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ABSTRACT 
The Harmony Search algorithm is relatively a young 

stochastic meta-heuristic that was inspired from the 
improvisation process of musicians. HS has been 
successfully applied as an optimization method in 
many scientific and engineering fields and was reported 
to be competitive alternative to many rivals. In this 
work a new framework is presented for adapting the 
HS algorithm as a method for the supervised training of 
feed-forward artificial neural networks with fixed 
architectures. Implementation considers a number of 
pattern classification benchmarking problems and 
comparisons are made against the traditional Back 
Propagation training method and an evolutionary based 
genetic algorithm training method. Results show that 
the proposed Harmony Search based method has 
attained results that are on par or better than those of 
Back Propagation and Genetic Algorithm. However BP 
seems to have better fine-tuning capabilities than the 
proposed HS-based method but might take longer 
overall training time.  

Keywords: harmony search, feed-forward neural 
network, pattern classification, supervised training. 

1. INTRODUCTION

The Harmony Search (HS) algorithm is a 
relatively young evolutionary stochastic global 
optimization (SGO) method [1]. This method 
draws its inspiration not from biological or 
physical processes but from the improvisation 
process of musicians. As an optimization method, 
HS was reported to be a competitive alternative to 
other SGO methods [2] and has been applied 
successfully in  many applications in engineering 
and industry [3-7]. A significant amount of 
research has already been carried out on the 
application of HS for solving various optimization 
problems [2, 4, 5, 8, 9]. The search-mechanism of 
HS has been explained analytically within a 
statistical-mathematical framework [10] and HS as 
an SGO method is being compared against other 
evolutionary based methods such as genetic 

algorithm (GA) [2, 4]. Feed-forward artificial 
neural networks (FFANN) are considered to be 
powerful tools in the area of pattern classification 
[11]. A universal FFANN approximators for 
arbitrary finite-input environment measures can be 
built using only a single hidden layer [12]. Using a 
dataset composed of patterns along with the target 
value of each, the supervised training process of an 
artificial neural network (ANN) is concerned with 
adjusting the individual weights between each of 
the individual ANN neurons until we can achieve 
the the desired output. Supervised ANN training 
would usually require numerous cycles where 
training data is used by an algorithm to adjust the 
weights accordingly [13]. Evolutionary ANN 
training models such as GA is the result of 
combining an evolutionary optimization algorithm 
with the ANN learning process [14]. Search 
features of these learning models contrast with 
those of the standard gradient-descent Back 
Propagation (BP) in that it is not trajectory-driven, 
but population driven. They overcome many of the 
inefficiencies of trajectory-driven methods such as 
local minima entrapment by promoting exploration 
of the search space [15]. 
In this work a framework is presented to adapt and 
model the HS algorithm as new evolutionary-
based training method for FFANNs with fixed 
architectures. Experiments are carried out on a set 
of pattern classification benchmarking problems 
and comparisons are made against BP and GA 
based training methods. It is worth to mention that 
there are many HS variants that have been already 
introduced in the literature [16-18]. These variants 
basically propose different enhancements to that of 
the original HS algorithm proposed by Lee and 
Geem [6], which is referred to as “classical” [10]. 
This work considers adapting the classical HS only. 
This paper is organized as follows: section 2 
presents some related works. Section 3 presents 
the basic HS algorithm and explains its main 
concepts. Section 4 introduces the proposed 
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method and section 5 presents the experimental 
results. The conclusions are given in section 6.  
 
2. RELATED WORKS 
 
The BP learning method became a popular method 
to train FFANN [19, 20]. The algorithm is a 
trajectory-driven technique that is analogous to an 
error-minimizing process. In spite of the fact that 
trajectory-driven training techniques date back to 
more than three decades, many recent works still 
consider such training methods [21-26]. BP 
learning requires the neuron transfer function to be 
differentiable and suffers from the possibility of 
falling into local minima. The method is also 
known to be sensitive to the initial weight settings 
where many weight initialization techniques have 
been proposed to lessen such a possibility [27-29].  
The training of FFANNs using evolutionary-based 
training model is the result of combining an 
evolutionary optimization algorithm such as GA 
[30], ant colony optimization [31], particle swarm 
optimization [32] and improved bacterial chemo-
taxis optimization [33], with the ANN learning 
process. Search features of these learning models 
contrast with those of the standard gradient-
descent BP in that it is not trajectory-driven, but 
population driven. Using a suitable network 
representation, the process of supervised training 
using an evolutionary method involves performing 
several iterations in order to minimize or 
maximize a certain fitness function [34-36]. Such 
optimization process would usually stochastically 
generate vectors representing the network’s weight 
values including biases, calculate the fitness for 
the generated vectors and tries to keep those 
vectors that give better fitness values in that 
model’s population. It is also possible to include 
the network structure in such representation where 
the structure can also evolve [32]. The cycle is 
repeated to generate new offspring and eventually 
after several iterations the training process is 
halted based on some criteria [37]. The optimal or 
near optimal solution is given by the best member 
of population, characterized by having the best 
fitness value. 
Several types of fitness functions have been used 
in the evolutionary ANN supervised training 
models. The common factor between all of these 
fitness functions is the use of ANN output error 
where the goal is usually to minimize such error. 
This is the difference in value between the actual 

and expected output and it can be represented in 
different forms. The most common fitness 
functions are those that are based on the sum of 
square errors (SSE) or the mean square error (MSE) 
formula [30, 34, 36, 38-41]. SSE has also been 
used as a criterion function in trajectory-driven 
supervised training methods such as BP [13, 27].  
Dorsey et al [34] have designed a Genetic 
Adaptive Neural Network Training (GANNT) 
algorithm that uses SSE as the main fitness 
function . GANNT is still being referenced and 
used in some relatively recent works [42, 43]. 
Instead of using a binary string representation for 
the population members, the FFANN inter-node 
weights are combined to form a real-value vector, 
or a string, representing the chromosome such that 
each weight value of this string is an atomic unit. 
It has been shown that the binary representation is 
neither necessary nor beneficial and it limits the 
effectiveness of the GA [44]. Each population 
string in this case would represent a complete set 
of FFANN weights. Experiments were conducted 
on several problems implemented using a fixed 3-
layer FFANN structure. Alba et al [35] has 
conducted a comparative study on some GA 
hybrid FFANN training methods against two 
gradient descent methods. He used the ANN 
Squared Error Percentage (SEP) and the 
Classification Error Percentage (CEP) as two 
fitness functions indicating that both should be 
reported in the field of ANN research. 
Experiments were also conducted on a 3-layer 
fixed FFANN pattern classifier. Kim et al [36] 
presented a modified GA for fast training FFANN. 
He represented the FFANN as weighted digraph, 
with no closed paths, described by an upper or 
lower adjacency matrix with real valued elements. 
Nodes are supposed to be in a fixed order 
according to layers. The population would contain 
a number of such adjacency matrices and the GA 
crossover is to be carried out row wise or column 
wise on these matrices.  
 
3. THE HARMONY SEARCH ALGORITHM 
 
The HS algorithm is a meta-heuristic SGO method 
similar in concept to other SGO methods in terms 
of combining the rules of randomness to imitate 
the process that inspired it. The method can handle 
discrete and continuous variables with similar ease 
[6]. HS concept is based on the improvisation 
process of musicians in a band. Improvisation 
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occurs when each musician tests and plays a note 
on his instruments such that the resultant tones are 
considered by an aesthetic quality measure as in 
harmony with the rest of the band. Each 
instrument would have a permissible range of 
notes that can be played representing the pitch 
value range of that musical instrument.  
To improvise a new harmony, each musician 
would either play a totally new random note from 
the permissible range of notes, play an existing 
note from memory, or play a note from memory 
that is slightly modified. Only good improvised 
harmonies are kept and remembered by musicians 
till better ones are found and replace the worst 
ones. Each note played by a musician represents 
one component of the solution vector of all 
musician notes and as shown in Figure (1). The 
perfect solution vector is found when each 
component value is optimal based on some 
objective function evaluated for this solution 
vector [45]. 
 

 

Figure 1.  Music improvisation process for a harmony in a 
band of seven 

 
The Harmony Memory (HM) is a matrix of the 
best solution vectors attained so far. The harmony 
memory size (HMS) is set prior to running the 
algorithm. The number of components in each 
harmony vector N is analogous to the tone’s pitch, 
i.e. note, values played by N musical instruments. 
N represents the total number of decision variables. 
If continuous decision variables are considered 
then each pitch value is drawn from a pre-specified 
permissible range of values. The ranges’ lower and 
upper limits are specified by two vectors xL and xU 
both having the same length N. Each harmony 
vector is also associated with a harmony quality 
value (i.e. fitness) based on an objective function 
f(x). The modeling of HM is shown in Figure (2).  
In order to improvise a new vector (harmony), 
each decision variable (instrument) is considered 
separately. HS uses two probabilistic parameters to 
reflect playing choices. These are the Harmony 

Memory Considering Rate (HMCR) and the Pitch 
Adjustment Rate (PAR). The former determines 
the probability of selecting a value (playing a pitch) 
from memory or selecting a totally new random 
one drawn from the permissible range for that 
decision variable. The latter, PAR, determines the 
probability of whether the value that is selected 
from memory is to be adjusted or not. The 
adjustment value for each decision variable is 
drawn from the respective component of a 
Bandwidth vector B having the size N. The 
adjustment process should guarantee that the 
resultant value is within the permissible range 
specified by xL and xU. The pseudo code for the 
classical HS algorithm is given in Figure (3). The 
HS algorithm would require the initialization of a 
number of parameters. These are HMS, HMCR, 
PAR as well as the vectors B and [xL, xU]. In 
addition, a maximum number of improvisations 
(MAXIMP) should be set for which the algorithm 
terminates. 
 
4. THE PROPOSED METHOD 
 
HS is being compared to other evolutionary SGO 
methods in particular GA were the FFANN 
training techniques of the latter have been 
discussed thoroughly in the literature and 
comparisons are made against trajectory-driven 
methods such as BP [38-40, 42, 44, 46]. In GA-
based training methods, the training process 
translates to using suitable FFANN weights 
representation, fitness function and termination 
condition(s).  
 

 

Figure 2. The modeling of HM with N decision variables 

Initial parameter settings are also required. 
Inspired by these, HS could be used as an FFANN 
training method by adapting it to handle these 
three issues such that they suit the functionality of 
the HS algorithm and satisfy the requirements 
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mandated by the FFANN supervised training 
process. Each of these issues is addressed below 
and an adapted HS-based FFANN training 
algorithm is proposed.  
 
FFANN Data Representation 
 
Considering the concept behind the GA-based 
training methods, harmony vectors can be thought 
of as being the network’s weights where each 
vector represents a complete set of FFANN 
weights. As presented earlier in section 2, there are 
two common candidate real-valued FFANN 
weight representations that could be utilized; the 
vector-based representation [34] and the adjacency 
matrix-based representation [36]. The former 
vector-based representation lends itself more 
suitably for the HS algorithm. However, the 
algorithm must be adapted to deal with common 
ranges specified by vectors [xL, xU] and B since 
FFANN weights have common value ranges and 
are not discrete decision variables of an 
optimization problem. To adapt for such situation, 

the HM representation in this case can be thought 
of as having different musicians all of whom are 
using the same musical instrument. Using the same 
musical instrument will imply that the instruments 
will have a common pitch range. Thus the 
component values of both [xL, xU] and B are the 
same for all decision variables in this case and 
there will be no need to use these two vectors. 
These can be simply replaced by the scalar range 
[xL, xU] and the value B. The adapted HM 
representation is shown in Figure (4) where the 
vector W represents the improvised FFANN 
weight values. 
Each harmony vector in HM is represented using 
the vector representation from the GANNT 
algorithm [34] and as illustrated in  Figure (5). The 
vector represents a complete set of FFANN 
weights including biases. Neurons respective 
weights are listed in sequence assuming a fixed 
FFANN structure. 
 
 

 

 

Figure 3. The classical HS algorithm 
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Figure 4. Adapted HM representation for FFANN training 

Figure 5. Weight vector representation of a sample FFANN 

4.2 Fitness Function 

With SSE being one of the most commonly used 
fitness functions for evolutionary-based supervised 
training, it is selected as main quality measure for 
the proposed HS-based training algorithm. Since 
this work considers pattern-classification problems, 
CEP is selected as a second quality measure to 
complement the raw error values given by SSE 
and report in a high-level the quality of the trained 
network. SSE, as the main fitness, is the measure 
on which the HM vectors are to be sorted on from 
best to worst with the best being the harmony with 
the least SSE value. Thus for an improvised 
harmony, i.e. FFANN weight vector, to be 
accepted, its SSE value must be smaller than the 
worst one in the current HM. SSE could be used as 
the sole fitness function in the algorithm. However, 
considering the possibility that lower SSE values 
do not necessarily give a better classification 
ability, CEP is also used to lessen such possibility 

and would be computed for each harmony vector. 
The justification can be explained by considering 
the winner-take-all approach used for the pattern-
classification problems considered. FFANNs used 
for pattern-classification have more than one 
output unit in its output layer to designate 
“classes” or “groups” belonging to a certain type 
[12, 47]. The unit that produces the highest output 
among other units would indicate the winning 
class, a technique that is known the “winner-take-
all” [27, 48]. Lower CEP values are not 
necessarily associated with lower SSE values. This 
stems from the fact that even if the SSE value is 
small, it is the winner class, i.e. the output neuron 
with the highest value, which determines the result 
of the classification process.  
In order to accept the newly improvised harmony, 
a condition based on its SSE and CEP value must 
be devised. A condition whereby the newly 
improvised FFANN weight vector is to be less in 
terms of both SSE and CEP from that of the worst 
in HM is too stringent and might take long time to 
converge or obtain results far from optimal. Such 
conclusion was based on some early empirical 
tests in the early stages of this work. A less 
stringent quality test would be for the newly 
improvised FFANN weight vector to have SSE 
value less than that of the worst in HM and a CEP 
value that is less than or equal to the average CEP 
value of HM. Both of these quality measures are to 
ensure that only better harmonies are to replace 
worst ones.  
In order to compute SSE and CEP, forward-pass 
calculations must be performed on the given 
FFANN structure. This is a repetitive process that 
involves loading the whole training dataset. This 
would require a process by which the network 
weights, represented by the harmony vector, are to 
be loaded into the FFANN to perform such 
computation. The FFANN architecture must be 
therefore flexible to allow loading different weight 
vectors during the HS algorithm initialization and 
improvisation processes. SSE, given in (1), will be 
associated with each HM vector to represent its 
harmony quality. The forward-pass calculations 
for each neuron involve finding the sum of input 
signals and then applying the neuron transfer 
function. These are given in (2) and (3) using the 
bipolar sigmoid as the neuron transfer function 
[27]. 
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where 
xi : input value from unit i of previous layer 
(output of that unit) 
wi : the weight between this neuron and unit i of 
previous layer (wn+1 represents bias) 
y : sum of the neuron’s input signals  
n+1: total number of input connections including 
bias 
F(y) : neuron transfer function (bipolar sigmoid) 
z : neuron output 

CEP is the percentage of incorrectly classified 
patterns for the whole training dataset and as given 
in (4). CEP would be used to complement SSE raw 
error values since CEP reports in a high-level 
manner the quality of the trained ANN [35]. 

!

CEP =
EP

P
" 100% (4) 

where 
EP: total number of incorrectly recognized training 
patterns 
P : total number of training patterns 

In the proposed implementation SSE is used as the 
main fitness function assisted by CEP as a second 
fitness measure. If the newly improvised harmony 
vector has a lower SSE value than the worst 
harmony in HM and its calculated CEP value is 
lower or equal to the average CEP of HM, then the 
newly improvised harmony vector is accepted and 
inserted in HM discarding the current worst vector. 

4.3 Termination Condition 

Training termination in HS is determined solely by 
the value of MAXIMP. The choice of this value is 
a subjective issue that is based on experience and 
has nothing to do with the quality of the best-
attained solution. 

4.4 HS Initial Parameters Settings 

The classical HS involves the initialization of 
certain number of parameter values before running 
the algorithm. These are HMS, HMCR, PAR, [xL, 
xU], B and MAXIMP. The initial value setting for 
each is discussed below from an FFANN training 
perspective.  
Based on the fact that HM resembles the short-
term memory of musicians, the use of small values 
for HMS is recommended where previous findings 
showed an independence to the value of HMS and 
that no single choice is superior to others [17]. 
Considering the FFANN data representation 
introduced earlier, a higher value of HMS would 
increase the overall computation time since the 
calculations of the fitness function would be 
required for each HM vector during the 
initialization process. The overall computation 
time for each vector would be proportional to the 
total number of FFANN weights and the total 
number of training patterns. The value HMS=10 
was encountered in many parameter estimation 
problems [9, 49]. A smaller value of HMS=5 was 
used for some integer programming problems [17]. 
Higher values are also used [6, 50]. The HMS 
value selection should consider the total number of 
FFANN weights as well as the size of the training 
dataset. Considering evolutionary-based FFANN 
training, it was indicated that a population size of 
10 is large enough for most FFANN problems to 
get good results [51].  
For HMCR, several HS optimization problems 
used the value of 0.9 or higher [6, 50, 52]. Based 
on the work in [17], it is recommended to use large 
values for HMCR such that HMCR ≥0.9 if the 
problem has high dimensionality, which translates 
to the total number of FFANN weights in this case. 
The lengths of the decision vectors considered in 
this work are larger than those used for the 
aforementioned HS optimization applications. 
PAR and B are the key parameters in the 
improvisation process. PAR values ranging 
between 0.3 and 0.45 were encountered in many 

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 89



applications [6, 45, 52]. It is recommended to use 
relatively small values for PAR such that PAR≤0.5. 
[17]. The bandwidth vector B draws values from 
permissible ranges represented by the two vectors 
[xL, xU]. Since FFANN weight values have a 
common range as discussed earlier, fixed ranges 
are used for all decision variables instead for the 
vectors xL, xU and B. Thus we would have the 
scalar range [xL, xU] and the scalar value B. The 
latter specifies the range of permissible weight 
adjustments given by the range [-B,B]. These 
parameters would depend on the permissible 
weight value range used by the FFANN as well as 
the application.  
Training termination in HS is determined solely by 
the value of MAXIMP. The choice of this value is 
a subjective issue and values like 5000, 10000 or 
higher were commonly used in many applications 
[17, 50, 52]. Higher values would usually generate 
more accepted improvisations. MAXIMP values 
are chosen based on experience and the nature of 
the application. 
 
4.5 The Adapted HS-based Training Algorithm 

The adapted classical HS training algorithm is 
given as pseudo code in Algorithm (1) and the 
standard HS harmony vector improvisation 
process is given in Algorithm 2. In Algorithm 1, 
initialization is performed in Line 1 and 2. Line 3 
would involve iterating through the whole training 
set for each initial vector in order to compute the 
harmony vector’s respective SSE and CEP. This is 
written as one line of code here for simplicity. 
Once the CEP values for all harmony vectors are 
obtained, the HM average CEP is computed in line 
4. Line 6 through 21 is the actual HS stochastic 
iterative process to improvise weight vectors. The 
process involves improvising a new harmony 
vector, loading it into the FFANN and performing 
the feed-forward computations to find the 
respective SSE and CEP using the training dataset. 
The improvisation process, given in Algorithm (2), 
is made via a call in Line 7. Line 17 would test the 
quality of the new improvised vector as discussed 
earlier. If the new harmony is accepted it will 
replace the worst vector in the current HM and a 
new average CEP of the HM is computed. The 
whole process is then repeated until termination 
occurs once the maximum number of iterations is 
reached as specified by MAXIMP value.  
 

5. EXPERIMENTS 
 
In order to demonstrate the performance of the 
proposed method, four different pattern-
classification benchmarking problems were 
obtained from the UCI Machine Learning 
Repository1 [53]  for the experimental testing and 
evaluation as given in Table (1). These problems 
are taken from different fields including biology, 
engineering, forensic science and medical research. 
One of the main reasons behind choosing these 
problems is that they had no missing values in 
their given datasets. In addition these problems 
have been commonly used in the literature 
addressing different aspects such as classification 
techniques, recognition accuracy, overall training 
time, best architecture, etc. The last two datasets, 
namely Glass and Thyroid, are also characterized 
by having smaller class percentages compared to 
the rest of the class for that problem. For instance, 
Thyroid classes “hyber-function” and 
“subfunction” contain smaller number of patterns 
in comparison with the “normal” class. This is also 
true for the second, third and fourth classes of the 
Glass problem. The aim in this case is to test the 
fine-tuning capabilities of the proposed training 
method. 
A 3-layer FFANN was designed for each problem 
to work as a pattern classifier. The output layer has 
a number of output neurons that is equal to the 
number of classes used in each problem. Each 
pattern in the dataset is associated with a target 
integer value representing the target class. The 
winner-take-all fashion [13, 35] was used to 
indicate the FFANN output winning class. All 
neurons use the bipolar sigmoid transfer function 
and the datasets values were normalized to be in 
the range of [-1, 1]. A common practice is to split 
the dataset to use 80% of the patterns as training 
set and the rest for post training out-of-sample 
testing set [31, 54]. The training and testing sets 
were made to include equal percentages of each 
class. The selected classification problems given in 
Table (1) are listed in an ascending order based on 
the number of weights required by each problem’s 
FFANN structure.   
The initial parameter settings for the BP, GA and 
the proposed HS-based training methods are 
summarized in Table (2). For BP a low learning 
rate value was used since such value would 

                                                             
1  For datasets downloads and their full citations see 
http://archive.ics.uci.edu/ml 
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generally achieve a better trained network [55]. 
The Nguyen-Widrow weight-initialization 
technique was adopted to lessen the possibility of 
converging to a local minimum [27]. For GA, an 
implementation of GANNT [34, 42, 43] was 
utilized with the parameters values suitable for the 
problems considered in this work. HS initial 
parameter values were based on the discussions of 
the previous section. Both GA and HS would have 
the same population size in this case. The [xL, xU] 
range is selected to give a bigger search space for 
HS-based method to explore which is also taken as 
the same initialization range for GA. The B value 
was determined based on several independent tests 
considering the selected [xL, xU] range values. 
Since termination in HS depends entirely on the 
subjective selection of MAXIMP, two values were 
investigated, a low value of 5000 and a higher 
value of 20000. The program creates a log file 
during run-time to record the algorithm relevant 
parameter values upon each accepted 
improvisation. Java 6 was used for implementation 
and all experiments were carried out on the same 
computer. Ten independent training sessions for 
each of the selected problems were run for each 
training method. The best out of these ten are those 
solutions that give the highest overall recognition 
ratio in the least amount of total training time and 
these are listed here in Table (3) and Table (4). 
Some of the table fields are “not applicable” to BP 
and GA where those are marked as (N.A.). The 
“Total Accepted” column for BP and GA 
represents the actual number of iterations 
performed by the method. CEP is calculated in BP 
but it is not used in the output error calculations 
for this method and serves only as a comparison 
measure.  
In spite the fact that the attained SSE and CEP 
values of BP for each of the four problems are 
lower than those obtained by the proposed method, 
the proposed method performed better in terms of 
the percentages of the overall correctly recognized 
classes and the overall training time in three out of 
four problems. The lower SSE values achieved by 
some problems have resulted in losing some of the 
network’s generalization ability due to 
overtraining. This is caused by using too many 
training cycles as specified by MAXIMP causing 
the network to adjust it weighs more specifically to 
the training set and loses its generality [56].  
In terms of the overall recognition percentage, 
results are close or better than those achieved 

using BP and GA. In general, a higher MAXIMP 
value would yield more accepted improvisations 
and as indicated by the “Total Accepted” column 
in the results’ tables. Checking the results tables in 
terms of the selected MAXIMP value and the 
overall recognition percentage, it is obvious that 
choosing a higher value for some problems would 
result in attaining better results such as the case 
with the Ionosphere problems while it is the 
opposite for the other problems where overtraining 
is exhibited.  
The overall recognition percentages obtained by 
the proposed HS-based training method is either 
better or close to those obtained by BP and GA. 
For those problems where HS didn’t perform best 
the overall training time for HS is less in 
comparison with the others. BP has scored higher 
in the Thyroid problem although it took much 
longer overall training time. GA on the other hand 
has achieved a close overall recognition 
percentage with the least time among all but at the 
expense of having poor fine-tuning capabilities in 
terms of the classes recognition ratios. BP seems 
to have better target classes’ recognition 
percentages in both the Glass and the Thyroid 
problems.  
Some of the target classes of these two problems 
have relatively low percentages in their training 
datasets compared to others as given earlier in 
Table (1). The HS-based method has scored zero 
percent recognition for some of the target classes 
in these two problems, while BP maintains much 
higher values. BP is a local search method that can 
better fine-tune the final result even if the number 
of training patterns is relatively smaller. Having a 
larger total number of training patterns, as the case 
with Thyroid, would give the additional advantage 
of refining the solution. The proposed HS-based 
training method seem to lack such fine-tuning 
capability considering such problems but can 
attain a close overall recognition percentage in less 
overall training time. 

6. CONCLUSIONS

The supervised training of FFANN using the 
adapted classical HS algorithm gave better or close 
overall recognition percentages than the same 
FFANN trained using the BP or GA based training 
methods. However, BP seems to have better fine-
tuning capabilities in FFANN classification 
problems with higher number of classes. Such 
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fine-tuning capabilities are more apparent in 
problems having large datasets giving BP an extra 
advantage to further fine-tune the solution. The 
maximum number of improvisations determines 
the FFANN training convergence state for the 
proposed HS-based method where this is the sole 
termination condition in HS. The choice of this 
value is a subjective issue and large values could 
result in overtrained networks while smaller values 
might miss a better solution.  
Future work should consider devising a better way 
of determining the convergence state based on the 
quality of the attained best solution. Hybridizing 
HS with another local search method could be 
utilized to detect such convergence state and 
achieve better fine-tuning capabilities. Such 
technique has been already used in many other 
evolutionary FFANN training rivals and is 

inevitable to use in order to enhance the proposed 
method. If larger FFANN with larger datasets are 
to be considered then the intrinsic parallel nature 
of FFANN calculations would invite the use of a 
parallel implementations to speed up the fitness 
function calculations resulting in a reduction in the 
overall training time required by HS.  
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1 Initialize the algorithm parameters 
2 Initialize HM with random weight values drawn 

from [xL,xU] 
3 Do feed-forward computation for each vector 

to find SSE and CEP 
4 Find HM average CEP 
5 Begin 
6   For imp=1 to MAXIMP do 
7     Call: Improvise new harmony vector x 
8     Load x weights into the FFANN 
9     SSE=0, Class Error CE = 0 

10     For each training pattern do 
11 Apply training pattern to FFANN input 
12 Compute the feed-forward phase,  

find the Error E 
13 SSE= SSE + E^2 
14 If the class is not recognized  

then CE = CE + 1 
15     EndFor 
16     CEP= CE/Total Patterns * 100 
17     If x SSE < worst vector SSE AND 

x CEP <= HM average CEP then  
18 Replace worst harmony vector with x 
19 Recalculate HM average CEP 
20     EndIf 
21   EndFor 
22   Best solution is given by the best 

harmony in HM 
23 End 

Algorithm 1.  pseudo code for the HS-based FFANN supervised raining 
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1 Create new harmony vector x’ of size N 
2 For i=0 to N do 
3   RND = Random(0,1) 
4   If (RND<=HMCR)  

   //harmony memory consideration 
5     RND = Random(0,HMS) 
6     x'(i) = HM(RND,i)  

     //harmony memory access 
7     RND = Random(0,1) 
8     If (RND<=PAR) //Pitch Adjusting 
9 x’(i) = x’(i) + Random(-B,B) 
10       x’(i) = min(max(x’(i),xL),xU) 
11     EndIf 
12   Else //random harmony 
13     x'(i) = Random(xU,xL) 
14   EndIf 
15 EndFor 
16 Return x’ 

Algorithm 2. pseudo code for improvising new harmony vector 

Table 1. Dataset Features 

Dataset Name FFANN 
Structure 

Total 
Weights 

Patterns Total Class Percentages 
(Class index: percentage) 

Training Testing 

IRIS 
Iris Dataset: 
Predict class of iris plant based on 
certain plant measurements. 

4-5-3 43 120 30 0: 33.33% setosa 
1: 33.33% versicolour 
2: 33.33% virginica 

IONOSPHERE 
Ionosphere Dataset: 
Classification of radar returns from 
the ionosphere corresponding to the 
complex values returned by the 
function resulting from the complex 
electromagnetic signal. 
The original dataset had 34 input 
features; however the third feature is 
a constant value of 9.0 for all 
instances and therefore removed. 

33-4-2 146 280 71 0: 64:10 good 
1: 35.90 bad 

GLASS 
Glass Identification Dataset: 
From USA Forensic Science Service 
where 6 types of glass defined in 
terms of their oxide content. The 
original dataset had 7 classes but the 
dataset did not include any instance 
of this 7th class and thus only 6. 

9-12-6 198 171 43 0: 32.71% f. building 
1: 35.51% non. f. building 

2: 7.94% vehicle 
3: 6.07% containers 
4: 4.21% tableware 

5: 13.55% headlamp 

THYROID 
Thyroid Disease Dataset: 
Detect thyroid function based on 
certain biological features. 

21-15-3 378 5,760 1,440 0: 92.57% normal 
1: 5.14% hyper-function 

2: 2.29% subfunciton 
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Table 2. List of parameters used by training algorithms 

M Parameter Values 
BP Learning Rate 

Momentum 
Initial Weights 

Initialization Method 
Stopping Criterion 

0.008 
0.7 
[-0.5, 0.5] 
Nguyen-Widrow 
SSE difference<= 1.0E-4 

GA Population Size 
Crossover 

Mutation Probability 
Value Range 

[min,max] 
Stopping Criterion 

10 
At k=rand(0,N), no 
crossover for k=0 
0.01 
[-250, 250] 
50% domination of a fitness 
value 

HS HMS 
HMCR 

PAR 
B 

[xL, xU] 
MAXIMP 

10 
0.97 
0.3 
5.0 
[-250, 250] 
5000, 20000 

Table 3. Results for Iris and Ionosphere datasets

Set M Training Testing 

MAXIMP SSE CEP Total 
Accepted 

Last 
Accepted 
Iteration # 

Last 
Accepted 

Time 

Overall 
Time 

Overall 
Recog. % 

Class 
Recog. % 

IR
IS

 

H
S 

5000 21.6 0.83% 127 4564 0:02:32 0:02:46 96.67% 100.00% 
100.00% 
90.00% 

20000 18 1.67% 162 2390 0:01:18 0:10:51 96.67% 100.00% 
100.00% 
90.00% 

B
P 

N.A. 7.85 0.83% 1254 N.A. N.A. 0:07:29 96.67% 100.00% 
100.00% 
90.00% 

G
A

 N.A. 96 10% 66 N.A. N.A. 0:00:34 90.00% 100.00% 
90.00% 
80.00% 

IO
N

O
SP

H
ER

E H
S 

5000 128 6.07% 151 4773 0:03:49 0:04:00 91.55% 100.00% 
76.00% 

20000 106.4 5.00% 170 19463 0:20:46 0:21:20 94.37% 97.83% 
88.00% 

B
P N.A. 8.52 0.56% 1628 N.A. N.A. 0:24:43 95.77% 100.00% 

88.00% 

G
A

 N.A. 152 6.79% 2244 N.A. N.A. 0:35:57 94.37% 100.00% 
84.00% 
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Table 4. Results for Glass and Thyroid datasets 

Set M Training Testing 

  MAXIMP SSE CEP Total 
Accepted 

Last 
Accepted 
Iteration # 

Last 
Accepted 

Time 

Overall 
Time 

Overall 
Recog. % 

Class 
Recog. % 

G
LA

SS
 

H
S 

5000 489.06 38.6% 108 4984 0:03:52 0:03:53 76.74% 92.86% 
46.67% 
0.00% 

33.33% 
0.00% 

100.00% 
20000 355.86 29.82% 177 19798 0:20:18 0:20:31 72.09% 85.71% 

80.00% 
0.00% 
0.00% 

50.00% 
100.00% 

B
P 

N.A. 218.06 18.71% 662 N.A. N.A. 0:06:08 67.44% 35.71% 
100.00% 
33.33% 
33.33% 
50.00% 

100.00% 

G
A

 

N.A. 544 42.11% 6123 N.A. N.A. 1:17:00 67.44% 85.71% 
73.33% 
0.00% 
0.00% 
0.00% 

100.00% 

TH
Y

R
O

ID
 

H
S 

5000 3211.2 7.24% 67 4829 2:37:43 2:43:18 92.78% 9.09% 
0.00% 

100.00% 
20000 3146.4 6.94% 94 19464 10:47:19 11:05:04 92.71% 9.09% 

0.00% 
99.92% 

B
P 

N.A. 450.23 1.33% 4201 N.A. N.A. 22:11:47 97.22% 78.79% 
68.92% 
99.25% 

G
A

 N.A. 3416 7.42% 167 N.A. N.A. 1:58:49 92.57% 0.00% 
0.00% 

100.00% 
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