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ABSTRACT 

The 𝑘-means clustering algorithm is one of the 

popular and simplest clustering algorithms. Due to its 

simplicity, it is widely used in many applications. 

Although 𝑘-means has low computational time and 

space complexity, increasing the dataset size results 

in increasing the computational time proportionally. 

One of the most prominent solutions to deal with this 

problem is the parallel processing. In this paper, we 

aim to design and implement a parallel 𝑘-means 

clustering algorithm on shared memory 

multiprocessors using parallel java library. The 

performance of the parallel algorithm is evaluated in 

terms of speedup, efficiency and scalability. 

Accuracy and quality of clustering results are also 

measured. Furthermore, this paper presents analytical 

results for the parallel program performance metrics. 
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1 INTRODUCTION 

Data mining clustering techniques are 

unsupervised learning because they don’t use 

predefined class labels. The clustering goal is to 

obtain meaningful groupings of objects based on 

a measure of similarity such that all objects in 

one group are similar to each other and different 

from the objects in other groups. Cluster analysis 

has been widely used in data recovery, web and 

text mining, image segmentation and pattern 

recognition. Therefore, several clustering 

algorithms have been developed. 𝑘-means is one 

of the popular partial clustering algorithms [1]. 

The idea of 𝑘-means is based on dividing 

datasets into k number of groups (clusters) such 

that the squared error between the mean of a 

cluster and the data points in the cluster is 

minimized. The mean of a cluster is called 

centroid. The initial centroids are chosen 

randomly one for each cluster. Then, each point 

or object belongs to the cluster which has the 

nearest centroid by computing the Euclidian 

distance between the point and each centroid. 

These centroids are updated based on means of 

each cluster which assign as a new centroid. The 

assignments and updates are repeated until each 

centroid remains the same (convergence 

criterion) [2].  

Although 𝑘-means is capable of dividing the 

problem domain into smaller parts, it suffers an 

increase in computation time as the size of the 

dataset becomes very large. Therefore, an 

additional technique like parallel processing, to 

accelerate the computation process is required. 

Parallel programming can divide the program 

tasks into smaller independent parts with the aim 

of running them on multiple processors 

simultaneously [3]. So, finding those 

independent parts to reduce the computational 

time is a challenging issue. 

In this paper, we aim to study the parallel 𝑘-

means algorithm and examine its performance 

on one of the parallel computer architectures 

called shared memory multiprocessor (SMP). 

The rest of this paper is structured as follows; 

Section 2 discusses the most related work to the 

problem in-hand. In section 3, a detailed design 

of sequential and parallel 𝑘-means clustering 

algorithm is described. Section 4 presents the 

results of implementing both sequential and 

parallel versions. The analytical results are 
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introduced in section 5. Finally, section 6 

contains the conclusion and potential future 

work. 

2 RELATED WORK 

Parallel processing of 𝑘-means clustering 

algorithm has been able to attract the attention of 

many researchers around the world. They used 

different parallel programming models and 

various techniques in order to achieve a high 

performance and less computational time. One of 

the recent studies on the 𝑘-means algorithm is 

presented by Kucukyilmaz [4]. In this study, a 

parallel 𝑘-means algorithm is implemented on 

shared memory multiprocessors with 8 cores. 

Extensive experiments are conducted with 

varying number of instances, clusters and 

attributes to illustrate the impact of them on the 

performance. The results show that the previous 

parameters hold almost equal importance. These 

results are obtained by comparing the theoretical 

results with experimental results. Although this 

work shows a detailed implementation of the 

algorithm and a good analysis of the results, no 

evaluation metrics for the parallel program are 

used.  

In another study, message passing interface is 

used for parallelizing 𝑘-means on distributed 

memory paradigm in [5]. In this work, 

Kantabutra and Couch proposed a technique to 

improve the performance in terms of time 

complexity. Using the evaluation measures, the 

experimental results show that their technique 

achieves 50% efficiency of time complexity. In 

the context of message passing, Ramesh et al. [6] 

implemented parallel 𝑘-means for cluster large 

agricultural dataset. Using a varying number of 

data size and clusters, the results prove that the 

parallel algorithm achieves more efficiency and 

time complexity than the sequential algorithm. 

In [7], Farivar et al. proposed an algorithm to 

implement 𝑘-means clustering on an NVIDIA 

GPU using CUDA.  The dataset consists of 1 

million instances, and the number of clusters is 

4000. For an objective comparison, different 

platforms are used, and consequently, different 

speed improvement is achieved. The results 

suggest that the speed performance is increased 

up to 13x and 68x for each platform compared to 

the PC implementation. CUDA architecture is 

also used in [8]. In this work, Wu and Hong 

presented an efficient CUDA-based 𝑘-means 

with load balancing using the triangle inequality. 

Through extensive experiments, the algorithm 

achieves better efficiency as compared to CPU-

based 𝑘-means algorithms. As a result, improved 

performance in terms of speed and scalability is 

achieved. In the same way, Kumar et al. [8] used 

the triangle inequality to decrease the 

unnecessary distance calculations. In addition, 

they solve the problem of load imbalance which 

is related to their framework when these 

computations are avoided. 

3 DESIGN AND IMPLEMENTATION 

This section represents the heart of this paper 

where the aspects of 𝑘-means algorithm design 

are discussed. Furthermore, the inputs and 

outputs of the algorithm are illustrated in section 

3.1. Detailed design steps are presented in 

section 3.2. Both sequential and parallel versions 

of the 𝑘-means algorithm are designed and 

discussed in sections 3.3 and 3.4 respectively. 

3.1 Inputs and Outputs 

The inputs of the 𝑘-means algorithm are:  

- Dataset of n 2-dimensional data points.  

- 𝑘 value which indicates the number of clusters. 

The output of the 𝑘-means algorithm is: 

- 𝑘 clusters, each one includes a set of points. 

3.2 𝑘-Means Design 

As mentioned in section 1, 𝑘-means is one of the 

popular and simplest clustering algorithms that 

partitions a dataset into 𝑘 groups by minimizing 

the sum of squared error (SSE) between the 

mean of a cluster and the data points in the 

cluster. The algorithm starts with 𝑘 initial 

(3.2) 
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centroids and works iteratively to assign each 

point to one of the 𝑘 clusters based on feature 

similarity until a convergence criterion is met. 

More formally, given a set of n d-dimensional 

data points 𝑋 = {𝑥𝑖 , 0 < 𝑖 < 𝑛}, a set of 𝑘 initial 

centroids 𝐶 = {𝑐𝑗, 0 < 𝑗 < 𝑘}, and a mean of 

each cluster 𝜇𝑗, our goal is to minimize SSE as 

follows [9]:  

𝑆𝑆𝐸 = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

        (3.1)

𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

  

The algorithm of 𝑘-means is described in the 

following four steps: 

1. Initialization: 

This step involves selecting 𝑘 initial centroids 

𝐶 = {𝑐𝑗 , 0 < 𝑗 < 𝑘} from the instance space, 

where 𝑘 is the number of clusters [10]. There are 

many methods proposed for selecting initial 

centroids. One common way is to randomly 

either choose 𝑘 actual data points from the 

dataset or generate 𝑘 virtual data points. The 

actual data point is a point that comes directly 

from the dataset. In contrast to the actual data 

point, a virtual data point is a point that not 

related to any point in the actual dataset [11].  

2. Distance Calculation: 

This step includes calculation of finding the 

closest centroid for each data point and 

computing the distance to it. There are many 

distance metrics to measure the distance between 

centroids and data points such as Manhattan, 

Euclidean distance, cosine similarity, correlation, 

etc. Euclidean distance is often used as a 

measure of distance for 𝑘-means clustering [12]. 

The distance between 𝑥𝑖 and 𝑐𝑗 is given by: 

𝑑(𝑐𝑗 , 𝑥𝑖) = √∑ (cj,t − xi,t)
2d

t=1
         (3.2) 

 

3. Centroid Recalculation: 

After assigning each point 𝑥𝑖 to the closest 

cluster 𝑐𝑗 , the centroids are re-calculated by 

compute the average of all points within the 

cluster as follows [1]: 

𝜇𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖

𝑥𝑖∈𝐶𝑗

                 (3.3)  

4. Convergence: 

The clusters obtained after the previous steps are 

actually not optimized. In order to find a 

minimal SSE, steps 2 and 3 must be repeated 

until the results become stable. The stability 

condition is called convergence criterion and can 

be specified in multiple ways such as the 

convergence criterion is met after a fixed number 

of iterations or when centroids remain the same 

[10].  

It is worth noting that the time complexity of the 

𝑘-means algorithm is 𝑂(𝑛∗𝑘∗𝑖∗𝑑), where: 

𝑛: number of data points (instances) in the 

dataset. 

𝑘: number of clusters. 

𝑖: number of iterations. 

𝑑: number of dimensions. 

3.3 Sequential 𝑘-Means 

In this study, sequential model of the 𝑘-means 

clustering algorithm is designed with the aim of 

calculating the speedup gains of parallel 

implementation which express the impact of 

parallelization. As mentioned in section 3.2, the 

first step of 𝑘-means algorithm is selecting 𝑘 

initial centroids randomly. Because the quality of 

the clustering results highly depends on the 

quality of this selection, choosing good initial 

centroids can play an important role in obtaining 

better results as well as reducing the 

computational complexity of the algorithm [10]. 

The results in [11] show that the virtual points 

perform better than the actual points. Therefore, 

in this research, we will generate 𝑘 virtual points 
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randomly as initial centroids. To guarantee that 

the generated virtual points values don’t exceed 

the values range of the points in the dataset and 

consequently get good results, the random virtual 

points should be scaled using any normalization 

technique. The sequential algorithm is explained 

in figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1 Sequential 𝑘-means Algorithm 

3.4 Parallel 𝑘-Means 

Designing a parallel model of the 𝑘-means on 

SMP is a big challenge because 𝑘-means is 

inherently sequential. Furthermore, the challenge 

lies not only in the design of a parallel algorithm, 

but the parallel algorithm must be superior to the 

serial algorithm in terms of execution time 

reduction which is the main objective of 

parallelism. Thus, we have to look for the 

independent parts of the algorithm that takes a 

long time of execution, and then execute them in 

parallel. These parts are often related to 

computations.  When we look at the four steps of 

𝑘-means, we find that the first step 

(initialization) cannot be parallelized, because it 

is too simple, and each centroid must be 

initialized globally. The computational 

bottleneck of the algorithm is the second step, 

where the distance between each point and 

centroid is computed, especially if there is a 

large number of points. This step can be 

parallelized by dividing the data points among 

processors and then, making each thread 

represents a point. Thus, each point is assigned 

to one thread to compute the nearest centroid for 

each point in a parallel manner. After that, each 

thread stores its result (closest centroid) in its 

own per-thread variable. At the end of this step, 

a reduction parallel pattern is used to collect the 

all threads results according to the closest 

centroid. The per-thread variables have to be 

reduced together into one overall variable to be 

ready to the next step. Figure 3.2 explains this 

idea. In the third step, new centroids for each 

cluster are re-computed which can be 

implemented in parallel, since each thread will 

represent a centroid. For the last step, the loop 

cannot be parallelized since an iteration relies on 

the results of the previous one. Figure 3.3 

illustrates the synchronous parallel 𝑘-means 

algorithm on SMP. Figure 3.4 shows a flowchart 

of the parallel 𝑘-means algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2 Parallel Reduction  
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Figure 3.3 Synchronous Parallel 𝑘-means on SMP 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Parallel 𝑘-means Algorithm  

4 EXPERIMENTS AND RESULTS 

To study the performance of the parallel 𝑘-

means on SMP, some experiments are conducted 

on both parallel and sequential versions of the 

algorithm. 

In section 4.1, the software and hardware 

specifications are illustrated. The main 

performance measurements to evaluate our work 

are described in section 4.2. Further, the detailed 

experiments and results are explained and 

presented numerically and graphically in section 

4.3. 

4.1 Hardware and Software Environment 

Sequential and parallel versions of the 𝑘-means 

algorithm are implemented on Intel core i7 with 

quad-cores running at 2.30 GHz and supports 

hyperthreading. So, the system operates like it 

has 8 cores because each core can handle 2 

threads. The operating system is Linux Ubuntu 

16, and the programming language is Java using 

NetBeans IDE. Parallel Java 2 (pj2) library is 

used for threads management. Further, it 

supports shared memory parallel programming 

on multicore computers [13]. 

4.2 Evaluation Measurements 

In this section, evaluation metrics are presented 

and explained to evaluate our work. These 

measures are divided into two categories. The 

first category includes the measures that evaluate 

the quality and the accuracy of 𝑘-means. The 

second category involves the measures that 

related to the performance of parallel programs. 

The following sections describe these measures. 

4.2.1 Quality and Accuracy of Clustering Results 

To evaluate the quality of 𝑘-means clustering 

results, Sum of Squared Error measure is used to 

handle this issue. Furthermore, the accuracy of 

clustering is computed as follows: 

1. Sum of Squared Error: 

When centroids are initialized randomly, 

different runs of 𝑘-means lead to different results 

in total SSEs because 𝑘-means algorithm only 

converges to the local minimum. As mentioned 

earlier, the quality of the clustering results relies 

on chosen of the centroids. So, choosing poor 

initial centroids may cause poor clustering 

results with higher SSE. One way to address this 

problem is to perform multiple runs with 

multiple different initial centroids and choose the 

one that gives the smallest squared error [9], [1]. 

Sum of squared error is a common measure to 

evaluate 𝑘-means. This evaluation defines a 
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good measure for the homogeneity of the 

clustering results. SSE is given by:  

𝑆𝑆𝐸 = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

            (4.1)

𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

  

 

2. Accuracy of Clustering: 

In order to compute the accuracy of points 

clustering, we have to check that all points used 

are included in the clusters. Simply, we will sum 

the number of points in all clusters and compare 

it with the number of points in the dataset. If the 

sum is equal to the number of points, then all the 

points have been clustered. Otherwise, some 

points are un-clustered (𝑘-means is a crisp (hard) 

clustering algorithm, it assigns each data point to 

one cluster exclusively. So, there is no choice for 

some points to be duplicated). Figure 4.1 shows 

a flowchart of checking steps. The accuracy of 

clustering is computed by dividing the number of 

clustered points by the total number of points 

and multiplying the answer by 100. The 

accuracy of clustering is given by the following 

formula: 

𝐴𝑐𝑐𝑐𝑙𝑠𝑡 =
𝑐𝑝

𝑡𝑝
 × 100              (4.2) 

Where: 

𝑐𝑝: the number of clustered points. 

𝑡𝑝: the total number of points. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Checking the Clustering of Points 

4.2.2 Performance Metrics of Parallel 

Program 

It is important to study the parallel programs 

performance with the aim of determining the 

best algorithm, evaluating the efficiency of a 

parallel algorithm, examining the benefits from 

parallelism, and evaluating parallel hardware 

platforms. Some main metrics are used to 

analyze the parallel programs performance as 

below: 

1. Speedup: 

To see the benefit of parallelism, it is important 

to know how much speed gain is achieved by 

parallelizing a program over a sequential 

implementation. Therefore, a comparison with 

the running time of a sequential version of a 

given application is very important to analyze 

the parallel version. Speedup can be defined as 

the ratio of the execution time of the sequential 

version of a given program running on one 

processor to the execution time of the parallel 

version running on 𝑃 processors with problem 

size 𝑛 [14]. Speedup is given by the following 

formula [15]: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑠𝑒𝑞(𝑛, 1)

𝑆𝑝𝑎𝑟(𝑛, 𝑝)
            (4.3)   

Where: 

𝑆𝑠𝑒𝑞: speed (running time) of the sequential 

version. 

𝑆𝑝𝑎𝑟: speed (running time) of the parallel 

version. 

𝑝: number of processors. 

𝑛: problem size which denotes the number of 

computations that the program has to perform. 

As the problem size increases, the speedup 

increases. 

In fact, as the number of processors increases, 

the speedup increases. However, there is upper 

bound on speedup due to that there is no 

program can be completely parallel. Thus, there 

is a time allocated for the sequential fraction of 

the program. If 𝑓 is the sequential fraction of the 
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program, then its speedup is bounded by 
1

𝑓
  

regardless of the number of processors. This is 

known as Amdahl’s Law. 

In this research, serial and parallel models of the 

𝑘-means clustering algorithm are designed and 

implemented in order to calculate the speedup 

gains of parallel implementation which express 

the impact of parallelization. 

 

2. Efficiency: 

An alternative performance measure of a parallel 

application is the efficiency. It captures how a 

program’s speedup is close to ideal. In other 

words, efficiency measures the effectiveness of 

processors utilization of the parallel program 

[15]. It can be defined as the ratio of actual 

speedup to the number of processors [14] and 

expressed as [15]: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝)

𝑝
       (4.4) 

Where: 

𝑛: problem size.  

𝑝: number of processors. 

In an ideal parallel program, efficiency is equal 

to one and speedup is equal to 𝑝. However, in 

practice, it cannot achieve the ideal behavior 

because while running a parallel program, the 

processors cannot spend 100% of their time on 

program's computations. Thus, a real parallel 

program has an efficiency value between zero 

and one and speedup less than 𝑝 [16]. 

 

3. Scalability: 

The scalability of a parallel program is a 

measure to describe how the program 

performance changes as the number of 

processors is increased. As mentioned earlier, a 

speedup saturation can be observed when the 

problem size 𝑛 is fixed, and the number of 

processors 𝑝 is increased. However, the attained 

speedup increases when the problem size 𝑛 

increases for a fixed number of processors 𝑝 

[14]. In this sense, a parallel program is scalable 

if its performance improve continues as both 

problem size 𝑛 and number of processors 𝑝 are 

increased. Scalability is given by the following 

formula [17]: 

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑝𝑎𝑟

𝑛5𝑒𝑞
             (4.5)   

Where: 

𝑛5𝑒𝑞: the largest problem size that the sequential 

program can be handled. 

𝑛𝑝𝑎𝑟: the largest problem size that the parallel 

program can be handled for a specific number of 

processors. 

4.3 Experimental Results 

Extensive experiments on both sequential and 

parallel models of 𝑘-means clustering algorithm 

are conducted. For a fair comparison between 

the two versions, the convergence criterion is 

met after a fixed number of iterations. We used a 

different number of points and a different 

number of cores to illustrate the impact of both 

on running time. Generally, the dataset consists 

of more than 100,000 points with 2 dimensions. 

Clustering benchmark dataset called Birch is 

used [18]. The additional parameters are 

illustrated in table 4.1. 

Table 4.1 Parameters of Experiments 

Parameter Value 

No. of Points 40,000 / 80,000 / 120,000 / 160,000 

No. of Clusters 20 

No. of Iterations 500 

No. of Cores / Threads 2 / 4 / 8 

 

1. Accuracy of Clustering and SSE: 

For all experiments that aim to evaluate the 

performance of parallel 𝑘-means, the accuracy of 

clustering and SSE values have been measured. 

As shown in table 4.2, all experiments result in 

an accuracy of 100%, implying the efficiency of 

𝑘-means clustering algorithm despite its 

simplicity. In order to measure the homogeneity 

of the clustering results, the program is run 
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multiple times with multiple different initial 

centroids and choose the results that give the 

smallest squared error as well as give the 

smallest running time as illustrated in the next 

section. The detailed results of accuracy and SSE 

are recorded in table 4.2. The large numbers of 

SSE do not mean large error values, but the 

reason is that there is a large number of points 

and each attribute of a point consists of six 

digits. 

Table 4.2 Accuracy of Clustering and SSE 

Points  Measure Sequential 
Parallel 

P=2 P=4 P=8 

40,000 
Accuracy 100% 100% 100% 100% 

SSE 14382.9 25322.4 71432.6 12756.8 

80,000 
Accuracy 100% 100% 100% 100% 

SSE 50697.8 45876.6 31665.2 53777.5 

120,000 
Accuracy 100% 100% 100% 100% 

SSE 22473.2 29548.3 78532.9 43672.1 

160,000 
Accuracy 100% 100% 100% 100% 

SSE 55821.7 81325.4 28775.1 92341.5 

 

2. Measuring Running Time: 

The running time of a sequential program is the 

time that the program takes from start to end its 

execution on a computer. The running time of a 

parallel program is the time that starts with the 

beginning of parallel computation and ends 

when the last processor finishes execution [16]. 

When a parallel program runs multiple times, it 

hardly yields the same running time, even with 

identical inputs. One of the potential reasons is 

that the background processes and other user 

programs running on the same computer stealing 

some CPU time away from the parallel program, 

causing the running time of the parallel program 

to increase [15], [17]. To address this issue, the 

parallel program should be run multiple times 

(e.g., 10 times) and measure the running time for 

each run, then the smallest running time value 

would be the best estimate of the true running 

time of the parallel program [17]. 

The first set of experiments are conducted to 

illustrate the impact of both the problem size and 

the number of cores on running time. The 

program is run multiple times with a various 

number of points and cores. The detailed results 

are recorded in table 4.3 based on the smallest 

running time. The results are also represented 

graphically in figure 4.2. As seen in the graph, as 

the number of points increases, the running time 

also increases for all cores. Further, the 

sequential 𝑘-means has a higher increasing rate 

in terms of running time as compared to the 

parallel 𝑘-means version for all cores. Also, the 

increasing number of cores results in decreasing 

the running time as shown in the graph. 

Figure 4.2 The Running Time Against the Number of 

Cores 

3. Speedup Measurement: 

In terms of speedup, multiple experiments are 

conducted to measure the gained speedup of 

parallelizing the 𝑘-means algorithm. The 

speedup is calculated according to formula 4.3 

and based on the running time results for a 

different number of points and a different 

number of cores. The detailed results are 

recorded in table 4.3. Furthermore, the speedup 

results are represented in figure 4.3. As seen in 

the graph, the increasing number of cores results 

in increasing the speedup for all number of 

points. However, the rate of increase begins to 
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slow as the number of points and cores increases. 

These results are expected since the scheduling 

of a large number of threads becomes more 

complicated. Therefore, the imposed overhead is 

higher.  

Figure 4.3 The Speedup Against the Number of Cores 

 

4. Efficiency Measurement: 

The third set of experiments are conducted with 

the aim of evaluating the efficiency of using the 

hardware resources. It is computed according to 

formula 4.4. The efficiency results shown in 

table 4.3 are also represented graphically in 

figure 4.4 for a different number of points and 

cores. It is noted that as the number of cores 

increases, the efficiency decreases. For 2 and 4 

cores/threads the efficiency is close to 1 because 

the experiments are conducted on a quad-core, 

while the efficiency decreases with 8 threads (4 

cores with hyperthreading) and may reach to 

zero with increasing number of cores. These 

results are expected because the hyperthreading 

is very expensive in terms of threads scheduling 

despite its advantages. Therefore, this overhead 

yield less efficiency. 

Although the efficiency of the sequential version 

is equal to 1, it does not mean that there is a full 

using of hardware.  However, the number of 

cores and the speedup of the sequential version 

are both equal to 1.  

 

 

Figure 4.4 The Efficiency Against the Number of Cores 

 

Table 4.3 Running Time, Speedup and Efficiency 

Points Measure Sequential 
Parallel 

P=2 P=4 P=8 

40,000 

Time(s) 5.64 3.15 1.93 1.62 

Speedup 1 1.79 2.92 3.48 

Efficiency 1 0.89 0.73 0.43 

80,000 

Time(s) 11.24 5.89 3.74 3.00 

Speedup 1 1.90 3.00 3.75 

Efficiency 1 0.95 0.75 0.46 

120,000 

Time(s) 17.39 8.78 5.54 4.34 

Speedup 1 1.98 3.13 4.00 

Efficiency 1 0.97 0.78 0.50 

160,000 

Time(s) 22.51 11.34 6.98 5.46 

Speedup 1 1.98 3.22 4.12 

Efficiency 1 0.97 0.80 0.52 

 

5. Scalability Measurement: 

The scalability is measured according to formula 

4.5 by dividing the largest number of points that 

each core/thread can handle by the largest 

number of points that the sequential program can 

handle. The results are recorded in table 4.4. 

Furthermore, Figure 4.5 shows the relationship 

between the maximum number of points for each 

core against the running time graphically. 

According to the results, the scalability is 

increased as the number of cores increased also. 
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Figure 4.5 The Scalability Against the Running Time 

Table 4.4 Scalability of Parallel 𝑘-means 

Version Cores Size up Scalability 

Sequential 1 4100000 - 

Parallel 2 8000000 1.9 

Parallel 4 13100000 3.2 

Parallel 8 16500000 4.0 

 

5 ANALYTICAL RESULTS 

For any parallel program, there is a fraction that 

should be implemented sequentially. In other 

words, it cannot parallelize the whole program. 

This is known as Amdahl’s Law. The sequential 

fraction 𝑓 of the program may consist of: 

- Initialization statements. 

- Thread creation and synchronization. 

- Input and Output. 

- Memory deallocation. 

Regardless of the number of processors that are 

available in the parallel architecture, the 

sequential fraction 𝑓 uses only one processor. 

Therefore, the speedup under Amdahl’s Law is 

given by the following formula [15], [17]: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝) ≤
1

𝑓 +
(1 − 𝑓)

𝑝

          (5.1) 

Where: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝): the analytical speedup. 

𝑓: the sequential fraction. 

1 − 𝑓: the parallel fraction. 

𝑝: the number of processors. 

 

To get the value of the sequential fraction 𝑓, the 

following formula is used: 

𝑓 =
𝑝 ∗ 𝑇(𝑛, 𝑝) − 𝑇(𝑛, 1)

𝑝 ∗ 𝑇(𝑛, 1) − 𝑇(𝑛, 1)
            (5.2) 

This formula calculates the sequential fraction 𝑓 

from running time measurements 𝑇(𝑛, 𝑝) and 

𝑇(𝑛, 1). Thus, Amdahl’s Law can calculate the 

upper bound of the parallel program speedup. 

The speedup results are recorded in table 5.1. 

Relatively, the actual and the analytical speedup 

are almost the same. 

Table 5.1 Actual and Analytical Speedup 

Points Measure 
Parallel 

P=2 P=4 P=8 

40,000 
Actual Speedup 1.79 2.92 3.48 

Analytical Speedup 1.79 2.92 3.48 

80,000 
Actual Speedup 1.90 3.00 3.75 

Analytical Speedup 1.91 3.01 3.75 

120,000 
Actual Speedup 1.98 3.13 4.00 

Analytical Speedup 1.98 3.14 4.01 

160,000 
Actual Speedup 1.98 3.22 4.12 

Analytical Speedup 1.98 3.23 4.12 

 

6 CONCLUSION AND FUTURE WORK 

This paper targets to accelerate the computation 

process of 𝑘-means clustering algorithm since 

the time complexity is increased with increasing 

the problem size. A parallel processing is used as 

a mechanism to achieve a high performance in 

terms of running time reduction. Parallel 𝑘-

means is developed on SMP using java 

programming language under Linux operating 

system. We utilize 4 cores with hyperthreading 

(8 threads) managed by PJ2 library. Accuracy 

and SSE values are measured to evaluate the 

quality of clustering results. All results prove the 

efficiency of 𝑘-means with 100% clustering 

accuracy. In addition, speedup, efficiency and 

scalability are the metrics used to measure the 
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performance of the parallel program. The results 

show that the gained speedup and the scalability 

increase with increasing the problem size and the 

number of cores, where the maximum speedup 

achieved is 4.12 and the maximum scalability 

reached is 4.0. On the other hand, the efficiency 

decreases with increasing the number of cores. 

The analytical results prove that the actual 

speedup is almost the same as the analytical 

speedup.  

As a future work, we will develop another 

parallel version of 𝑘-means to run on cluster 

parallel programming model.  This leads to a 

valuable comparison between the two models; 

SMP and clusters. 
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