ISCID '08), Wuhan,
China, 2008.

[15] A. E. Eiben and J. E. Smith, Introduction to
Evolutionary Computing. New York: Springer,
2008.

[16] M. Mahdavi, M. Fesanghary, and E. Damangir,
"An Improved Harmony Search Algorithm for
Solving Optimization Problems," Applied
Mathematics and Computation, vol. 188, pp.
1567-1579, 2007.

[17] M. G. H. Omran and M. Mahdavi, "Globel-Best
Harmony Search," Applied Mathematics and
Computation, vol. 198, pp. 643-656, 2008.

[18] Q.-K. Pan, P. N. Suganthan, M. F. Tasgetiren,
and J. J. Liang, "A self-adaptive global best
harmony search algorithm for continuous
optimization problems," Applied Mathematics
and Computation, vol. 216, pp. 830-848, 2010.

[19] K. M. Lane and R. D. Neidinger, "Neural
networks from idea to implementation," ACM
Sigapl APL Quote Quad, vol. 25, pp. 27-37, 1995.

[20] A. T. Chronopoulos and J. Sarangapani, "A
distributed discrete-time neural network
architecture for pattern allocation and control," in
Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’02),
Florida, USA, 2002, pp. 204-211.

[21] T. Jayalakshmi and A. Santhakumaran,
"Improved Gradient Descent Back Propagation
Neural Networks for Diagnoses of Type II
Diabetes Mellitus," Global Journal of Computer
Science and Technology, vol. 9, 2010.

[22] B. Cetişli and A. Barkana, "Speeding up the
scaled conjugate gradient algorithm and its
application in neuro-fuzzy classifier training,"
Soft Computing, vol. 14, pp. 365-378, 2010.

[23] A. E. Kostopoulos and T. N. Grapsa, "Self-scaled
conjugate gradient training algorithms,"
Neurocomputing, vol. 72, pp. 3000-3019, 2009.

[24] M. S. Bascil and F. Temurtas. (2009, A Study on
Hepatitis Disease Diagnosis Using Multilayer

Neural Network with Levenberg Marquardt
Training Algorithm. Journal of Medical Systems
[Original Paper].

[25] M. I. Soliman and S. A. Mohamed, "A highly
efficient implementation of a backpropagation
learning algorithm using matrix ISA," Journal of
Parallel and Distributed Computing, vol. 68, pp.
949–961, 2008.

[26] T. Kathirvalavakumar and P. Thangavel, "A
Modified Backpropagation Training Algorithm
for Feedforward Neural Networks," Neural
Processing Letters, vol. 23, pp. 111-119, 2006.

[27] L. Fausett, Fundamentals of Neural Networks
Architectures, Algorithms, and Applications. New
Jersey: Prentice Hall, 1994.

[28] B. Guijarro-Berdinas, O. Fontenla-Romero, B.
Perez-Sanchez, and A. Alonso-Betanzos, "A New
Initialization Method for Neural Networks Using
Sensitivity Analysis," presented at the
International Conference on Mathematical and
Statistical Modeling, Ciudad Real, Spain, 2006.

[29] J. Škutova, "Weights Initialization Methods for
MLP Neural Networks," Transactions of the VŠB,
vol. LIV, article No. 1636, pp. 147-152, 2008.

[30] K. P. Ferentinos, "Biological engineering
applications of feedforward neural networks
designed and parameterized by genetic
algorithms," Neural Networks, vol. 18, pp. 934-
950, 2005.

[31] G. Wei, "Study on Evolutionary Neural Network
Based on Ant Colony Optimization," presented at
the International Conference on Computational
Intelligence and Security Workshops, Harbin,
Heilongjiang, China, 2007.

[32] J. Yu, S. Wang, and L. Xi, "Evolving artificial
neural networks using an improved PSO and
DPSO," Neurocomputing, vol. 71, pp. 1054-1060,
2008.

[33] Y. Zhang and L. Wu, "Weights Optimization of
Neural Networks via Improved BCO Approach,"
Progress In Electromagnetics Research, vol. 83,
pp. 185-198, 2008.

[34] R. E. Dorsey, J. D. Johnson, and W. J. Mayer, "A
Genetic Algoirthm for the Training of
Feedforward Neural Networks," Advances in
A.pngicial Intelligence in Economics, Finance,
and Management vol. 1, pp. 93-111, 1994.

[35] E. Alba and J. F. Chicano, "Training Neural
Networks with GA Hybrid Algorithms," in
Genetic and Evolutionary Computation (GECCO
2004). vol. 3102/2004, ed: Springer Berlin /
Heidelberg, 2004, pp. 852-863.

[36] D. Kim, H. Kim, and D. Chung, "A Modified
Genetic Algorithm for Fast Training Neural
Networks," in Advances in Neural Networks -
ISNN 2005. vol. 3496/2005, ed: Springer Berlin /
Heidelberg, 2005, pp. 660-665.

[37] R. Giri, A. Chowdhury, A. Ghosh, S. Das, A.
Abraham, and V. Snasel, "A Modified Invasive
Weed Optimization Algorithm for training of
feed- forward Neural Networks," in International
Conference on Systems Man and Cybernetics,
Istanbul, Turkey, 2010, pp. 3166 - 3173.

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 96

[38] D. J. Montana and L. Davis, "Training
Feedforward Neural Networks Using Genetic
Algorithms," in Proceedings of the International
Joint Conference on Artificial Intelligence,
Detroit, USA, 1989, p. 762.

[39] D. J. Montana, "Neural Network Weight
Selection Using Genetic Algorithms," Intelligent
Hybrid Systems, pp. 85-104., 1995.

[40] R. S. Sexton and R. E. Dorsey, "Reliable
classification using neural networks: a genetic
algorithm and backpropagation comparison,"
Decision Support Systems, vol. 30, pp. 11-22, 15
December 2000.

[41] M. N. H. Siddique and M. O. Tokhi, "Training
neural networks: backpropagation vs. genetic
algorithms," in International Joint Conference on
Neural Networks (IJCNN '01), Washington, DC
2001, pp. 2673 - 2678.

[42] R. S. Sexton, R. E. Dorsey, and N. A. Sikander,
"Simultaneous Optimization of Neural Network
Function and Architecture Algorithm," Decision
Support Systems, vol. 30, pp. 11-22, December
2004 2004.

[43] K. E. Fish, J. D. Johnson, R. E. Dorsey, and J. G.
Blodgett, "Using an Artificial Neural Network
Trained with a Genetic Algorithm to Model
Brand Share " Journal of Business Research, vol.
57, pp. 79-85, January 2004 2004.

[44] J. N. D. Gupta and R. S. Sexton, "Comparing
backpropagation with a genetic algorithm for
neural network training," Omega, The
International Journal of Management Science,
vol. 27, pp. 679-684, 1999.

[45] Z. W. Geem, C.-L. Tseng, and Y. Park,
"Harmony Search for Generalized Orienteering
Problem: Best Touring in China," in Advances in
Natural Computation. vol. 3612/2005, ed:
Springer Berlin / Heidelberg, 2005, pp. 741-750.

[46] R. S. Sexton, R. E. Dorsey, and J. D. Jhonson,
"Towards global optimization of neural networks:
A comparison of the genetic algorithm and
backpropagation.," Decision Support Systems, vol.
22, pp. 171-185, 1998.

[47] E. Fiesler and J. Fulcher, "Neural network
classification and formalization," Computer
Standards & Interfaces, vol. 16, pp. 231-239,
July 1994.

[48] I.-S. Oh and C. Y. Suen, "A class-modular
feedforward neural network for handwriting
recognition," Pattern Recognition, vol. 35, pp.
229-244, 2002.

[49] M. T. Ayvas, "Simulation determination of
aquifer parameters and zone structures with fuzzy
c-means clustering and meta-heuristic harmony
search algorithm," Advances in Water Resources,
vol. 30, pp. 2326-2338, 2007.

[50] Z. W. Geem, "Optimal Cost Design of Water
Distribution Networks Using Harmony Search,"
Engineering Optimization, vol. 38, pp. 259-277,
2006.

[51] M. Geethanjali, S. M. R. Slochanal, and R.
Bhavani, "PSO trained ANN-based differential
protection scheme for power transformers,"
Neurocomputing, vol. 71, pp. 904-918, 2008.

[52] Z. W. Geem and J.-Y. Choi, "Music Composition
Using Harmony Search Algorithm," in
Applications of Evolutionary Computing. vol.
4448/2007, ed: Springer Berlin / Heidelberg,
2007, pp. 593-600.

[53] A. Frank and A. Asuncion. (2010). UCI Machine
Learning Repository, University of California,
Irvine, School of Information & Computer
Sciences. Available: http://archive.ics.uci.edu/ml

[54] M. Delgado, M. C. Pegalajar, and M. P. Cuellar,
"Memetic Evolutionary Training for Recurrent
Neural Networks: An Application to Time-Series
Prediction," Expert Systems, vol. 23, pp. 99-115,
2006.

[55] D. Randall Wilson and T. R. Martinez, "The
general inefficiency of batch training for gradient
descent learning," Neural Networks, vol. 16, pp.
1429-1451, 2003.

[56] Y. Liu, J. A. Starzyk, and Z. Zhu, "Optimized
Approximation Algorithm in Neural Networks
Without Overfitting," IEEE Transactions on
Neural Networks, vol. 19, pp. 983-995, 2008.

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 97

