
MALWARE ANALYSIS OF BACKDOOR CREATOR : FATRAT

1
Rakesh singh kunwar,

2
Priyanka sharma,

3
K. V. Ravi kumar

1,2,3
Raksha Shakti University, Gujarat, India

1
rakesh.singh.kunwar@rsu.ac.in,

2
ps.it@rsu.ac.in,

3
dir_issm@rsu.ac.in

ABSTRACT

Malwares have become the new vector of cyber crime

and hackers are finding new ways to propagate these in

all available platforms. Hackers are using social media

to propagate backdoors to install it in victim machines

to acquire their important data and resources. In the

present scenario, Several automatic readymade tools

are available over internet using which any script

kiddies can create a dangerous malwares and victimize

his target. These malware generator are also have

categories & generations. It is important to understand

that, all the available malware generator previously

used in actual scenario of crime of steeling data either

in dark net or as a paid service. It is important to

understand the working and efficiency of such malware

generator . So, In this paper we analyze FATRAT, a

backdoor creator which is one of its type and

investigate the details with artifacts about it.

KEYWORDS

 Malware, Backdoor, FATRAT, JPEG, Malicious

Image, Malware forensics

1. INTRODUCTION

In the past few years of cyber world, cybercriminals

are implementing new techniques to hide their

malicious code inside other files in such a fashion that

it is undetected by antivirus.. For it, they are using

several complex infection processes than the previous

one. As the technology changes, the new generation of

cyber criminals are now putting their steps forward.

They are now leaving traditional cybercrimes and

using advance techniques where the malicious payload

is hidden in encrypted files – which ever be the

known file format. There are several example over

internet in which cyber attacks or incidents shows that

attackers are using sophisticated techniques.

In September 2016, Cisco talos-intel identified an

exploitable out-of-bounds vulnerability present in the

JPEG 2000 image file format parser which is

implemented in OpenJPEG library and now identify

by its TALOS-2016-0193 identification number or

Common Vulnerabilities and Exposures CVE-2016-

8332. This JPEG 2000 is a file format which is

specially used for embedding images inside the PDF

documents. This specific vulnerability is so dangerous

that it allow attacker to write out-of-bound heap which

include the heap corruption and then arbitrary code

execution is possible [1]. In March 2016 Kaspersky

Lab, catch a malicious payload hidden in the PNG file

i.e. it is embedded with the PNG file. This attack starts

with a simple phishing PDF [2].

Such types of incidents shows that now images over

the internet are not seen as innocent. They now can be

a medium to compromise the protected system. The

attacker manipulate the images and these images are

harmless until a trigger or input is given in the form of

double click done by the user on that image which

immediately start a malicious activity [3].

Researchers of Sucuri in July 2013 reported an

incident where they found an backdoor present on a

site that which was compromised. This backdoor did

not depend on the normal patterns like base64 and

gzip encoding which is used to hide the contents

contained within it [3].

This backdoor is divided into two parts. Both of part

are functions in which the first part is a mix of

exif_read_data function which is used to read the

image headers and the preg_replace function which is

used to execute the content. both PHP functions are

actually stored its data within the EXIF header

location of a JPEG image.

 72

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

http://www.talosintelligence.com/reports/TALOS-2016-0193/

$exif = exif_read_data('/homepages/clientsitepath/

images/stories/food/bun.jpg');

preg_replace($exif['Make'],$exif['Model'],'');

Both functions are harmless by themselves. However,

preg_replace has a tricky and hidden options. On

passing "/e" modifier it execute the content(eval),

instead of just searching /replacing [3].On looking to

bun.jpg file, second part of backdoor looks like:

This types of incident show that, over internet, there

are several freely available tools which are used to

hide the malicious payload inside the images.

FATRAT is one of them. It is a massive exploiting

tool which is easy to understand and create backdoor.

This tool compiles a malware with popular payload

and then the compiled malware can be execute on

windows, android, mac . The malware that created

with this tool also have an ability to bypass most AV

software protection .This tool is used to post

exploitation attack like browser attack, dll, bypass

AV, etc. In this paper, We compile the malware and

payload with the JPEG images and make it a

malicious image. After it, analysis is done in our own

malware analysis setup lab and show the result.

In this paper, we analyze the backdoor creator and

demonstrate the Practical approach which are used by

the security personals or researcher to find out the

hidden files or proving the presence of hidden data

inside the image.

2. FATRAT

The Fatrat is a massive exploiting tool [4]. It create

backdoor for windows, linux, mac and android. It can

bypass antivirus. It checks for metasploit service and

start if not present. It is capable of crafting meterpreter

reverse_tcp, start multiple meterpreter reverse_tcp

listners. It uses the fast search in searchsploit and

many more. The functions provided by the fatrat are:

1) Create backdoor with msfvenom

2) Create FUD 100% Backdoor [slow but powerfull]

3) Create FUD Backdoor with Avoid 1.2

4) Create FUD 100% Backdoor with backdoor-

factory [embed]

5) Backdooring Original apk [Instagram, Line, etc]

6) Create Fud Backdoor 1000% with PwmWinds

[Excelent]

7) Create Backdoor For office with Microsploit

8) Create auto listeners

9) Jump to msfconsole

10) Searchsploit

11) File Pumper [Increase Your Files Size]

12) Configure Default Lhost & Lport

13) Cleanup

Figure 1 :- Home Screen of Fatrat [5]

The FATRAT facilitate the following facilities under

different section shown below:-

ÿØÿà^@^PJFIF^@^A^B^@^@d^@d^@^@

ÿá^@¡ Exif^@^@II*^@^H^@^@^@^B^@^

O^A^B^@^F^@^@^@&^@^@^@^P^A^B^

@m^@^@^@,^@^@^@ ^@^@^@^@/.*/e^

@ eval (base64_decode("aWYgKGl zc2V0K

CRfUE9TVFsie noxIl0pKSB7ZXZhbChzdHJ

pcHNsYXNoZXMoJF9QT1NUWyJ6ejEiXSk

pO30='));@ÿì^@^QDucky^@^A^@^D^@^@

^@<^@^@ÿî^@^NAdobe^

 73

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Figure 2: PawnWinds to create Powershell [6]

Figure

Figure 3: BackDooring for .apk files [6]

Figure 4 : SlowButPowerFull meterpreter [7]

Figure 5: Creator for different platform [7]

Figure 6: Shell to bypass Antivirus [8]

Figure 7: Creating Listeners for Payload [8]

 74

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

2. FATRAT ANALYSIS

Using FATRAT, several samples are created using

different functionality provided and discussed

previously:

Step 1: Hashing : A Fingerprint for malware-

Hashing is used to uniquely identify malware. For it

Message Digest Algorithm 5 (MD5) hash function is

commonly used.

Figure 8: Hash value of the sample

Output Hash :

456b283820a1e066c766f39ce6e941ac

Step 2: Finding Strings:

Figure 9: Presence of powershell and mingw

Output : Presence of powershell.exe in hidden

mode detected Presence of Mingw detected but

failed during execution

Step 3: Detecting Packers with PEiD

Figure 10: Searching for packers

Figure 11: Extra information of sample

Output:- Sample is not packed with any kind of

UPX, beside it on digging gets Magic literal:

PE32 executable for MS Windows (GUI)

 75

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Step 4: Check PE Files Headers and Sections with

Image file header

Figure 12: Image file header information

Final Output:

Target machine Intel 386 or later processors and

compatible processors

Compilation timestamp 2017-05-18 00:45:53

Entry Point 0x000014C0

Number of sections 15

Step 5: Analysis using IDA Pro. In this step, we

show to difference of real genuine Image vs

Malicious crafted coded Image.

Real Image :- As we see in IDA pro disassembler,

there is no import or export funtions are used as it

is a real genuine Image.

Figure. 13: No import functions in real Image

Figure 14: No export functions in real Image

Malicious crafted coded Image.:- There are

several import or export functions are used.

Same file but with Embedded codes

Figure 15(a): Import functions in crafted Image

Figure 15(b): Import functions in crafted Image

 76

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Figure 15(c): Import functions in crafted Image

Figure 16: Export functions in crafted Image

Step 7:- Opening shellcode

As there are lots of Import functions hide inside

the images and using on executing it.

Figure 17: Shellcode embedded with image

Step 8 :- Analyzing the genuine Image vs

Malicious crafted coded Image in Hex Editor Neo

Figure 18: Genuine Image header

 77

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

Figure 19: Malicious crafted coded Image header

During the searching of artifacts, we find out the

attacker IP and powershell in hidden

Figure 20: Artifact of malicious images

Figure 21: Other critical functions implanted in crafted

image

Figure 22: Memory function used in hidden form

 78

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

CONCLUSION & FUTURE WORK

Malicious payload which is hide using FATRAT are

hard to detect & this scheme is generally used by the

criminal to act maliciously in other area. For it, they

generally used the various types of file format in

which JPEG is the most innocent one. So, the

challenges of scanning billions of image which are

crossing the organization borders, irrelevant to their

size, which are non-impacting anomalies are huge.

This provide an opportunity to the malware authors to

take it as a advantage and using it to hide malicious

code which leave an organization, stealthily send

commands to infected victim and transferring various

types of malwares across existing types of defenses.

So as a researcher it is required to analyze such types

samples and detect the images containing the

malicious content in the real time scenario.

REFERENCES

 [1] Cisco, 2016, "Vulnerability Spotlight:OpenJPEG

 JPEG2000 mcc record Code Execution

 Vulnerability”,Available at:<http://blogs.cisco.com

 /security /talos/vulnerability-spotlight-jpeg2000>,

 [Accessed on 19 Oct 2016].

 [2] Securelist, 2016, " PNG Embedded – Malicious

 payload hidden in a PNG file”, Available at:

 <https:// securelist.com/blog/virus-watch/74297/png-

 embedded-malic ious-payload-hidden-in-a-png-

 file/>, [Accessed on 20 Oct 2016].

 [3] Sacuri, 2013, " Malware Hidden Inside JPG EXIF

 Headers”, Available at: <https:// blog.sucuri.net

 /2013/07/malware-hidden-inside-jpg-exif- headers.

 html/>, [Accessed on 2 Nov 2016].

 [4] Fatrat, 2017, "The Fatrat", Available at: <https://

 github.com/Screetsec/TheFatRat>,{Accessed on

 5/09/2016]

 [5] Github, https://cloud.githubusercontent.com/assets/

 17976841 / 25420100/9ee12cf6-2a80-11e7-8dfa-c2

 e3cfe71366.png

 [6] Github, https://cloud.githubusercontent.com/assets/

 17976841 / 18483873/39d54372-7a10-11e6-890f-

 41803a33b9c9.png

 [7] Github, https://cloud.githubusercontent.com/assets/

 17976841/18483871/39cb81ca-7a10-11e6-84f3-

 1683067fa4f5.png

 [8] Github, https://cloud.githubusercontent.com/assets/

 17976841/18483870/39cb46ba-7a10-11e6-859b-

 1c1baa3c1b0a.png

 79

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 7(1): 72-79
The Society of Digital Information and Wireless Communications (SDIWC), 2018 ISSN: 2305-001

