
Epsilon2
Virtual Information Security Testing System Mark II

De Luna, Lin G.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

deluna.lin@gmail.com

Detera, Patrick Kevin G.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

patrick.detera@gmail.com

Guerrero, Samuel David F.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

samueldavid.guerrero@gmail.com

Mejia, Hiro R.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

hiro.mejia@gmail.com

Gomez, Miguel Alberto N.

Computer Technology Department – College of Computer Studies

De La Salle University – Manila

Manila, Philippines

gomezm@dlsu.edu.ph

Abstract—Epsilon2 is a remodeling of the old Epsilon

system. It utilizes virtualization technology in

simulating physical networks resulting to effectively

reducing resource consumption. The simulated

networks are used for introducing Information Security

concepts and practices to students and professionals

alike. Improvements over the original system include:

the simulation of more complex network topologies

such as those that use DMZs to enable realistic threat

simulations that conform to today’s trends; the

centralization of storage and system management which

enables easier administration; utilization of a web

application to conduct administrative tasks remotely; as

well as utilization of the BitTorrent protocol for faster

file serving over the network.

KEYWORDS

Information Security, Virtualization, Vulnerabilities,

Libvirt, KVM, Testing, BitTorrent

I. INTRODUCTION

Epsilon is a software system that provides an
inexpensive hardware-independent solution to
simulating information security networks. It makes
use of virtualization technology in order to simulate
real world scenarios with a library of virtual
machines useful in creating an information security
laboratory. This includes virtual machines host
operating systems and applications that contain the
most prevalent vulnerabilities seen nowadays. Along
with that, the use of virtual machines instead of real
machines helps maximize its flexibility and
minimize the resources needed to implement a
working laboratory. To effectively use these, the said
system mainly has two basic components – the
Epsilon Administrator and the Epsilon Server. The
first one facilitates the management of the system,
while the latter manages the individual host
machines. With these components, the system will be
able to perform several key tasks which include the

ISBN: 978-0-9853483-7-3 ©2013 SDIWC 43

deployment of different virtual machines across
multiple host machines, and monitoring of user
activities.

Although Epsilon is a cost-efficient alternative to
physical laboratories, it is still limited in its
function.[1] Over time there have been many more
advancements in operating systems and applications,
and there have been more discoveries of stronger and
more persistent malware, making the scenarios it can
emulate unrepresentative of most topologies
available today. The repository of the virtual
machine operating systems is decentralized which
leads to a less organized system that is difficult to
manage. Its current topology restricts the
performance when adapted to newer technology.
More functionality is needed as well as the
expansion of the capabilities of Epsilon to be able to
simulate the threat landscape that is constantly
evolving - leading to new network-based and client-
based threats.

Epsilon2 is a system developed to address these
problems and to be more efficient so that the users
will have an ease of use with the system when trying
to learn information security concepts.

In Figure 1, it can be seen that each host machine
has its own Server and Library. This results to
decentralized resources, thus making it hard for the
administrator to properly account the files being used
by the whole system and read logs from the IDAs.

Figure 2 represents the modified system topology
that is now used by Epsilon2. The individual Servers
in the Host Machines have been migrated into a
centralized Storage Server that is accessed by a
management machine through the Epsilon2
Administrator web interface.

Comparing Figure 1 and Figure 2, one notices that
the server libraries that were in different machines in
Figure 1, are now consolidated in Figure 2. The
justification for this approach was that it would
provide a centralized repository of files needed by
the system for easier auditing. It should also be noted
that at the time the first Epsilon was developed, the
technology was limited that it could not be
consolidated into one machine.

This paper focuses on the improvements of the

Epsilon2 system over the original Epsilon system.

This includes a centralized repository of virtual

machines, a web interface for administration, a

torrent-dependent file serving system, capability to

simulate complex networks such as a DMZ, new

lists of vulnerabilities and operating systems that

conform to the current (2012) industry, an update on

Snort as the Network-based Intrusion Detection

Agent (NIDA) and an upgrade to OSSEC as the

Host-based intrusion detection system.

Figure 2. Epsilon2 System Topology

Figure 1. Epsilon System Topology

ISBN: 978-0-9853483-7-3 ©2013 SDIWC 44

II. EPSILON ADMINISTRATOR OVERHAUL

In the old Epsilon System, the Epsilon
Administrator is a program deployed and
controllable only from one Management Machine. It
controls and accesses the host machines in the
network through Epsilon Servers deployed in each
machine. Since this implementation appears to
congest resources and be reliant on one physical
machine to administer tasks, the Epsilon2
Administrator (e2Admin) is designed to be more
flexible where it can be accessed by any physical
machine in the network through a web browser.

The e2Admin is now a web interface accessible
through any machine connected to the Epsilon2
System network and is hosted in the Epsilon2 Server
(e2Server). It accesses the logs in the e2Server
database as well as the file library in the e2Server
machine. The e2Admin can be used to create and
deploy topologies over the network, import virtual
machines, and have control over the virtual machines
of the client such as switching it on or off. On top of
this, it can also be used to monitor the logs sent to
the e2Server by e2Client IDAs.

III. SERVER CENTRALIZATION

The previous Epsilon System deployed one
Epsilon Server per host, making the logs and files
hard to track. Epsilon2 addresses this issue through
Server Centralization.

Epsilon2 provides extensibility by centralizing the
repository of virtual machines as well as the database
that keeps track of the IDA logs from the e2Clients.
The files located in the e2Server are the clean, initial
images that are distributed over the network to be
loaded by the e2Clients for threat testing.

 The use of a torrent system allows faster
transfer of large virtual machines and images over
the network compared to manually transferring a file
to each physical machine. The system utilizes
TransmissionRPC as the torrent client and
PeerTracker as the torrent tracker. It should be noted
that the E2Server is the first seeder of a torrent file.

 Centralization of the IDA logs enables easier
monitoring of tests on the administrator’s side. The
IDA in the E2Clients automatically forwards the logs
to the database in the E2Server which can then be
viewed by the administrator for monitoring the
whole network.

IV. LIBVIRT ARCHITECTURE [2]

The diagrams in Figures 3 and 4 show a few of
the network configurations enabled by the libvirt
networking APIs used in creating the virtual
networks:

 VLAN 1. This virtual network has
connectivity to LAN 2 with traffic forwarded
and NATed.

 VLAN 2. This virtual network is completely
isolated from any physical LAN.

 Guest A. The first network interface is
bridged to the physical LAN 1. The second
interface is connected to a virtual network
VLAN 1.

 Guest B. The first network interface is
connected to a virtual network VLAN 1,
giving it limited NAT based connectivity to
LAN2. It has a second network interface
connected to VLAN 2. It acts a router
allowing limited traffic between the two
VLANs, thus giving Guest C connectivity to
the physical LAN 2.

 Guest C. The only network interface is
connected to a virtual network VLAN 2. It
has no direct connectivity to a physical LAN,
relying on Guest B to route traffic on its
behalf.

Figure 3. Physical Network Management Architecture

ISBN: 978-0-9853483-7-3 ©2013 SDIWC 45

V. LIBVIRT CAPABILITIES [2]

Epsilon 2 utilizes libvirt for better virtual machine
management. libvirt is a virtualization API which
enables interaction with the virtualization capabilities
of different operating systems. libvirt offers a more
convenient way to manage virtual machines and
offers various virtualization functionalities such as:

A. VM Management

This provides numerous development operations
such as start, stop, pause, save, restore, and migrate.
These features help Epsilon2 provide a better and
simpler control over the virtual machines both
locally and remotely.

B. Remote Machine Support

All libvirt functionalities are accessible on any
machine running libvirt, including remote machines.
This feature enables Epsilon2 administration to have
control over different virtual machines remotely over
the network. This feature is also the key to the
management capabilities of the Epsilon2
Administrator through the web browser.

C. Storage Management

Any machine running libvirt can be used to
manage different types of storage such as creating
file images of different formats (qcow2, vmdk, raw,
etc.), mounting NFS shares, enumerating LVM
volume groups, and partitioning raw disk devices.
This feature is utilized by Epsilon2 for extensibility
and flexibility by being able to create and utilize
virtual machines in different file image formats.

D. Network Interface Management

Any machine running libvirt can be used to
manage physical and logical network interfaces. It
offers different functionalities such as enumerating
existing interfaces, configuring, creating and editing
interfaces, bridges, and vlans. This provides Epsilon2
a necessary and easy control for the specifications of
the interfaces on different virtual machines for
networking.

E. Virtual NAT and Route-Based Networking

Any machine running libvirt can manage and
create virtual networks. Virtual networks of libvirt
use firewall rules to act as a router, providing VMs
apparent access to the host machines’ network. This
provides Epsilon2 different networking capabilities
such as creating different complex topologies by
using the routing capabilities of virtual machines
through the means of libvirt. The architecture found
in Figures 3 and 4 enables these features.

VI. PERFORMANCE IMPROVEMENTS

Epsilon2 features a torrent system that reduces the
time needed to transfer the virtual machines
throughout the network. The test conducted uses a
laptop acting as a server and torrent tracker and three
desktops acting as clients downloading the file. The
first test uses direct transferring of a file through a
network shared folder. The second test uses the
torrent system.

The torrent system makes use of the
TransmissionRPC python module for controlling the
torrent client, connecting to the Transmission JSON-
RPC service running in each Epsilon2 Client. This is
used for adding and removing torrents and starting
torrent transfers. For the torrent tracker located in the
Epsilon2 Server, PeerTracker is used.

Table I demonstrates the time it takes for a 1.6GB
file to be successfully transferred from a server to
multiple hosts through direct downloading. Testing
for multiple downloaders has been done with the
number of hosts simultaneously starting the
download, as well as use of 10/100 Ethernet Cables.

TABLE 1. 1.6GB FILE DIRECT DOWNLOADING

Direct

Downloaders
Time

1
2:55 (175

seconds)

Figure 4. Logical Network Management Architecture

ISBN: 978-0-9853483-7-3 ©2013 SDIWC 46

Direct

Downloaders
Time

2
4:35 (275

seconds)

3
6:49 (409

seconds)

The equation in (1) shows the approximate time
that a download of a 1.6GB file finishes through
direct downloading with single or multiple hosts
simultaneously downloading the file, based on the
initial result as seen in Table I. The variable α
corresponds to the number of direct downloaders.
175 seconds is the average time it takes for a 1.6GB
file to be transferred and for every simultaneous
downloader, it has been inferred that the time
increases by 150%.

 Time ≈ 175 seconds × 1.5 ^ (α – 1) (1)

Initial seeders are the hosts that are seeding the
complete file, as hosts that are downloading the file
are also considered seeders because they
automatically upload chunks of data. Downloaders
are the number of hosts downloading the file at a
time, and Time is the total time it took for all
downloads to finish.

It should be noted that during the tests, the
number of seeders connected to by the downloaders
do not reach the actual number of seeders present in
the network In the test conducted, at most there were
five initial seeders in the network, but only two of
them were acknowledged by the torrent client. This
led to torrent clients whether downloading or seeding
to enter an idle state which calls for additional
research and verification as there could be
miscalculations in the actual time it is needed for
multiple hosts to download the complete file.

TABLE 2. 1.6GB FILE TORRENT DOWNLOADING

Initial Seeders Downloaders Time

1
2 4:32

3 5:13

2
1 2:50

2 2:38

However, comparing the data presented in Table
II to that in Table I, the use of the torrent system is
relatively faster compared to directly transferring the
file over the network.

Transfer speeds average at 10.33 MB/s with one
seed to one downloader, and slowly diminish as the
number of downloaders increase. However it
becomes difficult to gauge the exact speed of the
transfer rate because of how the downloader also
seeds the file, but it can be inferred that this method
of file transfer is significantly faster when the
number of downloaders and seeders scale up.[3]

VII. EPSILON2 USABILITY

The Epsilon2 system can be deployed in
classroom laboratories, home offices and work
environments. It is designed to simulate a physical
laboratory network through the use of virtual
machines. The virtual machines may contain
different operating systems and applications which
are deployed on clients running a Linux
environment. The advantage of the Epsilon2 system
over a physical network laboratory is that it requires
less financial resources, and requires less time to set
up the test environment.

The host machines contain virtual machines that
are configured in such a way that they have several
vulnerabilities which may be exploited or attacked. If
the attacks occur, an Intrusion Detection System will
log the event and will periodically send it to the
Epsilon2 Server. In a classroom setting, the
computers of the students will be running the
Epsilon2 Client.

The Epsilon2 Administrator is a web application
that can be accessed through any host machine in the
network. The application allows for the logs to be
viewed, and even perform administrative tasks such
as starting or stopping a virtual machine remotely.
The administrator also handles the distribution of the
virtual machine files to the clients using torrents. In a
classroom setting, the teacher can use the web
application to monitor the client machines and help
in their instruction.

The main goal of the experiments conducted on
these virtual machines is to observe how the attack
occurs and how it affects the system. This gives the
user a better idea of how vulnerabilities and exploits
work, and to some extent even mitigate the attack. It
also introduces concepts of information security. The

ISBN: 978-0-9853483-7-3 ©2013 SDIWC 47

use of virtualization technology to simulate a
network also allows for user creativity in creating the
type of network topology needed for the experiment.
It also allows a range of different operating systems,
applications, and vulnerabilities to be used.

VIII. CONCLUSION AND RECOMMENDATIONS

The current implementation of Epsilon2 succeeds
in introducing newer and more efficient technology
to the Epsilon system that still retains in being an
alternative to an information security laboratory.
There are, however, more improvements that could
be made on the system other than adapting to newer
operating systems and threats such as:

1) Implementing cloud storage: to save hard disk
space on the server and mitigate computer resource
consumption which would allow the heavier
processes like running the virtual machines to be
faster.

2) Additional compatibility on Windows-based
environments: to utilize a hypervisor that also works
on a Windows environment, as the current
hypervisor in use, KVM, only works in Linux
environments.

REFERENCES

[1] M.A. Gomez and S. Wong, “Virtual Information Security

Testing System (Epsilon),” Manila, 2006.

[2] Redhat. (2012). libvirt: Network management. [Online].
Available: http://libvirt.org/archnetwork.html

[3] R. Bharambe, C. Herley and V. Padmanabhan, “Analyzing
and Improving BitTorrent Performance,” Microsoft
Research, Microsoft Corp., Redmond, WA, Tech. Rep.
MSR-TR-2005-03, Feb. 2005

[4] trigunflame, "peertracker - Simple, Efficient, and Fast
BitTorrent Tracker," 1 January 2010. [Online]. Available:
http://code.google.com/p/peertracker/. [Accessed 22
August 2012].

[5] VMWare, Inc., "Virtualization Overview," 2006.

[6] K. Scarfone and P. Mell, "Guide to Intrusion Detection
and Prevention Systems (IDPS)," Gaithersburg, MD,
February 2007.

[7] M. Roesch, "Snort - Lightweight Intrusion Detection for
Networks," 2011. [Online]. Available:
http://www.snort.org/docs/lisapaper.txt.

[8] M. Richmond, "ViSe: The Virtual Security Testbed,"
2005.

[9] N. Sharma and S. S. Sran, "Detection of threats in
Honeynet using Honeywall," International Journal on
Computer Science and Engineering, vol. 3, no. 10, pp.
3332-3336, October 2011.

ISBN: 978-0-9853483-7-3 ©2013 SDIWC 48

