
IMPROVED BILATERAL FILTERING SCHEME
FOR NOISE REMOVAL IN COLOR IMAGES

Krystyna Malik, Bogdan Smolka
Polish-Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland
krystyna.malik@polsl.pl, smolka@ieee.org

ABSTRACT
In this paper a new approach to the problem of noise

removal in color images is presented. The proposed

filtering design is a modification of the bilateral denos-

ing scheme, which takes into account the similarity

between color pixels and their spatial distance. How-

ever, instead of direct calculation of the dissimilarity

measure, the cost of a connection through a digital

path joining the central pixel of the filtering window

with the remaining pixels is determined. The filter

output, like in the standard bilateral filter, is calcu-

lated as a weighted average of the pixels surrounding

the center of the filtering window, and the weights

are functions of the minimal connection costs. Ex-

perimental results prove that the introduced design

yields significantly better results than the bilateral fil-

ter in the case of color images contaminated by strong

mixed Gaussian and impulsive noise.
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1 INTRODUCTION

Visual information processing is increasingly be-
coming widespread as multimedia becomes com-
mon in everyday life. With the expanding use of
color images in various multimedia applications
and the proliferation of color capturing and dis-
play units, the interest in color image enhance-
ment is rapidly growing.

Quite often, color images are corrupted by var-
ious types of noise introduced by malfunctioning
sensors in the image formation pipeline, electronic

instability of the image signal, faulty memory lo-
cations in hardware, aging of the storage material,
transmission errors and electromagnetic interfer-
ences due to natural or man-made sources [1–4].

Noise reduction is one of the most frequently
performed image processing operation, as the en-
hancement of images or video streams degraded
by noise, is indispensable to facilitate subsequent
image processing steps.

In this work we focus on the restoration of color
images corrupted by mixed Gaussian and impul-
sive noise. The reduction of such kind of noise is
quite a challenging task, as the techniques capable
of reducing efficiently the Gaussian noise, fail in
the presence of impulses and the methods suited
for the removal of impulsive noise are mostly in-
effective when restoring images distorted by other
noise types [5–7].

In recent years the problem of the suppression
of mixed noise in color images attracted much re-
search interest [8–10]. The most widely used filter-
ing designs are based on the concept of the Vector
Median Filter (VMF), whose output is computed
using the concept of vector ordering of a set of
pixels from the filtering window.

The vector ordering scheme is defined through
the sorting of the cumulated distances from a given
pixel to all other pixels from the filtering window.
Then the scalar sums of distances are sorted and
the associated vectors can be correspondingly or-
dered [3, 11, 12]. The vector median filter is very
effective at reducing impulsive noise, however its
efficiency is decreased when the image is distorted
by Gaussian noise, and therefore in such a case the
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VMF is usually combined with other noise sup-
pression designs.

Many noise reducing designs are based on the
concept of adaptive weighted averaging, where the
weights are assigned to the pixels from a filtering
window according to some rules which downweight
the influence of outlying observations [13–15]. An
efficient scheme proposed in [16, 17] divides the
pixels of the filtering window into two sets. The
first one consists of the pixels similar to the cen-
tral pixel of the local window and the other one
is composed of those pixels, which diverge greatly
from the central pixel. The output is computed as
a weighted average of the peer-group members.

Similar concept is utilized by the technique pro-
posed in [18], which calculates the distances be-
tween the central pixel in a local window and its
neighbors. If the number of pixels classified as
close to the central pixel is higher than a prede-
fined threshold, then the pixel is treated as uncor-
rupted, otherwise it is replaced by a vector median
of all pixels from the window or an average of the
uncorrupted pixels. In [19] the peer-group mem-
bers were found using a technique based on the
evaluation of the statistical properties of a sorted
sequence of accumulated distances used for the
calculation of the vector median. The peer-group
concept has been also successfully extended to the
fuzzy context, so that the proposed technique is
able to remove mixed noise by combining a sta-
tistical method for impulse noise detection and a
replacement scheme utilizing an averaging opera-
tion aimed at smoothing out the Gaussian noise
component [20,21].

One of the major problems of many noise reduc-
ing methods is the blurring of edges. To overcome
this undesired effect the Anisotropic Diffusion
(AD) technique has been proposed [22], whose
aim is to remove the noise component in homoge-
neous areas, while inhibiting smoothing across the
edges. This task is accomplished through the in-
troduction of a nonlinear diffusion scheme, which
smoothes the image in directions parallel to edges
and prevents blurring across object boundaries. In
this way the AD technique is capable of reducing
the image noise while simultaneously enhancing
its edges.

Since the introduction of the AD method which
was intended for gray scale image denoising, the
extension to vector valued images was elaborated
[23,24] and a variety of techniques inspired by the
anisotropic diffusion based approach have been
proposed.

An efficient method of image denoising called
Non-Local Means (NLM) was proposed in [25,26].
This method is based on a non-local averaging
of the image pixels in such a way that the new
pixel value of the restored image is estimated as a
weighted average of the pixels, whose local neigh-
borhood is similar to the local neighborhood of
the pixel which is currently being processed. The
NLM filter is extremely efficient when restoring
images corrupted by Gaussian noise, but fails in
the presence of distortions introduced by impul-
sive noise.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe the concept of
the standard Bilateral Filter and in the next Sec-
tion we introduce its modification which enables to
effectively cope with strong mixed Gaussian and
impulsive noise. In Section 4 we evaluate the ef-
ficiency of the proposed filtering design and com-
pare it with the bilateral scheme and some other
denoising techniques briefly described in the In-
troduction. Section 5 concludes this paper with
some remarks and directions for future research.

2 Bilateral Filter

Another powerful nonlinear noise reducing filter-
ing design, whose aim is to smooth images while
preserving their edges, called Bilateral Filter (BF)
was proposed in [27] and discussed in [28–30].

In this method, the intensity value of the pixel
x is being replaced by a weighted average of the
intensities of all other pixels belonging to the fil-
tering window Wx centered at x. The weight func-
tion depends on the spatial distance between the
central pixel and other pixels of Wx as well as on
the difference of their intensities. The BF output
J(x) at image domain location x is defined as

J(x)=
1

Z

∑
y∈Nx

w(x,y)I(y), Z=
∑

y∈Nx

w(x,y), (1)
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Figure 1: Illustration of the bilateral filter construction.

where Nx is the set of pixels included in Wx so
that Wx = {Nx + x}, w(x,y) is the weight as-
signed to pixel at location y. The weight assigned
to pixel at y ∈ Nx is defined as

w(x,y) = wS(x,y) · wI(x,y). (2)

This weight is a result of multiplication of two
components

wS(x,y) = exp

(
−‖x− y‖2

2σ2
S

)
, (3)

wI(x,y) = exp

(
−|I(x)− I(y)|2

2σ2
I

)
, (4)

where ‖·‖ denotes the Euclidean distance between
pixels x and y, σS and σI are tuning parameters
in the spatial and intensity domains respectively.

The wS weighting function decreases with the
Euclidean distance, so that the pixels which are
far away from the center of the processing win-
dow have low influence on the weighted averaged
expressed by (1). The wI weighting function is
a decreasing function of the absolute difference of
pixel intensities. Thus, the weight wI operating in
the intensity domain reduces the influence of pix-
els whose intensities significantly differ from that
of the central pixel, which ensures the preservation
of sharp image edges and preservation of image
details.

Figure 1 explains the construction of the bilat-
eral filter. It depicts an exemplary filtering win-
dow (a), the array of Euclidean distances between

the central pixel and all other pixels of the win-
dow (b) and the array of the absolute differences
of intensities (c).

For color images, the difference of intensities is
replaced by the distance between color pixels in
the RGB color space. Using the Euclidean norm,
we obtain

‖I(x)− I(y)‖2 =
∑3

k=1
(Ik (x)− Ik (y))2, (5)

where ‖I(x) − I(y)‖ is the distance between the
RGB vectors at x and y and the index represents
the k-th color channel, (Red, Green or Blue).

Therefore, for color image the scheme given in
(4) can be extended and the weight wI can be
expressed as

wI(x,y) = exp

(
−‖I(x)− I(y)‖2

2σ2
I

)
. (6)

The bilateral filter is a highly efficient noise re-
ducing scheme, however it has severe problems to
remove the pixels introduced by impulsive noise
process. Assuming that the central pixel of the
local filtering window is an impulse and some of
the pixels in the window are also injected by the
noise and possess similar intensities or colors as
the central pixel, then the weights expressed by
(6) are relatively high, which leads to the preser-
vation of the corrupted pixel.

This undesired effect is illustrated by the situ-
ation depicted in Fig. 2. If in the close vicinity
of a noisy pixel, another similar pixels corrupted
by noise are present, then while calculating the
new pixel value, the noisy pixel will be included
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with large weights and as a result the impulses
will be preserved. In the depicted example, the
filtering window contains pixels whose intensities
are equal to 128 and some bright impulses with in-
tensities equal to 255. The weights (depicted near
the arrows) assigned to white pixels are large and
the weights of gray pixels are very close to 0 for
σI = 20 and σS = 2. As a result the white im-
pulse in the center of the filtering window will be
preserved as only the bright pixels will be taken
for the weighted average, which is the output of
the bilateral filter.

Therefore, in this paper we propose a modifi-
cation of the bilateral filter, which alleviates the
described above drawback.

255

255

255

255

255

0.36

0.
21

0.36

0.06

Figure 2: Illustration of the BF inability to sup-
press impulsive noise.

3 Modified Bilateral Filter

The concept of the proposed modification of the
bilateral filter is based on assigning the pixels from
the filtering window Wx a minimum connection
cost of a digital path which joins them with the
central pixel x. In this way, each pixel is con-
nected with the central pixel through a digital
path with minimum cost function value. The con-
nection cost is used to calculate a weight assigned
to each pixel from Wx and the filter output is the
weighted average of the pixels in Nx.

For the calculation of the weights we treat the
local filtering window as a directed graph, whose
nodes are the pixels and whose arcs are deter-
mined by the 8-adjacency relation, (Fig. 3a). The

x6 x7 x8

x4 x x5

x1 x2 x3

(a)

106 111 115

116 110 105

106 110 111

(b)

4 1 5

6 0 5

4 0 1

(c)

Figure 3: Adjacency relation (a), pixel intensities
(b) and their absolute differences with respect to
the central pixel (c).

cost of a path in such a graph is the sum of con-
nection costs between the adjacent pixels forming
a path and the connection cost (arc cost) is as-
sumed to be a function of the absolute difference
of their intensity.
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Figure 4: Initial steps of the creation of minimum
connection paths.

For finding the minimum cost paths we ap-
ply the Dijkstra algorithm [31], where the graph
weights are simply the absolute differences be-
tween adjacent pixel intensities. Thus, a minimum
connection cost of a pixel at position y is defined
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Figure 5: Connection costs with some exemplary
minimum paths.

as a minimum sum of absolute differences between
the pixels constituting a digital path connecting
this pixel with the central pixel of the filtering
window centered at x.

Figure 3 illustrates the application of the Dijk-
stra algorithm for the evaluation of the connection
cost. The central pixel of W is denoted as x, and
the neighboring pixels as xk, (k = 1, . . . , 8) and
the connection cost c(x,xk) between adjacent pix-
els is

c(x,xk) = |I(x)− I(xk)|. (7)

For the computation of the optimal paths con-
necting the pixels with the central pixel x a cost
array C is created. Initially C(x) = 0 and
C(y) =∞, for all pixels y belonging to Nx, which
indicates that the pixels were not yet assigned a
connection cost value. At the beginning, the cost
of the crossing between the central pixel and its
neighbors is calculated (Fig. 4). Afterwards the
Dijkstra algorithm creates the paths of the low-
est total cost and assigns the optimal costs to the
pixels from the filtering window. Every pixel of
the window is visited and whenever a path with
a lower cost is found, the corresponding value of
the cost array C is updated. Finally, this array
includes the lowest costs and determines the min-
imum cost path connecting a given pixel with the
center pixel as shown in Fig. 5. In this way, as
every pixel of the filtering window is connected
by a simple path of minimum total cost with the
central pixel x of W , the considered graph can be

treated as a tree with the root at x [32].

The connection costs can be treated as simi-
larity measures between the pixel x and and the
remaining pixels of the processing window. In
this way, the proposed filtering scheme is simply
a weighted average of the pixels y ∈ Nx. The
weights are defined as

w̃(x,y) = exp

(
−C(x,y)2

h2

)
, (8)

where h is a tuning parameter and C(x,y) is a
cost function of the minimum path connecting x
and y.

The cost function assigned to y is the minimum
total cost of the connection between x and y

C(x,y) =
m∑
j=1

|I(xj)− I(xj−1)| , (9)

where x0 = x is the origin vertex of the minimum
cost path, xm = y is the destination vertex and
m is the number of the optimum path segments.

For color images the connection costs are calcu-
lated using the Euclidean distance in RGB color
space between neighboring pixels. Thus, the
structure of filter output is the same as in the case
of the bilateral filter.

4 Experimental Results

In this section we compare the bilateral filter with
the proposed modification in terms of the visual
quality of the restored image and also in terms of
objective quality measures. Additionally, we eval-
uate the proposed filter efficiency with the denois-
ing methods described briefly in the introduction.

(a) LENA (b) GOLDHILL (c) PEPPERS

Figure 6: Color test images.
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First, the relationship between the control pa-
rameters of the filters and the noise level was an-
alyzed. The effectiveness of the new filter was
tested on the standard color test images LENA,
PEPPERS and GOLDHILL (see Fig. 6) cor-
rupted with Gaussian and mixed Gaussian and
impulse noise (salt & pepper in each channel).
The test images were contaminated by: Gaussian
noise of σ = 10, σ = 20, σ = 30, and mixed Gaus-
sian and impulsive noise of σ = 10 and p = 0.1, σ
= 20 and p = 0.2, σ = 30 and p = 0.3, where p
denotes the contamination probability.

The noise removal capabilities of the modified
bilateral filter were extensively tested. To quan-
titatively evaluate the denoising methods we used
the Peak Signal to Noise Ratio (PSNR) and the
Mean Absolute Error (MAE) [4].

The Peak Signal to Noise Ratio is defined as

PSNR = 20 log10

(
255√
MSE

)
, (10)

where MSE (Mean Squared Error) is given by

MSE =

N∑
i=1

3∑
k=1

[Ok(xi)− Jk(xi)]
2

3N
, (11)

where index k denotes k-th color channel of the
pixel, J(xi) is the pixel of the restored image in-
dexed with i, which indicates its position on the
image domain, O(xi) is the pixel of the original
image and N is the total number of image pixels.
The PSNR quality measure is used to evaluate the
impulsive noise suppression efficiency of a a given
filtering solution.

The mean absolute error is defined as

MAE =

N∑
i=1

3∑
k=1
|Ok(xi)− Jk(xi)|

3N
, (12)

and is an indicator of the filter’s capability to pre-
serve fine image details.

As can be derived from (4) the properties of the
bilateral filter are controlled by the parameters σS
and σI . Figures 7 and 8 show the dependence of
the PSNR on the σI and σS values for the noisy
images restored by the bilateral filter with 5 × 5
and 9× 9 filtering windows.

The values of PSNR depend significantly on the
σI and σS parameters. Examining the plots, it
can be observed that the optimal value of σS is
relatively insensitive to noise level in the case of
mixed noise but has to be tuned when restoring
images polluted by Gaussian noise.

The color images contaminated by mixed Gaus-
sian and impulsive noise were also restored by the
modified bilateral filter. This filter was applied for
different values of the parameters h in (8) and the
dependence of PSNR measure on the parameter h
is depicted in Fig. 10.

As can be observed, for test images contami-
nated by Gaussian noise of increasing intensity,
the optimal results depend significantly on the
tuning parameter h which increases with the noise
magnitude. The obtained results show that the
optimal h parameter does not depend significantly
on the image structure and the contamination
level of the mixed Gaussian and impulsive noise.
For images contaminated with this kind of noise
the range of the h parameter, for which the op-
timal PSNR values can be obtained, is [150, 250]
and the setting h = 200 can be recommended as
a default value.

The effectiveness of the new filtering design
was compared with several existing methods, de-
scribed in the Introduction. The first method
taken for comparisons is the Non-Local Means fil-
ter (NLM). The control parameters depend on the
noise intensity and were selected experimentally
to obtain the best possible results in terms of
the PSNR. The second chosen method used for
the evaluation of the proposed filter efficiency is
the Anisotropic Diffusion (AD) implemented with
the Gaussian conductivity function [22] and per-
forming as many iterations as required to achieve
the maximum PSNR value. Additionally, the ef-
ficiency of the new algorithm was compared with
the Vector Median Filter (VMF) [12].

The Bilateral Filter (BF) and the proposed
Modified Bilateral Filter (MBF) were tested for
windows of size 5 × 5 and 9 × 9. The control pa-
rameters were selected experimentally to obtain
optimal results in terms of the PSNR measure.
The comparison of the efficiency of the proposed
MBF with the mentioned above filters in terms of
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Table 1: Comparison of PSNR (a) and MAE (b) values obtained when restoring the color test images
with the proposed algorithm and other denoising techniques.

(a) PSNR

IMAGE NOISE METHOD

NLM AD VMF BF5×5 MBF5×5 BF9×9 MBF9×9

σ=10 34.76 33.47 27.09 32.86 32.26 32.92 31.93

σ=20 31.93 30.44 26.53 29.38 29.78 29.68 29.48

LENA σ=30 30.39 28.71 25.84 27.27 28.06 27.90 27.98
σ=10, p=0.1 19.51 25.24 26.75 27.50 28.28 28.27 27.48

σ=20, p=0.2 20.22 24.01 25.15 24.81 26.41 26.221 26.89

σ=30, p=0.3 21.09 22.67 23.11 22.66 24.55 24.34 25.98

σ=10 33.40 32.11 25.31 31.90 30.91 31.90 30.74

σ=20 30.21 29.02 24.94 28.56 28.30 28.74 27.98

GOLDHILL σ=30 28.19 27.41 24.47 26.47 26.79 26.84 26.55
σ=10, p=0.1 17.92 24.03 25.00 25.52 25.99 26.16 25.13

σ=20, p=0.2 19.68 23.29 23.92 23.91 24.95 25.06 25.15

σ=30, p=0.3 20.63 22.05 22.29 21.97 23.50 23.51 24.70

σ=10 33.71 33.03 26.54 32.15 31.74 32.29 31.55

σ=20 31.31 30.19 25.97 28.73 29.51 28.92 29.39

PEPPERS σ=30 29.81 28.40 25,27 26.70 27.61 27.13 27.75
σ=10, p=0.1 18.54 24.33 26.01 26.37 26.95 27.07 26.46

σ=20, p=0.2 19.48 22.52 24.50 23.46 24.87 24.69 25.61

σ=30, p=0.3 19.68 20.83 22.96 21.18 22.82 22.57 24.37

(b) MAE

IMAGE NOISE METHOD

NLM AD VMF BF5×5 MBF5×5 BF9×9 MBF9×9

σ=10 3.53 4.07 6.71 4.42 4.51 4.35 4.71

σ=20 4.79 5.66 7.58 6.69 6.02 6.39 5.99

LENA σ=30 5.53 6.85 8.56 8.35 7.50 7.44 7.18
σ=10, p=0.1 9.22 9.16 7.09 7.36 6.45 6.55 6.64

σ=20, p=0.2 11.76 11.42 8.90 10.66 8.52 8.91 7.54

σ=30, p=0.3 13.93 14.43 11.36 14.16 11.12 11.36 8.99

σ=10 4.20 4.87 9.20 5.02 5.51 5.00 5.57

σ=20 5.99 8.19 9.94 7.35 7.33 7.16 7.51

GOLDHILL σ=30 7.41 4.87 10.71 9.22 8.78 9.00 8.82
σ=10, p=0.1 13.24 12.07 9.50 9.67 9.03 8.97 9.81

σ=20, p=0.2 13.80 13.51 10.96 12.06 10.44 10.55 9.97

σ=30, p=0.3 16.06 16.00 12.95 15.50 12.63 13.02 10.77

σ=10 3.98 4.41 6.80 4.90 4.91 4.81 4.94

σ=20 5.13 5.92 7.70 7.05 6.38 6.59 6.24

PEPPERS σ=30 5.84 7.25 8.68 8.88 7.98 8.16 7.51
σ=10, p=0.1 10.49 10.69 7.18 8.24 7.20 7.42 7.30

σ=20, p=0.2 13.21 14.22 9.06 12.30 9.76 10.48 8.52

σ=30, p=0.3 16.59 18.06 11.50 16.68 13.35 14.08 10.54
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(d) σ=10, p=0.1
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(e) σ=20, p=0.2
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(f) σ=30, p=0.3

Figure 7: Dependence of PSNR on σS and σI parameters for the bilateral filter operating on 5 × 5
window). The test color image PEPPERS color image was corrupted by Gaussian (a, b, c) and mixed
Gaussian and impulse noise (d, e, f)
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(d) σ=10, p=0.1
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(e) σ=20, p=0.2
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(f) σ=30, p=0.3

Figure 8: Dependence of PSNR on σS and σI parameters for the bilateral filter operating in 9×9 window.
The color image PEPPERS was corrupted by Gaussian (a, b, c) and mixed Gaussian and impulse noise
(d, e, f).
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(f) PEPPERS

Figure 9: Dependence of PSNR when applying the modified bilateral filter using a 5× 5 window on the
h parameter for the color image PEPPERS corrupted with Gaussian (a, b, c) and mixed Gaussian and
impulse noise (d, e, f).
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Figure 10: Dependence of PSNR when applying the modified bilateral filter using a 9 × 9 window on
the h parameter for the color image PEPPERS corrupted with Gaussian (a, b, c) and mixed Gaussian
and impulse noise (d, e, f).
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(a) (b) (c)

(d) (e) (f)

Figure 11: Comparison of the efficiency of the bilateral filter with the proposed approach: (a) PEPPERS
image corrupted by mixed noise (σ=20, p=0.2), (b) BF output , (c) MBF output, (d) PEPPERS image
corrupted by mixed noise (σ=30, p=0.3), (e) BF output, (f) MBF output, (filtering window 5×5).

(a) PSNR=23.5 dB (b) PSNR=24.9 dB (c) PSNR=24.2 dB (d) PSNR=25.7 dB

Figure 12: Results of the restoration of the test color image PEPPERS corrupted by mixed noise
(σ=20, p=0.2) using a 5× 5 filtering window: (a) BF output , (b) MBF output, (c) BF with additional
denoising of impulses using the method described in [18], (d) MBF with the same impulsive noise removal
technique.
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(a) noisy image (b) BF (c) MBF

Figure 13: Illustration of the efficiency of the modified bilateral filter (MBF) in comparison with the
standard version (BF).

PSNR and MAE are summarized in Tab. 1.

As can be observed, for images contaminated by
Gaussian noise, the best results are obtained by
the NLM algorithm and the results of the mod-
ified bilateral are quite similar to those obtained
using the bilateral filter. However, the results for
images contaminated by mixed Gaussian and im-
pulse noise obtained using the new filter are signif-
icantly better, especially for images contaminated
by high and medium mixed noise levels.

Figure 11 exhibits the restoration results of the
modified and standard bilateral filter. As can
be observed using the proposed modification the
edges and details are better preserved and the fil-
tering output is visually more pleasing. Unfortu-
nately, as can be noticed in the images contam-
inated by a mixed Gaussian and impulse noise,
small clusters consisting of two or more pixels dis-
torted by impulsive noise are beeing preserved.
However, for images processed with the modified
bilateral, this artifact can be easily removed us-
ing a switching filter with good impulse detection
mechanism [9,33].

For images processed with the standard bilat-
eral filter, the removal of the remaining impulse
noise is more difficult, because the impulses are
blurred by the image restoration technique. The
restoration results with additional impulsive noise
reduction, using the method described in [18], are

presented in Fig. 12.
The high efficiency of the proposed approach

is also confirmed by Fig. 13 which depicts the
restoration results of a noisy image acquired us-
ing a high speed camera under poor lighting con-
ditions. As can be observed, the noise is better
suppressed and the edges are well preserved.

5 Conclusions

In the paper a novel filtering scheme has been pro-
posed and analyzed. The results of the performed
experiment indicate that very good restoration
quality has been achieved for color images con-
taminated by strong mixed Gaussian and impul-
sive noise. The new filtering method yields signifi-
cantly better results in comparison with other de-
noising schemes both in terms of subjective image
quality and objective restoration measures. The
beneficial feature of the proposed method is the
removal of mixed noise and the ability to preserve
image edges and fine details. In the future work,
we want to study the influence of the definition
of connection cost function and the choice of the
weighting function on the image restoration re-
sults. We also plan to investigate the efficiency
of the proposed design with incorporated spatial
distance parameter which penalizes long paths ex-
ploring the local filtering window.
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