

Comparison of Parallel Simulated Annealing on SMP and Parallel Clusters for

Planning a Drone’sRoute for Military Image Acquisition

Eman Alsafi and Soha S. Zaghloul,PhD

King Saud University

435204448@student..ksu.edu.sa

smekki@ksu.edu.sa

ABSTRACT

Drones are vastly used in many civil and

military applications. However, there are many

factors to be highly considered in military

applications.. In order to send a military drone with

the aim of acquiring images from multiple sites, the

mission time should be the least possible. Therefore,

the minimum route plan is required.Simulated

annealing (SA) algorithm is one of the

metaheuristics selected to generate a feasible

solution to solve this problem.This research

exploits the parallelism in the simulated

annealing with the aim of accelerating the time to

find a suitable solution. Parallel programming divides

the problem into smaller independent tasks, and then

executes the sub-tasks simultaneously. Two parallel

versions are therefore developed on different

environment: synchronous SA on SMP, and

asynchronous SA Complete Search Space (CSS) on

parallel clusters. Experiments are conducted on

the parallel clusters environment of the SANAM

supercomputer. This research details the CSS,

and compares it with the SMP SA developed in

our previous study. Comparison is made in terms

of speedup, efficiency, scalability, and quality of

solution.

KEYWORDS

Parallel processing; Simulated annealing; Parallel

Simulated Annealing; Shared-memory Processor;

Parallel Cluster; SANAM

1 INTRODUCTION

Recently, drones or Unmanned Aircraft

Vehicles (UAV) became very popular. This

refers to their ability to undergo dangerous

missions without exposing human beings’ lives

to any type of danger. Drones are associated with

sensors and devices such as cameras, computing

units, communication tools, and others. They are

remotely controlled [1,2].

Drones are utilized in diverse military

and civilian applications. Examples include, but

are not limited to, aerial surveillance, image

acquisition, remote sensing, and scientific

research [2]. In addition to saving human lives,

drones complete missions quickly with minimum

cost [1, 3]. On the other hand, the main

restriction imposed on a drone is its limited

energy; and therefore, flight time. Consequently,

one of the main challenges when dealing with

drones is to find an effective route plan in the

minimum possible amount of time [4].

As drones usually follow preloaded

instructions without human intervention, the

route plan may be generated either online during

the flight, or offline before taking off. Moreover,

drones route planning becomes more challenging

when there are several geographical locations to

be visited that are dispersed apart; these are

called waypoints[2]. This research targets for

finding a route plan that allows drones to acquire

images from predefined waypoints in the least

possible amount of time. Each waypoint is to be

visited exactly once. Obviously, this is

analogous to the well-known Travelling

Salesman Problem (TSP). Finding a near-

optimum route plan is necessary to minimize the

drone’s power consumption during the flight to

cover the largest possible geographical area; and

therefore, visit the largest number of targeted

waypoints. In addition, achieving the mission in

the minimum possible time ensures its secrecy.

However, solving TSP problem using a

brute-force approach requires a significant

amount of time to try every possible solution[2] .

This approach is not suitable for the problem in-

hands, since time and secrecy are both important

factors in military applications. Therefore, a

metaheuristics algorithm, the simulated

annealing (SA) algorithm is used. SA is capable

148

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

mailto:435204448@student..ksu.edu.sa

of finding an acceptable local optimum route

plan[5]. Although SA is used to solve several

complex problems, but it requires significant

processing time to find a suitable solution[6].

Therefore, parallel computing is expected to

positively contribute in the solution of this

problem. Parallelism may minimize the

execution time to fulfill the requirements of the

military mission. In addition, it may increase the

chance to provide a better-quality plan.

However, the SA is inherently sequential as each

new solution depends on the previous one.

Therefore, this imposes one of the challenges

associated with parallelizing SA. The

improvement of the parallel computational

power can overcome this challenge. In this

research, we aim to study the parallel SA on

SANAM supercomputer.

The performance of the parallel program

is measured in terms of three metrics; namely,

the speedup, the efficiency, and the scalability

[7].

Therefore, the aim of this research is to design a

parallel SA implementation with the purpose of

generating a route plan for military drones

emitted with the intention of acquiring images at

multiple sites. Therefore, the program speedup,

efficiency, and scalability are to be maximized;

while the final distance should be at its

minimum.

The layout of this paper is as follows: Section 2

exposes similar work in the literature. Section 3

explains the design of the asynchronous CSS.

Section 4 reports the experiments’ results. The

paper is then concluded in Section 5 with a hint

to our plan to future work.

2 RELATED WORK

This chapter exposes the sequential and

parallel solutions to the TSP, which is similar to

the drone route planning problem There are

several algorithms that provide a solution for the

TSP, such as LS, BB, EAs, ACO, and hybrid

algorithms [7].One of these algorithms is

simulated annealing which used to solve the

problem in this work. The main concern of this

work is comparing the parallel simulated

annealing on different parallel environments

methods with are SMP and parallel clusters.

Many sequential algorithms are proposed

to solve the TSP, some of which are based on the

ACO algorithm. The proposed solution in[8]

provides a modification of the traditional ACO

method; this is known as the High Performance

ACO. The traditional ACO algorithm involves a

single ant randomly looking for the path;

whereas the updated algorithm applies the TSP

on a group of ants. The authors provide a

comparison between their proposed algorithm

and the ant colony system algorithm on various

number of nodes. They found that the proposed

algorithm completes the task in less time.

Also, Local search algorithms are widely used to

solve the TSP. The research in [7] provides an

experimental study to test the performance of the

Lin-Kernighan and the Multi-Neighborhood

Search. Results show that the Lin-Kernighan

provides better results than the Multi-

Neighborhood Search in terms of runtime.

On the other hand, several parallel

solutions are proposed in the literature to solve

the TSP using diverse parallel programming

platforms.In[9], the experiment is performed on

a standard multicore CPU. The reported results

indicate that a gained speedup of 7.3 on 8 cores.

Thus, the usage of PSO algorithm is more

suitable for real-time planning for the drone.

Moreover, the experiments also proved that the

performance of the GA is better than the PSO.

The same authors improved their results in [10]

by proposing a parallel hybrid algorithm that

exploits the advantages of both the PSO and the

GA to generate a suitable path plan for fixed-

wing drones. It is found that the gained speedup

is 10.7 on a 12-core SMP.

In [2], the authors planned the drone’s

path using parallel ACO solution on both GPU

and CUDA platforms. The generated path guides

the drone in disseminating keys and collecting

data from wireless sensors, which are previously

deployed at minimum cost. The drone launches

from a station, visits all sensors in a limited

period of time, then returns back to the same

station it is emitted from. In their experiment,

they compared the sequential performance with

the parallel implementation performance. They

showed that the speedup is higher when using

GPU platform.

149

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

In [5], the authors generate multiple route paths

for several drones simultaneously using

synchronous parallel SA on the GPU.

Experiments’ results prove that the processing

time is reduced, and a better solution is acquired,

as compared to the CPU implementation.

3DESIGN AND IMPLEMENTATION

This section discusses the general design

of SA. Then, the implementation of the

asynchronous CSS is then discussed.

3.1 Simulated Annealing Design

Two concepts are to be defined when it

comes to designing an iterative metaheuristics

algorithm; namely, the solution representation

and the objective function. Since SA is classified

as a single-solution based metaheuristics, it

requires the definition of the neighborhood.

These are detailed in the following subsections

[11].

3.1.1 Solution Representation

The solution representation of the drone

route planning is a permutation of size n, where

n is the number of the waypoints to be visited

exactly once. Each permutation represents one

solution as shown in Figure 4 as a sequence of

nodes, where each node represents a waypoint

and its index represents the corresponding order.

The number of all permutations that represent

the solution space taking into consideration the

fixed point of start (ground station) is (n-1)!.

Figure 1.The permutation representation of the drone

route plan problem

3.1.2 Neighborhood Solution

The neighborhood of a solution is found

by performing a move operator which leads to a

tiny perturbations to the solution S[11]. As the

drone route plan is represented by a permutation,

a neighborhood is generated by the swap

operator between two elements in the solution.

This is illustrated in Figure 5.

Figure 2.Neighbourhood solution generated by swapping

the order of two waypoints

3.1.3 Objective function

The objective function is used to define

the goal to be achieved by the SA. The goal of

the problem in-hands is looking for the shortest

route plan for a drone such that it visits each

waypoint exactly once. As previously

mentioned, this is similar to the TSP and has a

similar objective function which is shown below:

𝑓 𝜋 = 𝑀𝑖𝑛 𝑑𝜋 𝑖 𝜋 𝑖+1 + 𝑑𝜋 𝑛 𝜋 1
𝑛−1
𝑖=1 (1)

where:

-𝜋 is a permutation representing a tour of the

drone;

- n is the number of waypoints.

3.2 Sequential simulated annealing

As previously mentioned, the SA, like

other single-solution based metaheuristics,

includes two main steps. The first step is to

generate the initial solution, which is constructed

by using a greedy heuristic, such as the nearest

neighbor algorithm or randomly. In the design of

the sequential algorithm of this research, the

random method is used because the greedy

heuristics produces a solution in local optimum,

which may not be able to provide an improved

local optimum solution at the end[11].

The second step, which is the solution

improvement, the design uses the swap operator

between two points to generate a neighbor

solution from the current solution.

In fact, the SA algorithm imitates the process of

the solid hardening, which depends on the initial

temperature value and the cooling rate.

Therefore, the SA implementation consists of

two main loops to provide a suitable solution.

The outer loop, known as the cooling loop, is

responsible for managing the temperature value.

On the other hand, the inner loop, known as the

150

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

equilibrium state loop, is responsible for

constructing a neighbor solution from the current

one, evaluating it, and computing the probability

of the acceptance using the following formula:

 e (− Δ/T)(2)

where:

- Δ is the difference between the cost of the

old and the new solution;

- T is the current temperature

Accordingly, the main parameters that are to

be defined during SA implementation are the

initial temperature, the cooling rate, and the

stopping condition. The latter might be the

minimum temperature or a specific number of

iterations. In this research, the stopping

condition is taken based on a minimum

temperature. The other parameters are

determined after several experiments[6]. The

flowchart of the sequential algorithm is shown in

Figure 3.

3.3Parallel Simulated Annealing

Metaheuristic algorithms are sequential by

nature; SA is no exception. Consequently,

parallelizing the SA entails a challenging

problem [7]. Many approaches are proposed to

parallelize SA algorithm [12]:

- Decompose the search space into smaller

parts, then assign each part to a processor to

find the minimum cost and share its result

with other processors.

- Apply the synchronous approach, where

each processor uses the same initial solution

and performs parallel improvements within

the same temperature. Then at each

temperature value the best solution is shared

between the processors to perform parallel

improvement until the end. Figure 4

illustrates the synchronous approach.

- Apply the asynchronous approach, where

each processor executes SA independently.

The initial solution may be the same or

different across the processors. Finally,

compute a reduce operation to get the best

solution among them. As illustrated in

Figure 5.

The synchronous parallel SA on shared-

memory processor (SMP) is previously studied

in [13]. In this paper, the asynchronous parallel

SA Complete Search Space (CSS) is

investigated. The CSS algorithm starts with

different initial solutions for the complete

search space. The idea is illustrated in Figure 5.

3.3.1 Parallel SA approach on cluster

On the other hand, using the approach in

[14] to implement SA on parallel clusters will

increase the overhead of communication

between nodes. This is explained by the fact

that in synchronous

Figure 3.Flow chart of the SA algorithm

151

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 4.Synchronous SA parallel approach

Figure 5.Asynchronous SA parallel approach

parallel SA, the processors frequently

communicate with each other. Shared memory

processor environment is suitable for such

solution. However, in parallel clusters,

communication is needed between processors

after each inner loop.This is performed through

message passing on parallel clusters. Message

passing imposes an overhead on the program;

and therefore, increases the speedup.

The asynchronous parallel SA CSS is

therefore suggested to minimize the

communication overhead. In this algorithm,

each cluster node works on the complete search

space (CSS) as illustrated in Figure 6. In the

start, several initial solutions are generated and

distributed over the nodes. Then each node

applies the sequential SA. However, data

parallelism is applied.At the end, all nodes send

the produced route together with the final

distance. The minimum distance with its

corresponding route are then selected to be the

best route plan.

3.4 Handling the Drone Energy Constraints

After generating the route plan using SA

algorithm at the ground station, the route is

evaluated in terms of the energy required to

complete the planned mission. If the energy level

is above a predefined threshold, then the drone is

emitted according to the planned route.

Otherwise, the mission is divided into multiple

journeys. The drone is re-charged after the end

of each trip, before starting a new one.

Figure 6.Flowchart of asynchronous parallel SA for

complete search space approach

In fact, the drone’s energy is expressed in

terms of its enduring lifetime L. Therefore, the

time T

needed to travel the final distance D, as planned

by the SA, is calculated as follows:

T = D / S (3)

where:

- T is the time required to make the complete

calculated tour, including the return trip to

the ground station;

- D is the final distance as calculated by the

SA algorithm;

- S is the drone’s speed as specified in its

hardware specifications

152

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

If the calculated time T is less than the

drone’s enduring lifetime L, then the drone is

safely launched. Otherwise, the journey is

broken into multiple trips. Figure 7 illustrates the

previously mentioned steps.Therefore, the

applied predefined threshold is the enduring

lifetime of the emitted drone.

Figure 7. Checking drone’s energy

4 EXPERIMENTAL RESULTS

This section details the methodology

used in the conducted experiments. In addition,

the obtained results are discussed, analyzed, and

represented graphically. The first subsection

reveals the deployed environment in terms of

software and hardware specifications. Subsection

4.2 explains the performance metrics used to

measure the effectiveness of the developed

algorithm. Subsection 4.3 details the general

methodology used to collect the figures of the

experiments. Finally, subsection 4.4 details the

results of both the sequential and parallel CSS

algorithm.

4.1 Software and Hardware Specification

This research is implemented on KACT’s

Saudi supercomputer SANAM. KACST is King

Abdel-Aziz City for Science and Technology in

Riyadh, Kingdom of Saudi Arabia.

SANAMincludes Intel Xeon E5−2650 CPUs,

with 12 cores. The access to SANAM is

available through a group of interactive login

nodes, which are connected to KACST network

and Internet [14, 15]. The program is coded

under Linux Ubuntu 16, with JAVA using the

pj2 library for threads management [7], and

NetBeans as programming tool. In addition,

Simple Linux Utility for Resource Management

(SLURM)is used for Linux clusters management

in SANAM. SLURM performs three main tasks:

First, it is responsible for nodes allocation,

management, execution, and monitoring

reserved nodes. Second, it manages waiting

work queues and finally, resolves conflicting

resource orders [16].

In this research, ten nodes are used. This is the

maximum allowed by KACST to the external

users.

4.2 Performance Measurements

The main objectives of this research are

to minimize the execution time, increase

resources utilization, and increase scalability. In

addition, the final distance is to be minimized.

Therefore, speedup, efficiency, scalability, and

final distance are used to evaluate the

performance of the parallel program [7].

4.2.1 Speed up:

Speed up is used to measure the extent of

the time reduction gained from the parallel

implementation as compared to its sequential

counterpart. The gained speed up is calculated as

the ratio of the execution time of the sequential

program Tseq to that of the parallel program

Tpar[7]:

Speed up =
Tseq

Epar
 (4)

4.2.2 Efficiency

The efficiency (E) is used to measure

how a program is close to the ideal speed up. In

other words, it indicates the effectiveness of the

parallel program to use the available resources.

The ideal program efficiency is equal to 1.

However, the actual efficiency is between 0 and

1. As the efficiency is closer to 1, as the program

is making better use of the available hardware

resources. Efficiency is computed as the ratio of

the actual speed up of the parallel program Tpar

to the number of processors K that are used to

153

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

run the parallel program. This is expressed in the

following formula[7]:

Efficiency =
Tpar

K
 (5)

4.2.3 Scalability

Scalability is the ability of a program to

adapt to the increasing amount of problem size.

In order to measure the scalability of a parallel

program, the sequential version is run multiple

times; each time the problem size is increased.

When the program crashes, and cannot hold any

more the given problem size, the last recorded

size is taken. This is Nseq. The same experiment

is repeated with the parallel version to get Npar.

The scalability is therefore calculated according

to the following formula [7]:

Scalability =
Npar

 Nseq
(6)

It is expected that the problem size increases

with the increase of the number of processors.

4.3 Methodology

The execution time of a parallel program

is hardly the same when run multiple times

successively. This is because the operating

system is conducting its own activities at the

same time as the program runs. Since these

activities differ from a run to another, the

resulting execution time is directly affected. The

interference of the operating system always

increases the resulting execution time. Therefore,

to measure the execution time of a program as

accurate as possible, it is run multiple times –

from 7 to 10 times – and the execution time is

recorded after each run. Then, the minimum of

these recordings is taken since this represents the

less interference from the part of the operating

system.

4.4 Experimental results

The results of both versions of the SA

algorithm are reported in the following

subsections. The parallel platform is an SMP;

with a number of threads ranging from 2 to 8. A

set of experiments is conducted according to the

previously detailed methodology detailed with

the aim of measuring the three main performance

metrics: speedup, efficiency, and scalability in

addition to the quality of the solution. These are

exposed in the following subsections.

4.4.1 Speedup

The first set of experiments aims to

explore the impact of the number of waypoints

on the execution time. Therefore, the program is

run multiple times with various number of

waypoints; namely, 50, 100, 150, and 200. The

experiment is done only for these four problems

sizes as the increments in the execution time is

linear.

Table 1 shows the minimum execution time for

the sequential, SMP -as performed in [14]-, and

CSS. Note that all the parameters of SA; namely,

initial temperature, the cooling rate, and the

stopping condition, are fixed. Worth to mention,

the parameters are chosen after several

experiments to ensure the quality of the final

solution. Figure 8 shows the impact of the

number of waypoints on the execution time.

Figure 8. Relationship of Execution Time with Number of

Waypoints

As seen in the graph depicted in Figure8,

the execution time of sequential and parallel SA

versions is proportional to the problem size. It is

noted that the execution time of the parallel

cluster CSS is the highest when compared to the

sequential and SMP. This is due to the fact that

in CSS, each node works on the complete search

space. In addition,several initial solutions are to

0

1

2

3

4

5

6

7

50 100 150 200

Ex
ec

u
ti

o
n

 t
im

e
 s

Number of waypoints

SEQ

CSS

SMP

154

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

be produced and propagated to all nodes at the

beginning of the program. Therefore, the

communication between the nodes imposes an

overhead on the execution time.

On the other hand, the execution time of

the parallel SMP is the best. This is explained to

the lack of communication overhead, since data

is shared in the main memory.

The gained speedup is calculated from the values

recorded in Table 1 according to formula 4The

results are depicted in Figure 9. The highest

speedup is achieved by the SMP version; it is

equal to 6.81for 200 waypoints as compared to a

speedup of 0.57 for the CSS.

Figure 9.Relationship between Speedupand Number of

Waypoints

4.4.2Efficiency Measurement

The efficiency is calculated for both SMP

and CSS versions according to formula 5The

results are displayed in Table 2. The

corresponding graph is depicted in Figure 10. It

is noticed that the efficiency is the best with

parallel SMP where all threads in the nodes are

utilized.

Although the efficiency is equal to 1 for

the sequential program, but this does not imply

that the program makes full use of the available

hardware resources. However, the actual speed

of the sequential program and the number of

cores are both equal to one.

Figure 10.Relationship of Efficiencywith Number of

Waypoints for SMP and CSS

4.4.3Scalability Measurement

 Here, the largest number of waypoints

that can be handled by each parallel SA version

is divided by that handled by the sequential

program. The results are reported in Table 3,

with calculations deduced from formula 6Again,

the scalability in parallel SMP is too much better

than that of the CSS. This is explained by the

fact that all threads in the node are utilized in

SMP. Thus, increasing the ability to handle

larger problem sizes than sequential and parallel

CSS. Moreover, the parallel CSS does not

provide any improvement on the sequential SA.

4.4.4The quality of the route plan

The final distance values are depicted in

Table 1 with various SA algorithm versions and

waypoints. The corresponding graph is shown in

Figure 11. It is noticed that the quality of the

route plan is the best with the SMP SA version

as compared to the other program versions.

However, the CSS SA produces very close

distances as compared to the SMP SA. On the

other hand, it gives better distance than the

sequential. This is because the CSS SA uses

more nodes working on different initial

solutions; thus, increasing the chance of

improving the distance.

5CONCLUSION AND FUTURE WORK

This research targets for generating a

minimum route plan distance for a single drone

emitted by a military organism for image

acquisition. The area in concern may be a

sensitive site, a defense

0

1

2

3

4

5

6

7

50 100 150 200

Sp
ee

d
u

p

Number of waypoints

CSS

SMP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200

Ef
fi

ci
en

cy

Number of waypoints

CSS

SMP

155

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Figure 11. Quality of the final distance on parallel SA

and/or attack war front, or an enemy’s territory.

Therefore, the route path should be completed in

the least amount of time.

The SA algorithm is implemented to

solve this problem, which is analogous to the

TSP. Since metaheuristics require an extensively

long time for execution, parallel computing is

deployed to accelerate the SA algorithm.

Therefore, several parallel versions of the SA are

developed. First, the parallel SA is previously

developed [14]. In this paper, another parallel

version is implemented on SANAM

supercomputer. Ten nodes are used to implement

the program using Java programming language

under Linux on SANAM supercomputer.

The two parallel versions are compared in terms

of speedup, efficiency, scalability, and the final

distance.

The reported results prove that the

synchronized parallel SA on SMP outperforms

the CSS for all number of waypoints in terms of

gained speedup, efficiency, and scalability. On

the other hand, the CSS outperforms the SMP

SA in terms of quality of solution.

In the future, more methods to parallelize

SA are to be investigated.

ACKNOWLEDMENT

The researcherswould like to extend our

gratitude to King Abdel-Aziz City for Science

and Technology (KACST) in Riyadh for

allowing us to use their SANAM supercomputer

at all times. Not only this, but the staff was also

of great support and helpful; replying to our

posed questions promptly albeit their heavy duty

load.

REFERENCES

[1] N. Özalp and O. K. Sahingoz, "Optimal UAV

path planning in a 3D threat environment by

using parallel evolutionary algorithms," in

Unmanned Aircraft Systems (ICUAS), 2013

International Conference, 2013, pp. 308-317.

[2] M. O. UgurCekmez, "A UAV Path planning with

parallel ACO algorithm on CUDA platform,"

presented at the IEEE Unmanned Aircraft

Systems (ICUAS), FL, USA, 2014.

[3] M. Coeckelbergh, "Drones, information

technology, and distance: mapping the moral

epistemology of remote fighting," Ethics and

information technology, vol. 15, pp. 87-98, Jun

2013.

[4] X.-f. Liu, Z.-w. Guan, Y.-q. Song, and D.-s.

Chen, "An optimization model of UAV route

planning for road segment surveillance," Journal

of Central South University, vol. 21, pp. 2501-

2510, Jun 2014.

[5] T. Turker, G. Yilmaz, and O. K. Sahingoz, "GPU-

Accelerated Flight Route Planning for Multi-

UAV Systems Using Simulated Annealing," in

International Conference on Artificial

Intelligence: Methodology, Systems, and

Applications, 2016, pp. 279-288.

[6] M. Sanjabi, A. Jahanian, S. Amanollahi, and N.

Miralaei, "ParSA: parallel simulated annealing

placement algorithm for multi-core systems," in

Computer Architecture and Digital Systems

(CADS), 2012 16th CSI International Symposium,

2012, pp. 19-24.

[7] A. Kaminsky, "BIG CPU, BIG DATA: Solving

the World's Toughest Computational Problems

with Parallel Computing," 2016.

[8] KACST , The Saudi Supercomputer “SANAM” is

the World„s 2nd Leader in Energy Efficiency",

KACST, 2012. [Online]. Available:

https://www.kacst.edu.sa/eng/about/news/Pages/n

ews3841117-3854.aspx. [Accessed: 25- Apr-

2017].

[9] V. Roberge, M. Tarbouchi, and G. Labonté,

"Comparison of parallel genetic algorithm and

particle swarm optimization for real-time UAV

path planning," IEEE Transactions on Industrial

Informatics, vol. 9, pp. 132-141, May. 2013.

[10] V. Roberge, M. Tarbouchi, and F. ALLAIRE,

"Parallel hybrid metaheuristic on shared memory

system for real-time UAV path planning,"

International Journal of Computational

Intelligence and Applications, vol. 13, p.

1450008, Jun. 2014.

[11] E.-G. Talbi, Metaheuristics: from design to

implementation vol. 74 ,pp 126-133: John Wiley

& Sons, 2009.

[12] A. Ferreiro, J. García, J. G. López-Salas, and C.

Vázquez.:An efficient implementation of parallel

simulated annealing algorithm in GPUs, Journal

of Global Optimization, vol. 57, pp. 863-890,

Nov. 2013.

0

2000

4000

6000

8000

10000

50 100 150 200

D
is

ta
n

ce

Number of waypoints

SEQ

CSS

SMP

156

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

http://www.kacst.edu.sa/eng/about/news/Pages/news3841117-3854.aspx
http://www.kacst.edu.sa/eng/about/news/Pages/news3841117-3854.aspx
http://www.kacst.edu.sa/eng/about/news/Pages/news3841117-3854.aspx

[13]S. Zaghloul and E. Alsafi, "Drone route planning for

military image acquisition using parallel

simulated annealing", International Journal of

New Computer Architectures and their

Applications (IJNCAA), vol. 7, no. 3, Sep, 2017.

[14] D. Rohr, S. Kalcher, M. Bach, A. A. Alaqeeliy,

H. M. Alzaidy, D. Eschweiler, V. Lindenstruth, S.

B. Alkhereyfy, A. Alharthiy, and A. Almubaraky,

"An energy-efficient multi-GPU supercomputer,"

in High Performance Computing and

Communications, 2014 IEEE 6th Intl Symp on

Cyberspace Safety and Security, 2014 IEEE 11th

Intl Conf on Embedded Software and Syst

(HPCC, CSS, ICESS), 2014 IEEE Intl Conf on,

2014, pp. 42-45.

[15] "Intel® ARK (Product Specs). (2017). Intel®

Xeon® Processor E5-2650 v4 (30M Cache, 2.20

GHz) Product Specifications. [online] Available

at: https://ark.intel.com/products/91767/Intel-

Xeon-Processor-E5-2650-v4-30M-Cache-2_20-

GHz [Accessed 13 Dec. 2017].".

[16] Slurm.schedmd.com. (2017). Slurm Workload

Manager. [online] Available at:

https://slurm.schedmd.com/quickstart.html

[Accessed 14 Dec. 2017]."

[17] T. Rauber and G. Rünger, Parallel programming:

For multicore and cluster systems: Springer

Science & Business Media, 2013.

[18] A. Kaminsky, "Building Parallel Programs:

SMPs, Clusters, and Java. Cengage Course

Technology (2010)," ISBN 1-4239-0198-3.

157

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://slurm.schedmd.com/quickstart.html

Table 1Relationship between the execution time and number of waypoints with the corresponding output distance

#waypoints
Sa

algorithm

version

Execution

time (s)
Distance

50

Sequential 1.1711 1762

Parallel

cluster CSS
2.113 1483

Parallel

SMP
0.561 1389

100

Sequential 3.276 3110

Parallel

cluster CSS
3.644 2610

Parallel

SMP
0.651 2162

150

Sequential 4.741 4880

Parallel

cluster CSS
5.059 3733

Parallel

SMP
0.753 3487

200

Sequential 6.072 4976

Parallel

cluster CSS
6.544 4439

Parallel

SMP
0.891 4320

Table 2Efficiency of sequential, SMP, and CSS versions

#way

point

s

Sa algorithm

version

Executi

on time

(s)

Speed

up

Efficien

cy

50

Sequential 1.1711 1 1

Parallel

cluster CSS
2.113 0.55 0.055

Parallel SMP 0.561 2.09 0.17

100

Sequential 3.276 1 1

Parallel

cluster CSS
3.644 0.9 0.09

Parallel SMP 0.651 5.03 0.42

150

Sequential 4.741 1 1

Parallel

cluster CSS
5.059 0.94 0.09

Parallel SMP 0.753 6.3 0.52

200

Sequential 6.072 1 1

Parallel

cluster CSS
6.544 0.93 0.093

Parallel SMP 0.891 6.81 0.57

158

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

Table 3 Measure scalability of parallel SA

SA algorithm

version
Size up Scalability

Sequential 3100 --

Parallel cluster CSS 3000 0.97

Parallel SMP 23000 7.4

159

International Journal of New Computer Architectures and their Applications (IJNCAA) 8(3): 148-159
The Society of Digital Information and Wireless Communications, 2018 ISSN 2220-9085 (Online); ISSN 2412-3587 (Print)

