

Parallel 𝑘-means Clustering Algorithm on SMP

Athari M. Alrajhi and Soha S. Zaghloul, PhD

College of Computer & Information Sciences, Department of Computer Science, King Saud University, Riyadh

437203971@student.ksu.edu.sa

 smekki@ksu.edu.sa

ABSTRACT

The 𝑘-means clustering algorithm is one of the

popular and simplest clustering algorithms. Due to its

simplicity, it is widely used in many applications.

Although 𝑘-means has low computational time and

space complexity, increasing the dataset size results

in increasing the computational time proportionally.

One of the most prominent solutions to deal with this

problem is the parallel processing. In this paper, we

aim to design and implement a parallel 𝑘-means

clustering algorithm on shared memory

multiprocessors using parallel java library. The

performance of the parallel algorithm is evaluated in

terms of speedup, efficiency and scalability.

Accuracy and quality of clustering results are also

measured. Furthermore, this paper presents analytical

results for the parallel program performance metrics.

KEYWORDS

𝑘-means, Clustering, SMP, Parallel Java, Parallel

Programming, pj2, Shared Memory Multiprocessors.

1 INTRODUCTION

Data mining clustering techniques are

unsupervised learning because they don’t use

predefined class labels. The clustering goal is to

obtain meaningful groupings of objects based on

a measure of similarity such that all objects in

one group are similar to each other and different

from the objects in other groups. Cluster analysis

has been widely used in data recovery, web and

text mining, image segmentation and pattern

recognition. Therefore, several clustering

algorithms have been developed. 𝑘-means is one

of the popular partial clustering algorithms [1].

The idea of 𝑘-means is based on dividing

datasets into k number of groups (clusters) such

that the squared error between the mean of a

cluster and the data points in the cluster is

minimized. The mean of a cluster is called

centroid. The initial centroids are chosen

randomly one for each cluster. Then, each point

or object belongs to the cluster which has the

nearest centroid by computing the Euclidian

distance between the point and each centroid.

These centroids are updated based on means of

each cluster which assign as a new centroid. The

assignments and updates are repeated until each

centroid remains the same (convergence

criterion) [2].

Although 𝑘-means is capable of dividing the

problem domain into smaller parts, it suffers an

increase in computation time as the size of the

dataset becomes very large. Therefore, an

additional technique like parallel processing, to

accelerate the computation process is required.

Parallel programming can divide the program

tasks into smaller independent parts with the aim

of running them on multiple processors

simultaneously [3]. So, finding those

independent parts to reduce the computational

time is a challenging issue.

In this paper, we aim to study the parallel 𝑘-

means algorithm and examine its performance

on one of the parallel computer architectures

called shared memory multiprocessor (SMP).

The rest of this paper is structured as follows;

Section 2 discusses the most related work to the

problem in-hand. In section 3, a detailed design

of sequential and parallel 𝑘-means clustering

algorithm is described. Section 4 presents the

results of implementing both sequential and

parallel versions. The analytical results are

168

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

mailto:437203971@student.ksu.edu.sa
mailto:smekki@ksu.edu.sa

introduced in section 5. Finally, section 6

contains the conclusion and potential future

work.

2 RELATED WORK

Parallel processing of 𝑘-means clustering

algorithm has been able to attract the attention of

many researchers around the world. They used

different parallel programming models and

various techniques in order to achieve a high

performance and less computational time. One of

the recent studies on the 𝑘-means algorithm is

presented by Kucukyilmaz [4]. In this study, a

parallel 𝑘-means algorithm is implemented on

shared memory multiprocessors with 8 cores.

Extensive experiments are conducted with

varying number of instances, clusters and

attributes to illustrate the impact of them on the

performance. The results show that the previous

parameters hold almost equal importance. These

results are obtained by comparing the theoretical

results with experimental results. Although this

work shows a detailed implementation of the

algorithm and a good analysis of the results, no

evaluation metrics for the parallel program are

used.

In another study, message passing interface is

used for parallelizing 𝑘-means on distributed

memory paradigm in [5]. In this work,

Kantabutra and Couch proposed a technique to

improve the performance in terms of time

complexity. Using the evaluation measures, the

experimental results show that their technique

achieves 50% efficiency of time complexity. In

the context of message passing, Ramesh et al. [6]

implemented parallel 𝑘-means for cluster large

agricultural dataset. Using a varying number of

data size and clusters, the results prove that the

parallel algorithm achieves more efficiency and

time complexity than the sequential algorithm.

In [7], Farivar et al. proposed an algorithm to

implement 𝑘-means clustering on an NVIDIA

GPU using CUDA. The dataset consists of 1

million instances, and the number of clusters is

4000. For an objective comparison, different

platforms are used, and consequently, different

speed improvement is achieved. The results

suggest that the speed performance is increased

up to 13x and 68x for each platform compared to

the PC implementation. CUDA architecture is

also used in [8]. In this work, Wu and Hong

presented an efficient CUDA-based 𝑘-means

with load balancing using the triangle inequality.

Through extensive experiments, the algorithm

achieves better efficiency as compared to CPU-

based 𝑘-means algorithms. As a result, improved

performance in terms of speed and scalability is

achieved. In the same way, Kumar et al. [8] used

the triangle inequality to decrease the

unnecessary distance calculations. In addition,

they solve the problem of load imbalance which

is related to their framework when these

computations are avoided.

3 DESIGN AND IMPLEMENTATION

This section represents the heart of this paper

where the aspects of 𝑘-means algorithm design

are discussed. Furthermore, the inputs and

outputs of the algorithm are illustrated in section

3.1. Detailed design steps are presented in

section 3.2. Both sequential and parallel versions

of the 𝑘-means algorithm are designed and

discussed in sections 3.3 and 3.4 respectively.

3.1 Inputs and Outputs

The inputs of the 𝑘-means algorithm are:

- Dataset of n 2-dimensional data points.

- 𝑘 value which indicates the number of clusters.

The output of the 𝑘-means algorithm is:

- 𝑘 clusters, each one includes a set of points.

3.2 𝑘-Means Design

As mentioned in section 1, 𝑘-means is one of the

popular and simplest clustering algorithms that

partitions a dataset into 𝑘 groups by minimizing

the sum of squared error (SSE) between the

mean of a cluster and the data points in the

cluster. The algorithm starts with 𝑘 initial

(3.2)

169

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

centroids and works iteratively to assign each

point to one of the 𝑘 clusters based on feature

similarity until a convergence criterion is met.

More formally, given a set of n d-dimensional

data points 𝑋 = {𝑥𝑖 , 0 < 𝑖 < 𝑛}, a set of 𝑘 initial

centroids 𝐶 = {𝑐𝑗, 0 < 𝑗 < 𝑘}, and a mean of

each cluster 𝜇𝑗, our goal is to minimize SSE as

follows [9]:

𝑆𝑆𝐸 = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

 (3.1)

𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

The algorithm of 𝑘-means is described in the

following four steps:

1. Initialization:

This step involves selecting 𝑘 initial centroids

𝐶 = {𝑐𝑗 , 0 < 𝑗 < 𝑘} from the instance space,

where 𝑘 is the number of clusters [10]. There are

many methods proposed for selecting initial

centroids. One common way is to randomly

either choose 𝑘 actual data points from the

dataset or generate 𝑘 virtual data points. The

actual data point is a point that comes directly

from the dataset. In contrast to the actual data

point, a virtual data point is a point that not

related to any point in the actual dataset [11].

2. Distance Calculation:

This step includes calculation of finding the

closest centroid for each data point and

computing the distance to it. There are many

distance metrics to measure the distance between

centroids and data points such as Manhattan,

Euclidean distance, cosine similarity, correlation,

etc. Euclidean distance is often used as a

measure of distance for 𝑘-means clustering [12].

The distance between 𝑥𝑖 and 𝑐𝑗 is given by:

𝑑(𝑐𝑗 , 𝑥𝑖) = √∑ (cj,t − xi,t)
2d

t=1
 (3.2)

3. Centroid Recalculation:

After assigning each point 𝑥𝑖 to the closest

cluster 𝑐𝑗 , the centroids are re-calculated by

compute the average of all points within the

cluster as follows [1]:

𝜇𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖

𝑥𝑖∈𝐶𝑗

 (3.3)

4. Convergence:

The clusters obtained after the previous steps are

actually not optimized. In order to find a

minimal SSE, steps 2 and 3 must be repeated

until the results become stable. The stability

condition is called convergence criterion and can

be specified in multiple ways such as the

convergence criterion is met after a fixed number

of iterations or when centroids remain the same

[10].

It is worth noting that the time complexity of the

𝑘-means algorithm is 𝑂(𝑛∗𝑘∗𝑖∗𝑑), where:

𝑛: number of data points (instances) in the

dataset.

𝑘: number of clusters.

𝑖: number of iterations.

𝑑: number of dimensions.

3.3 Sequential 𝑘-Means

In this study, sequential model of the 𝑘-means

clustering algorithm is designed with the aim of

calculating the speedup gains of parallel

implementation which express the impact of

parallelization. As mentioned in section 3.2, the

first step of 𝑘-means algorithm is selecting 𝑘

initial centroids randomly. Because the quality of

the clustering results highly depends on the

quality of this selection, choosing good initial

centroids can play an important role in obtaining

better results as well as reducing the

computational complexity of the algorithm [10].

The results in [11] show that the virtual points

perform better than the actual points. Therefore,

in this research, we will generate 𝑘 virtual points

170

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

randomly as initial centroids. To guarantee that

the generated virtual points values don’t exceed

the values range of the points in the dataset and

consequently get good results, the random virtual

points should be scaled using any normalization

technique. The sequential algorithm is explained

in figure 3.1.

Figure 3.1 Sequential 𝑘-means Algorithm

3.4 Parallel 𝑘-Means

Designing a parallel model of the 𝑘-means on

SMP is a big challenge because 𝑘-means is

inherently sequential. Furthermore, the challenge

lies not only in the design of a parallel algorithm,

but the parallel algorithm must be superior to the

serial algorithm in terms of execution time

reduction which is the main objective of

parallelism. Thus, we have to look for the

independent parts of the algorithm that takes a

long time of execution, and then execute them in

parallel. These parts are often related to

computations. When we look at the four steps of

𝑘-means, we find that the first step

(initialization) cannot be parallelized, because it

is too simple, and each centroid must be

initialized globally. The computational

bottleneck of the algorithm is the second step,

where the distance between each point and

centroid is computed, especially if there is a

large number of points. This step can be

parallelized by dividing the data points among

processors and then, making each thread

represents a point. Thus, each point is assigned

to one thread to compute the nearest centroid for

each point in a parallel manner. After that, each

thread stores its result (closest centroid) in its

own per-thread variable. At the end of this step,

a reduction parallel pattern is used to collect the

all threads results according to the closest

centroid. The per-thread variables have to be

reduced together into one overall variable to be

ready to the next step. Figure 3.2 explains this

idea. In the third step, new centroids for each

cluster are re-computed which can be

implemented in parallel, since each thread will

represent a centroid. For the last step, the loop

cannot be parallelized since an iteration relies on

the results of the previous one. Figure 3.3

illustrates the synchronous parallel 𝑘-means

algorithm on SMP. Figure 3.4 shows a flowchart

of the parallel 𝑘-means algorithm.

Figure 3.2 Parallel Reduction

Yes

No

Set number of

clusters = 𝑘

Initialize the 𝑘 centroids

randomly

Start

Compute the distance between

points & centroids

Assign each point to the closest

centroid

Recompute the new centroid for

each cluster

Convergence?

End

171

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 3.3 Synchronous Parallel 𝑘-means on SMP

Figure 3.4 Parallel 𝑘-means Algorithm

4 EXPERIMENTS AND RESULTS

To study the performance of the parallel 𝑘-

means on SMP, some experiments are conducted

on both parallel and sequential versions of the

algorithm.

In section 4.1, the software and hardware

specifications are illustrated. The main

performance measurements to evaluate our work

are described in section 4.2. Further, the detailed

experiments and results are explained and

presented numerically and graphically in section

4.3.

4.1 Hardware and Software Environment

Sequential and parallel versions of the 𝑘-means

algorithm are implemented on Intel core i7 with

quad-cores running at 2.30 GHz and supports

hyperthreading. So, the system operates like it

has 8 cores because each core can handle 2

threads. The operating system is Linux Ubuntu

16, and the programming language is Java using

NetBeans IDE. Parallel Java 2 (pj2) library is

used for threads management. Further, it

supports shared memory parallel programming

on multicore computers [13].

4.2 Evaluation Measurements

In this section, evaluation metrics are presented

and explained to evaluate our work. These

measures are divided into two categories. The

first category includes the measures that evaluate

the quality and the accuracy of 𝑘-means. The

second category involves the measures that

related to the performance of parallel programs.

The following sections describe these measures.

4.2.1 Quality and Accuracy of Clustering Results

To evaluate the quality of 𝑘-means clustering

results, Sum of Squared Error measure is used to

handle this issue. Furthermore, the accuracy of

clustering is computed as follows:

1. Sum of Squared Error:

When centroids are initialized randomly,

different runs of 𝑘-means lead to different results

in total SSEs because 𝑘-means algorithm only

converges to the local minimum. As mentioned

earlier, the quality of the clustering results relies

on chosen of the centroids. So, choosing poor

initial centroids may cause poor clustering

results with higher SSE. One way to address this

problem is to perform multiple runs with

multiple different initial centroids and choose the

one that gives the smallest squared error [9], [1].

Sum of squared error is a common measure to

evaluate 𝑘-means. This evaluation defines a

P
a

ra
llel

Yes

No

Set number of

clusters = 𝑘

Initialize the 𝑘 centroids

randomly

Start

Compute the distance between

points & centroids

Assign each point to the

closest centroid

Recompute the new centroid

for each cluster

Convergence?

End

172

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

good measure for the homogeneity of the

clustering results. SSE is given by:

𝑆𝑆𝐸 = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑗‖
2

 (4.1)

𝑥𝑖∈𝐶𝑗

𝑘

𝑗=1

2. Accuracy of Clustering:

In order to compute the accuracy of points

clustering, we have to check that all points used

are included in the clusters. Simply, we will sum

the number of points in all clusters and compare

it with the number of points in the dataset. If the

sum is equal to the number of points, then all the

points have been clustered. Otherwise, some

points are un-clustered (𝑘-means is a crisp (hard)

clustering algorithm, it assigns each data point to

one cluster exclusively. So, there is no choice for

some points to be duplicated). Figure 4.1 shows

a flowchart of checking steps. The accuracy of

clustering is computed by dividing the number of

clustered points by the total number of points

and multiplying the answer by 100. The

accuracy of clustering is given by the following

formula:

𝐴𝑐𝑐𝑐𝑙𝑠𝑡 =
𝑐𝑝

𝑡𝑝
 × 100 (4.2)

Where:

𝑐𝑝: the number of clustered points.

𝑡𝑝: the total number of points.

Figure 4.1 Checking the Clustering of Points

4.2.2 Performance Metrics of Parallel

Program

It is important to study the parallel programs

performance with the aim of determining the

best algorithm, evaluating the efficiency of a

parallel algorithm, examining the benefits from

parallelism, and evaluating parallel hardware

platforms. Some main metrics are used to

analyze the parallel programs performance as

below:

1. Speedup:

To see the benefit of parallelism, it is important

to know how much speed gain is achieved by

parallelizing a program over a sequential

implementation. Therefore, a comparison with

the running time of a sequential version of a

given application is very important to analyze

the parallel version. Speedup can be defined as

the ratio of the execution time of the sequential

version of a given program running on one

processor to the execution time of the parallel

version running on 𝑃 processors with problem

size 𝑛 [14]. Speedup is given by the following

formula [15]:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑠𝑒𝑞(𝑛, 1)

𝑆𝑝𝑎𝑟(𝑛, 𝑝)
 (4.3)

Where:

𝑆𝑠𝑒𝑞: speed (running time) of the sequential

version.

𝑆𝑝𝑎𝑟: speed (running time) of the parallel

version.

𝑝: number of processors.

𝑛: problem size which denotes the number of

computations that the program has to perform.

As the problem size increases, the speedup

increases.

In fact, as the number of processors increases,

the speedup increases. However, there is upper

bound on speedup due to that there is no

program can be completely parallel. Thus, there

is a time allocated for the sequential fraction of

the program. If 𝑓 is the sequential fraction of the

Yes

No

Sum the number of

points in all clusters

All points are

clustered

Start

Some points are un-clustered

End

Sum = 𝑡𝑝 ?

Set number of

points = 𝑡𝑝

173

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

program, then its speedup is bounded by
1

𝑓

regardless of the number of processors. This is

known as Amdahl’s Law.

In this research, serial and parallel models of the

𝑘-means clustering algorithm are designed and

implemented in order to calculate the speedup

gains of parallel implementation which express

the impact of parallelization.

2. Efficiency:

An alternative performance measure of a parallel

application is the efficiency. It captures how a

program’s speedup is close to ideal. In other

words, efficiency measures the effectiveness of

processors utilization of the parallel program

[15]. It can be defined as the ratio of actual

speedup to the number of processors [14] and

expressed as [15]:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝)

𝑝
 (4.4)

Where:

𝑛: problem size.

𝑝: number of processors.

In an ideal parallel program, efficiency is equal

to one and speedup is equal to 𝑝. However, in

practice, it cannot achieve the ideal behavior

because while running a parallel program, the

processors cannot spend 100% of their time on

program's computations. Thus, a real parallel

program has an efficiency value between zero

and one and speedup less than 𝑝 [16].

3. Scalability:

The scalability of a parallel program is a

measure to describe how the program

performance changes as the number of

processors is increased. As mentioned earlier, a

speedup saturation can be observed when the

problem size 𝑛 is fixed, and the number of

processors 𝑝 is increased. However, the attained

speedup increases when the problem size 𝑛

increases for a fixed number of processors 𝑝

[14]. In this sense, a parallel program is scalable

if its performance improve continues as both

problem size 𝑛 and number of processors 𝑝 are

increased. Scalability is given by the following

formula [17]:

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑛𝑝𝑎𝑟

𝑛5𝑒𝑞
 (4.5)

Where:

𝑛5𝑒𝑞: the largest problem size that the sequential

program can be handled.

𝑛𝑝𝑎𝑟: the largest problem size that the parallel

program can be handled for a specific number of

processors.

4.3 Experimental Results

Extensive experiments on both sequential and

parallel models of 𝑘-means clustering algorithm

are conducted. For a fair comparison between

the two versions, the convergence criterion is

met after a fixed number of iterations. We used a

different number of points and a different

number of cores to illustrate the impact of both

on running time. Generally, the dataset consists

of more than 100,000 points with 2 dimensions.

Clustering benchmark dataset called Birch is

used [18]. The additional parameters are

illustrated in table 4.1.

Table 4.1 Parameters of Experiments

Parameter Value

No. of Points 40,000 / 80,000 / 120,000 / 160,000

No. of Clusters 20

No. of Iterations 500

No. of Cores / Threads 2 / 4 / 8

1. Accuracy of Clustering and SSE:

For all experiments that aim to evaluate the

performance of parallel 𝑘-means, the accuracy of

clustering and SSE values have been measured.

As shown in table 4.2, all experiments result in

an accuracy of 100%, implying the efficiency of

𝑘-means clustering algorithm despite its

simplicity. In order to measure the homogeneity

of the clustering results, the program is run

174

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

0

5

10

15

20

25

4 0 0 0 0 8 0 0 0 0 1 2 0 0 0 0 1 6 0 0 0 0

R
U

N
N

IN
G

 T
IM

E
(S

)

POINTS

Sequential 2 Cores 4 Cores 8 Cores

multiple times with multiple different initial

centroids and choose the results that give the

smallest squared error as well as give the

smallest running time as illustrated in the next

section. The detailed results of accuracy and SSE

are recorded in table 4.2. The large numbers of

SSE do not mean large error values, but the

reason is that there is a large number of points

and each attribute of a point consists of six

digits.

Table 4.2 Accuracy of Clustering and SSE

Points Measure Sequential
Parallel

P=2 P=4 P=8

40,000
Accuracy 100% 100% 100% 100%

SSE 14382.9 25322.4 71432.6 12756.8

80,000
Accuracy 100% 100% 100% 100%

SSE 50697.8 45876.6 31665.2 53777.5

120,000
Accuracy 100% 100% 100% 100%

SSE 22473.2 29548.3 78532.9 43672.1

160,000
Accuracy 100% 100% 100% 100%

SSE 55821.7 81325.4 28775.1 92341.5

2. Measuring Running Time:

The running time of a sequential program is the

time that the program takes from start to end its

execution on a computer. The running time of a

parallel program is the time that starts with the

beginning of parallel computation and ends

when the last processor finishes execution [16].

When a parallel program runs multiple times, it

hardly yields the same running time, even with

identical inputs. One of the potential reasons is

that the background processes and other user

programs running on the same computer stealing

some CPU time away from the parallel program,

causing the running time of the parallel program

to increase [15], [17]. To address this issue, the

parallel program should be run multiple times

(e.g., 10 times) and measure the running time for

each run, then the smallest running time value

would be the best estimate of the true running

time of the parallel program [17].

The first set of experiments are conducted to

illustrate the impact of both the problem size and

the number of cores on running time. The

program is run multiple times with a various

number of points and cores. The detailed results

are recorded in table 4.3 based on the smallest

running time. The results are also represented

graphically in figure 4.2. As seen in the graph, as

the number of points increases, the running time

also increases for all cores. Further, the

sequential 𝑘-means has a higher increasing rate

in terms of running time as compared to the

parallel 𝑘-means version for all cores. Also, the

increasing number of cores results in decreasing

the running time as shown in the graph.

Figure 4.2 The Running Time Against the Number of

Cores

3. Speedup Measurement:

In terms of speedup, multiple experiments are

conducted to measure the gained speedup of

parallelizing the 𝑘-means algorithm. The

speedup is calculated according to formula 4.3

and based on the running time results for a

different number of points and a different

number of cores. The detailed results are

recorded in table 4.3. Furthermore, the speedup

results are represented in figure 4.3. As seen in

the graph, the increasing number of cores results

in increasing the speedup for all number of

points. However, the rate of increase begins to

175

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S E Q U E N T I A L 2 C O R E S 4 C O R E S 8 C O R E S

EF
FI

C
EN

C
Y

CORES

40000 80000 120000 160000

slow as the number of points and cores increases.

These results are expected since the scheduling

of a large number of threads becomes more

complicated. Therefore, the imposed overhead is

higher.

Figure 4.3 The Speedup Against the Number of Cores

4. Efficiency Measurement:

The third set of experiments are conducted with

the aim of evaluating the efficiency of using the

hardware resources. It is computed according to

formula 4.4. The efficiency results shown in

table 4.3 are also represented graphically in

figure 4.4 for a different number of points and

cores. It is noted that as the number of cores

increases, the efficiency decreases. For 2 and 4

cores/threads the efficiency is close to 1 because

the experiments are conducted on a quad-core,

while the efficiency decreases with 8 threads (4

cores with hyperthreading) and may reach to

zero with increasing number of cores. These

results are expected because the hyperthreading

is very expensive in terms of threads scheduling

despite its advantages. Therefore, this overhead

yield less efficiency.

Although the efficiency of the sequential version

is equal to 1, it does not mean that there is a full

using of hardware. However, the number of

cores and the speedup of the sequential version

are both equal to 1.

Figure 4.4 The Efficiency Against the Number of Cores

Table 4.3 Running Time, Speedup and Efficiency

Points Measure Sequential
Parallel

P=2 P=4 P=8

40,000

Time(s) 5.64 3.15 1.93 1.62

Speedup 1 1.79 2.92 3.48

Efficiency 1 0.89 0.73 0.43

80,000

Time(s) 11.24 5.89 3.74 3.00

Speedup 1 1.90 3.00 3.75

Efficiency 1 0.95 0.75 0.46

120,000

Time(s) 17.39 8.78 5.54 4.34

Speedup 1 1.98 3.13 4.00

Efficiency 1 0.97 0.78 0.50

160,000

Time(s) 22.51 11.34 6.98 5.46

Speedup 1 1.98 3.22 4.12

Efficiency 1 0.97 0.80 0.52

5. Scalability Measurement:

The scalability is measured according to formula

4.5 by dividing the largest number of points that

each core/thread can handle by the largest

number of points that the sequential program can

handle. The results are recorded in table 4.4.

Furthermore, Figure 4.5 shows the relationship

between the maximum number of points for each

core against the running time graphically.

According to the results, the scalability is

increased as the number of cores increased also.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S E Q U E N T I A L 2 C O R E S 4 C O R E S 8 C O R E S

SP
EE

D
U

P

CORES

40000 80000 120000 160000

176

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 4.5 The Scalability Against the Running Time

Table 4.4 Scalability of Parallel 𝑘-means

Version Cores Size up Scalability

Sequential 1 4100000 -

Parallel 2 8000000 1.9

Parallel 4 13100000 3.2

Parallel 8 16500000 4.0

5 ANALYTICAL RESULTS

For any parallel program, there is a fraction that

should be implemented sequentially. In other

words, it cannot parallelize the whole program.

This is known as Amdahl’s Law. The sequential

fraction 𝑓 of the program may consist of:

- Initialization statements.

- Thread creation and synchronization.

- Input and Output.

- Memory deallocation.

Regardless of the number of processors that are

available in the parallel architecture, the

sequential fraction 𝑓 uses only one processor.

Therefore, the speedup under Amdahl’s Law is

given by the following formula [15], [17]:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝) ≤
1

𝑓 +
(1 − 𝑓)

𝑝

 (5.1)

Where:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝): the analytical speedup.

𝑓: the sequential fraction.

1 − 𝑓: the parallel fraction.

𝑝: the number of processors.

To get the value of the sequential fraction 𝑓, the

following formula is used:

𝑓 =
𝑝 ∗ 𝑇(𝑛, 𝑝) − 𝑇(𝑛, 1)

𝑝 ∗ 𝑇(𝑛, 1) − 𝑇(𝑛, 1)
 (5.2)

This formula calculates the sequential fraction 𝑓

from running time measurements 𝑇(𝑛, 𝑝) and

𝑇(𝑛, 1). Thus, Amdahl’s Law can calculate the

upper bound of the parallel program speedup.

The speedup results are recorded in table 5.1.

Relatively, the actual and the analytical speedup

are almost the same.

Table 5.1 Actual and Analytical Speedup

Points Measure
Parallel

P=2 P=4 P=8

40,000
Actual Speedup 1.79 2.92 3.48

Analytical Speedup 1.79 2.92 3.48

80,000
Actual Speedup 1.90 3.00 3.75

Analytical Speedup 1.91 3.01 3.75

120,000
Actual Speedup 1.98 3.13 4.00

Analytical Speedup 1.98 3.14 4.01

160,000
Actual Speedup 1.98 3.22 4.12

Analytical Speedup 1.98 3.23 4.12

6 CONCLUSION AND FUTURE WORK

This paper targets to accelerate the computation

process of 𝑘-means clustering algorithm since

the time complexity is increased with increasing

the problem size. A parallel processing is used as

a mechanism to achieve a high performance in

terms of running time reduction. Parallel 𝑘-

means is developed on SMP using java

programming language under Linux operating

system. We utilize 4 cores with hyperthreading

(8 threads) managed by PJ2 library. Accuracy

and SSE values are measured to evaluate the

quality of clustering results. All results prove the

efficiency of 𝑘-means with 100% clustering

accuracy. In addition, speedup, efficiency and

scalability are the metrics used to measure the

0

2

4

6

8

10

12

4 1 0 0 0 0 0 8 0 0 0 0 0 0 1 3 1 0 0 0 0 0 1 6 5 0 0 0 0 0

R
U

N
N

IN
G

 T
IM

E
(M

IN
)

POINTS

Sequential 2 cores 4 cores 8 cores

177

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

performance of the parallel program. The results

show that the gained speedup and the scalability

increase with increasing the problem size and the

number of cores, where the maximum speedup

achieved is 4.12 and the maximum scalability

reached is 4.0. On the other hand, the efficiency

decreases with increasing the number of cores.

The analytical results prove that the actual

speedup is almost the same as the analytical

speedup.

As a future work, we will develop another

parallel version of 𝑘-means to run on cluster

parallel programming model. This leads to a

valuable comparison between the two models;

SMP and clusters.

REFERENCES

[1] E. Karoussi, “Data Mining K-Clustering Problem,”

2012.

[2] J. A. Hartigan and M. A. Wong, “A K-Means

Clustering Algorithm,” Journal of the Royal

Statistical Society. Series C (Applied Statistics),

vol. 28, no. 1, pp. 100–108, 1979.

[3] T. Rauber and G. Rünger, “Parallel Computer

Architecture,” in Parallel Programming for

Multicore and Cluster Systems, 2nd ed., Springer,

2013, pp. 9–104.

[4] T. Kucukyilmaz, “Parallel K-Means Algorithm for

Shared Memory Multiprocessors,” Journal of

Computer and Communications, vol. 2, pp. 15–23,

2014.

[5] S. Kantabutra and A. L. Couch, “Parallel K-means

Clustering Algorithm on NOWs,” NECTEC

Technical journal, vol. 1, no. 6, pp. 243–248,

2000.

[6] V. Ramesh, K. Ramar, and S. Babu, “Parallel K-

Means Algorithm on Agricultural Databases,”

International Journal of Computer Sciences, vol.

10, no. 1, pp. 710–713, 2013.

[7] R. Farivar, D. Rebolledo, and E. Chan, “A parallel

implementation of k-means clustering on GPUs,”

International Conference on Parallel and

Distributed Processing Techniques and

Applications, vol. 13, no. 2, pp. 212–312, 2008.

[8] J. Wu and B. Hong, “An efficient k-means

algorithm on CUDA,” in IEEE International

Symposium on Parallel and Distributed

Processing Workshops and Phd Forum, 2011, pp.

1740–1749.

[9] A. K. Jain, “Data clustering: 50 years beyond K-

means,” Pattern Recognition Letters, vol. 31, pp.

651–666, 2010.

[10] P. MacKey and R. R. Lewis, “Parallel k-Means++

for Multiple Shared-Memory Architectures,”

Proceedings of the International Conference on

Parallel Processing, vol. 2016–Septe, pp. 93–102,

2016.

[11] A. Apon, F. Robinson, D. Brewer, L. Dowdy, and

D. Hoffman, Initial starting point analysis for K-

means clustering: a case study. 2006.

[12] D. J. Bora and A. K. Gupta, “Effect of Different

Distance Measures on the Performance of K-

Means Algorithm : An Experimental Study in

Matlab,” International Journal of Computer

Science and Information Technologies, vol. 5, no.

2, pp. 2501–2506, 2014.

[13] A. Kaminsky, “The Parallel Java 2 Library,” in

The International Conference for high

performance computing, networking, storage and

analysis., 2014.

[14] S. Sahni and V. Thanvantri, “Parallel computing:

Performance metrics and models,” IEEE Parallel

and Distributed Technology, vol. 4, no. 1, pp. 43–

56, 1996.

[15] A. Kaminsky, “Measuring Speedup,” in Building

Parallel Programs: SMPs, Clusters & Java, 2009,

pp. 99–110.

[16] A. Grama, A. Gupta, G. Karypis, and V. Kumar,

Introduction to Parallel Computing, Second Edi.

Addison Wesley, 2003.

[17] A. Kaminsky, BIG CPU , BIG DATA: Solving the

World’s Toughest Computational Problems with

Parallel Computing. 2015.

[18] T. Zhang, R. Ramakrishnan, and M. Livny,

“BIRCH: A New Data Clustering Algorithm and

Its Applications,” Data Mining and Knowledge

Discovery, vol. 1, no. 2, pp. 141–182, 1997.

178

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(4): 168-178
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

