
Adaptive Memory Matrices for Automatic
Termination of Evolutionary Algorithms

Abdel-Rahman Hedar∗,§
∗Dept. of Computer Science in Jamum, Umm Al-Qura Univ., Makkah, Saudi Arabia

ahahmed@uqu.edu.sa
§ Dept. of Computer Science, Assiut Univ., Assiut 71526, Egypt

hedar@aun.edu.eg

Abstract—Evolutionary Algorithms (EAs) still have no auto-
matic termination criterion. In this paper, we modify a genetic
algorithm (GA), as an example of EAs, with new automatic
termination criteria and acceleration elements. The proposed
method is called the GA with Gene and Landmark Matrices
(GAGLM). In the GAGLM method, the Gene Matrix (GM) and
Landmark Matrix (LM) are constructed to equip the search
process with a self-check to judge how much exploration has
been done and to maintain the population diversity. Moreover,
a special mutation operation called “Mutagenesis” is defined to
achieve more efficient and faster exploration and exploitation
processes. The computational experiments show the efficiency
of the GAGLM method, especially its new elements of the
mutagenesis operation and the proposed termination criteria.

Keywords—Evolutionary Algorithms; Automatic Termination;
Adaptive Memory; Gene Matrix; Landmark Matrix

I. INTRODUCTION

Evolutionary Algorithms (EAs) constitute one of the main
tools in the computational intelligence area [5], [18]. Devel-
oping practical versions of EAs is highly needed to confront
the rapid growth of many applications in science, engineering
and economics [1], [18]. Nowadays, there is a great interest
in improving the evolutionary operators which go further than
modifying their genetics to use the estimation of distribution
algorithms in generating the offspring [20], [24]. However,
EAs still have no automatic termination criteria. Actually, EAs
cannot decide when or where they can terminate and usually
a user should pre-specify a maximum number of generations
or function evaluations as termination criteria.

There are only a few recent works on termination criteria
for EAs [6], [17]. In [6], an empirical study is conducted to
detect a maximum number of generations using the problem
characteristics. In [17], eight termination criteria have been
studied with an interesting idea of using clustering techniques
to examine the distribution of individuals in the search space
at a given generation.

Our goal is to construct an intelligent method which
seeks optimal or near-optimal solutions of the non-convex
optimization problem

min
x∈X

f(x), (1)

where f is a real-valued function defined on the search space
X ⊆ Rn with variables x ∈ X . Several versions of EAs
have been proposed to deal with this problem, see [8], [11],
[16], [20] and references therein. This problem has also been

considered by different heuristics such as; tabu search [26],
[13], simulated annealing [10], [12], memetic algorithms [25],
[30], [29], differential evolution [3], [33], [34], particle swarm
optimization [22], [4], ant colony optimization [35], variable
neighborhood search [9], [27], scatter search [15], [19] and
hybrid approaches [23], [36]. Many applications in different
areas of computer science, engineering, and economics can be
expressed or reformulated as Problem (1) [1], [7].

The proposed method is composed by modifying GAs with
some directing strategies. First, an exploration and exploitation
scheme is invoked to equip the search process with accelerated
automatic termination criteria. Specifically, matrices called
Gene Matrix (GM) and Landmark Matrix (LM) are constructed
to sample the search space. The role of GM and LM is to assist
the exploration process in two different ways. First, they can
provide the search with new diverse solutions by applying a
new type of mutation called “mutagenesis”. The mutagenesis
operator alters some survival individuals in order to accelerate
the exploration and exploitation processes. In addition, GM
and LM are used to let search process know how far the
exploration process has gone in order to judge a termination
point. The mutagenesis operation lets GAGLM behave like a
so-called “Memetic Algorithm” [28] in order to achieve faster
convergence [31], [32]. The numerical results presented later
show that mutagenesis is effective and much cheaper than a
local search. Then, the final intensification process can be
started in order to refine the elite solutions obtained so far.
The numerical results shown later indicate that the proposed
GAGLM method is competitive with some other versions of
GAs.

The rest of this paper is structured as follows. In Section
II, we highlight and describe the main components of the
proposed method, including the GM, LM and mutagenesis. In
Section III, numerical experiments aiming at analyzing and
discussing the performance of the proposed method and its
novel operators are presented. Finally, the conclusion makes
up Section IV.

II. GENETIC ALGORITHM WITH GENE AND LANDMARK
MATRICES

In this section, a new modified version of GAs called Ge-
netic Algorithm with Gene and Landmark Matrices (GAGLM)
is presented. Before presenting the details of the GAGLM
steps, we introduce its components including the new features
of GM, LM and mutagenesis.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 1

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

A. Gene Matrix

The basic idea of gene matrix has been introduced in [14].
Specifically, each individual x in the search space consists
of n variables or genes since GAGLM uses the real-coding
representation of individuals. The range of each gene is divided
into m sub-ranges in order to check the diversity of the gene
values. Then, we define a solution counter matrix C of size
n×m, in which entry cij represents the number of generated
solutions such that gene i lies in the sub-range j, where
i = 1, . . . , n, and j = 1, . . . ,m. The “Gene Matrix” (GM)
is initialized to be an n×m zero matrix in which each entry
of the i-th row refers to a sub-range of the i-th gene. GM is
a 0-1 matrix and while the search is processing, the entries of
GM are updated from zeros to ones if new values for genes are
generated within the corresponding sub-ranges. After having
a GM full, i.e., with no zero entry, the search learns that an
advanced exploration process has been achieved and can be
stopped. Therefore, GM is used to equip the search process
with practical termination criteria. Moreover, GM assists in
providing the search with diverse solutions as will be shown
in Subsection II-C. We consider two types of GM as follows.

1) Simple Gene Matrix (GMS): GMS does not take into
account the number of solutions lying within each sub-range.
Indeed, during the search, GAGLM updates the solution
counter matrix C. Let xi be the representation of the i-th gene,
i = 1, . . . , n. Once the gene i gets a value corresponding to
a non-explored sub-range j, i.e., cij > 0, then GM is updated
by flipping the zero into one in the corresponding (i, j) entry.
Therefore, the updating process for GMS can be defined as

(GMS)ij =

{
0, if cij = 0
1, if cij > 0,

(2)

where i = 1, . . . , n, j = 1, . . . ,m, and (GMS)ij is the (i, j)
entry of the gene matrix GMS .

Figure 1 shows an example of GMS in two dimensions, i.e.,
n = 2. In this figure, the range of each gene is divided into ten
sub-ranges. We can see that for the first gene x1, no individual
has been generated inside the sub-ranges 1, 7 and 10, i.e.,
c1,1 = c1,7 = c1,10 = 0. Consequently, the (1, 1), (1, 7) and
(1, 10) entries of GMS are equal to zero. For the second gene
x2, only the first and the last sub-ranges are unvisited, hence
the entries (2, 1) and (2, 10) of GMS are null.

2) Advanced Gene Matrix (GMA
α): GMA

α comes along with
a ratio α predefined by the user. Unlike GMS , the GMA

α is
not immediately updated unless the ratio of the number of
individuals that have been generated inside a sub-range so far
and m (the total number of gene sub-ranges) exceeds or equals
α. Therefore, the updating process for GMA

α can be defined as

(GMA
α)ij =

{
0, if cij < αm
1, if cij ≥ αm,

(3)

where i = 1, . . . , n, j = 1, . . . ,m, and (GMA
α)ij is the (i, j)

entry of the gene matrix GMA
α .

An example of GMA
α with α = 0.2 in two dimensions

can be found in Figure 1. Like GMS , no individual has been
generated inside the sub-ranges 1, 7 and 10 for the gene x1.
However, unlike GMS , entry (1, 3) is equal to 0 in GMA

0.2 since
there is only one individual lying inside the third sub-range,

that is, c1,3 = 1 < αm = 2. For the same reason, x2 has
six zero-entries corresponding to six sub-ranges in which the
number of generated individuals divided by m is less than α.
This example refers to the first generation of individuals. In a
succeeding generation, if one or more individuals are generated
inside the third sub-range for x1 for example, then entry (1, 3)
will be set equal to one.

B. Landmark Matrix

The Landmark Matrix (LM) is an indicator set that related
to diverse points which are generated at the beginning of the
search as well-distributed sample points collected from the
whole search space. The size of this set of points is denoted
by l, therefore LM is a row-matrix of size l and initialized to
be full of ones. The LM is updated to represent only the points
which their surrounding regions have not been discovered yet,
i.e., LM is updated by converting its ones to zeros whenever the
generated solutions are close to the corresponding landmark
points. LM assists in providing the search with diverse solu-
tions. LM is also used to equip the search process with practical
termination criteria. Specifically, some diverse solutions can be
generated close the unvisited landmark points that represented
by ones in LM. This diverse generation process will lead to an
empty LM after several generations. Then, the search process
is learned that the exploration process is achieved and the
algorithm can be terminated to an exploitation process.

An example of LM in two dimensions is shown in Figure
2. First, LM is initialized to be full of ones with size 15. In
a succeeding generation, some of the generated solutions are
close to the landmark points represented by 1, 7, 10 and 15.
Therefore, LM is updated by converting these positions to be
zeros.

C. Mutagenesis

After computing all children in each generation, GAGLM
may give a chance to some characteristic children to improve
themselves by modifying their genes. This is done by using
a more artificial mutation operation called “mutagenesis”.
Specifically, three different types of mutagenesis operation
are defined; the gene matrix mutagenesis (GM-Mutagenesis),
the landmark matrix mutagenesis (LM-Mutagenesis) and the
best child inspiration mutagenesis (BCI-Mutagenesis). These
mutagenesis schemes alter some of the worst individuals of
the current population. Specifically, GAGLM sorts the current
population of size µ, and then selects the worst Nw (< µ)
individuals. GM-Mutagenesis and BCI-Mutagenesis alter N1

and N2 out of these Nw worst individuals, respectively, as
described below, where N1 +N2 ≤ Nw.

1) GM-Mutagenesis: In order to preserve the diversity in
the search process and accelerate the exploration process,
GM-Mutagenesis is used to alter N1 from the Nw worst
individuals selected for the next generation. Instead of waiting
for the crossover operation to generate new diverse solutions
in some unexplored search space partitions, GAGLM uses
GM-Mutagenesis operations to do this by guidance of GM.
Specifically, a zero-position in GM is randomly chosen, say
position (i, j), i.e., the variable xi has not yet taken any
value in the j-th partition of its range. Then a random value
for xi is chosen within this partition to alter one of the

ISBN: 978-1-941968-16-1 ©2015 SDIWC 2

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

Search Space

GMA
0.2 =

(
0 1 0 1 1 1 0 1 1 0
0 0 0 1 1 0 1 1 0 0

)

x1

x2

GMS =

(
0 1 1 1 1 1 0 1 1 0
0 1 1 1 1 1 1 1 1 0

)
Simple GM:

Advanced GM:

Solution Counter: C =

(
0 3 1 2 2 2 0 3 2 0
0 1 1 3 2 1 4 2 1 0

)

Fig. 1: An example of the Gene Matrix in R2.

x1

x2

LM =
(

0 1 1 1 1 1 0 1 1 0 1 1 1 1 0
)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

LM =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
)Initial LM

Updated LM

x1

x2

2

3

4

5

6

8

9

11

12

13

14

Initial LM Updated LM

Fig. 2: An example of the Landmark Matrix in R2.

chosen individuals for mutagenesis. Using this setting for xi,
there is a chance for crossover operation to explore different
combinations of solutions containing this new value of xi.
Moreover, GM is updated since a new partition has been
visited. The formal procedure for GM-Mutagenesis is given
as follows.

Procedure 2.1: GM−Mutagenesis(x,GM)

1. If GM is full, then return; otherwise, go to Step
2.

2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li+(j−r)ui−li

m , where
r is a random number from (0, 1), and li, ui are
the lower and upper bounds of the variable xi,
respectively.

4. Update GM and return.

2) LM-Mutagenesis: LM-Mutagenesis can be used as an
alternative to GM-Mutagenesis. LM-Mutagenesis is applied

to alter N1 from the Nw worst individuals selected for the
next generation. Specifically, a one-position in LM is randomly
chosen, say position (i), i.e., the area around the landmark i has
not been visited yet. Then, a random point is generated close to
the landmark i. Moreover, LM is updated since a new landmark
has been visited. The formal procedure for LM-Mutagenesis
is given as follows.

Procedure 2.2: LM−Mutagenesis(LM)

1. If LM is empty, then return; otherwise, go to Step
2.

2. Choose a one-position i in LM randomly.
3. Generate a new solution x randomly inside a

neighborhood of the landmark i.
4. Update GM and return.

3) BCI-Mutagenesis: N2 individuals from the Nw worst
children are modified by considering the best child’s gene
values in the children pool. For each of the N2 worst children,

ISBN: 978-1-941968-16-1 ©2015 SDIWC 3

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

one gene from the best child is randomly chosen and copied to
the same position of the considered bad child as stated formally
in the following procedure.

Procedure 2.3: BCI−Mutagenesis(x, xBest)

1. Choose a random gene position i from
{1, 2, . . . , n}.

2. Alter x by setting xi := xBest
i , and return.

D. Parent Selection

The parent selection mechanism first produces an inter-
mediate population P ′ from the initial population P , i.e.,
P ′ ⊆ P , as in the canonical GA. For each generation, P ′

has the same size as P but an individual can be present in P ′

more than once. The individuals in P are ranked with their
fitness function values based on the linear ranking selection
mechanism [2], [11]. Indeed, individuals in P ′ are copies of
individuals in P depending on their fitness ranking; the higher
fitness an individual has, the more the probability that it will
be copied is. This process is repeated until P ′ is full while an
already chosen individual is not removed from P .

E. Crossover

The crossover operation has an exploration tendency, and
therefore it is not applied to all parents. First, for each
individual in the intermediate population P ′, the crossover
operation chooses a random number from the interval (0, 1).
If the chosen number is less than a pre-specified crossover
probability pc ∈ (0, 1), the individual is added to the parent
pool. After that, two parents from the parent pool are randomly
selected and mated to produce two children c1 and c2, which
are then placed in the children pool. These procedures are
repeated until all parents are mated. The crossover operator
used in GAGLM method is a ρ-point operator with random
ρ ≤ n. Therefore, a recombined child is calculated to have
ρ partitions. Both parents genotypes are cut in ρ partitions
and the randomly chosen parts are exchanged to create two
children. Let us note that a parent is selected only once, and
if the total number of parents inside the parent pool is uneven,
then the last parent that was added into the pool is not consid-
ered for the mating procedure. As an example, Figure 3 shows
two parents p1 and p2 partitioned into five partitions at the
same positions (after the second, third, fourth and sixth genes).
Then, a recombined child c1 is generated to inherit partitions
from the two parents according to a random sequence of zeros
and ones, (0, 0, 1, 0, 1) in this example, meaning that its first,
second and fourth partitions will be inherited from p1 and
third and fifth partitions from p2. The other recombined child
c2’s partition sequence is the complementary of c1’s sequence,
namely (1, 1, 0, 1, 0). The following procedure describes the
GAGLM crossover operation precisely.

Procedure 2.4: Crossover(p1, p2, c1, c2)

1. Choose an integer ρ (2 ≤ ρ ≤ n) randomly.
2. Partition each parent into ρ partitions at the same

positions, i.e. p1 = [X1
1 X1

2 . . . X1
ρ] and p2 =

[X2
1 X2

2 . . . X2
ρ].

3. Choose a random mask (binary string) s of size
ρ, i.e. s = o1o2 . . . oρ, where oi ∈ {0, 1}, i =
1, . . . , ρ.

4. Set c1 = p1 and c2 = p2.
5. Swap partitions X1

i and X2
i in c1 and c2 if the

corresponding digit oi of mask s is equal to 1,
where i = 1, . . . , ρ, and return.

Actually, this type of crossover is chosen to support the
GAGLM exploration process. Specifically, there is no infor-
mation related to different sub-ranges of different variables
saved in GM in order to escape from the complexity of
high dimensional problems. Therefore, there is a possibility
of having misguided termination of the exploration process as
in the example shown in Figure 4(a), where GM is already full
although genes x1 and x2 have not their search spaces entirely
covered. However, invoking this type of crossover operation as
in Procedure 2.4 can easily overcome the drawback as shown
in Figure 4(b). Actually, mutagenesis operation cooperates
with this type of crossover operation by combining new
generated genes by mutagenesis with other existing genes of
the current population individuals.

F. Mutation

The mutation operator uses information contained in GM.
For each individual in the intermediate population P ′ and
for each gene, a random number from the interval (0, 1)
is associated. If the associated number is less than a pre-
specified mutation probability pm, then the individual is copied
to the intermediate pool IPM . The number of times the
associated numbers are less than the mutation probability pm
is counted. Let numm denote this number. Afterward, the
mutation operation makes sure that the total number numm of
genes to be mutated does not exceed the number of zeros in
the GM, denoted numzeros. Otherwise the number of genes to
be mutated is reduced to numzeros. Finally, a zero from GM
is randomly selected, say in position (i, j), and a randomly
chosen individual from IPM has its gene xi modified by a new
value lying inside the j-th partition of its range. The formal
procedure for mutation is analogous to Procedure 2.1.

Procedure 2.5: Mutation(x,GM)

1. If GM is full, then return; otherwise, go to Step
2.

2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li+(j− r)ui−li

m , where
r is a random number from (0, 1), and li, ui are
the lower and upper bounds of the variable xi,
respectively.

4. Update GM and return.

G. GAGLM Algorithm

The formal algorithm of the GAGLM method is stated
below.

Algorithm 2.6: GAGLM Algorithm

1. Initialization. Set values of m, l, µ, η, and (li, ui),
for i = 1, . . . , n. Set the crossover and mutation
probabilities pc ∈ (0, 1) and pm ∈ (0, 1),
respectively. Set the generation counter t := 0.
Initialize GM as an n ×m zero-matrix and LM
as an 1 × l one-matrix, and generate an initial
population P0 of size µ.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 4

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

Parents Children

s = (0, 0, 1, 0, 1)

s̄ = (1, 1, 0, 1, 0)

p1

p2

c1

c2

Fig. 3: An example of the crossover operation.

x1

x2

GMS =

(
1 1 1 1 1
1 1 1 1 1

)
(a) (b)

p1

p2

p3

p4

p5

x1

x2

p1

p2

p3

p4

p5

c12 c13 c14 c15

c23 c24 c25

c34 c35

c45

c′12

c′13

c′14

c′15

c′23

c′24

c′25

c′34

c′35 c′45

Parents: pi
Possible Children: cij , c′ij
i = 1, . . . , 5, j = 1, . . . , 5, i < j

Fig. 4: The role of crossover operation and GM.

2. Parent Selection. Evaluate the fitness function F
of all individuals in Pt. Select an intermediate
population P ′

t from the current population Pt.

3. Crossover. Associate a random number from
(0, 1) with each individual in P ′

t and add this
individual to the parent pool SPt if the associated
number is less than pc. Repeat Steps 3.1 and 3.2
until all chosen parents from SPt are mated.

3.1. Choose two parents p1 and p2 from SPt. Mate p1
and p2 using Procedure 2.4 to reproduce children
c1 and c2.

3.2. Update the children pool SCt by SCt := SCt ∪
{c1, c2}, update SPt by SPt := SPt \ {p1, p2},
and update GM.

4. Mutation. Associate a random number from (0, 1)
with each gene for each individual in P ′

t . Mutate
the individuals which have an associated number
less than pm by applying Procedure 2.5. Add the
mutated individual to the children pool SCt, and
update GM.

5. Local Search. Apply a local search method to
improve the best child (if exists), and then update
GM.

6. Stopping Condition. If η generations have passed
after getting a full GM or an empty LM, then
stop. Otherwise, go to Step 7.

7. Survivor Selection. Evaluate the fitness function
of all generated children SCt, and choose the
µ best individuals in Pt ∪ SCt for the next
generation Pt+1.

8. Mutagenesis. Apply Procedures 2.1 or 2.2, and
2.3 to alter the Nw worst individuals in Pt+1, set
t := t+ 1, update GM or LM, and go to Step 2.

III. NUMERICAL RESULTS

Algorithm 2.6 (GAGLM) was programmed in MATLAB
and applied to 13 well-known test functions [37], [21], listed
in the Appendix. Before discussing the GAGLM results, we
summarize the setting of the GAGLM parameters and perfor-
mance.

A. Parameter Setting

First, the search space for Problem (1) is defined as

[L,U] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} .

In Table I, we summarize all GAGLM parameters with
their assigned values. These values are based on the common
setting in the literature or determined through our preliminary
numerical experiments.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 5

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

TABLE I: GAGLM Parameter Setting

Parameter Definition Value
µ Population size 50
pc Crossover Probability 0.6
pm Mutation Probability 0.1
m No. of GM columns 50n
l LM size 50n
N1 No. of individuals used by GM-Mutagenesis and LM-Mutagenesis 2
N2 No. of individuals used by BCI-Mutagenesis 2
α Advanced Gene Matrix percentage for GAGLMA

M 3/m
NMmaxIt No. of maximum iterations used by Local Search in GAGLML 5n

0 20 40 60 80 100 120 140
−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

Generations

F
un

ct
io

n
V

al
ue

s

f
8

GA

GAGLM without mutagenesis

GAGLM

Fig. 5: An Example of the Mutagenesis Performance

B. Performance Analysis of the Mutagenesis Operation

Figure 5 reveals that the proposed mutagenesis operation
can improve the performance of GA. It shows that the muta-
genesis operation helps in reducing the solution costs.

C. Performance Analysis of Automatic Termination

More preliminary experimental results are depicted in
Figures 6-7 and Figures 8-9 to show the role of the exploration
and automatic termination by using GM and LM, respectively.
In these figures, the solid vertical line “Full GM” refers to the
generation number at which a full GM is obtained, the solid
vertical line “Empty LM” refers to the generation number at
which an empty LM is obtained, and while the dotted vertical
line “Termination” refers to the generation number at which
the exploration process terminates. The code still kept running
after reaching the dotted line without stopping in order to check
the efficiency of the automatic termination. As we can see,
no more significant improvement in terms of function values
can be expected after the dotted line for all test functions.
Thus, we can conclude that our automatic termination played
a significant role. Moreover, these figures show the robustness
of the proposed method, in the sense that it obtains nearly
optimal solutions.

IV. CONCLUSIONS

This paper has shown that the use of gene and landmark
matrices effectively assists an algorithm to achieve wide ex-
ploration and deep exploitation before stopping the search.
This indicates that our main objective to equip evolutionary

algorithms with automatic accelerated termination criteria has
largely been fulfilled. Moreover, the proposed intensification
schemes based on mutagenesis of the gene and landmark ma-
trices and the best child inspiration have proved to be efficient
in our experiments. Therefore, the newly added elements in the
proposed method contribute in achieving good performance.

ACKNOWLEDGMENT

This work was funded by the National Plan for Science,
Technology and Innovation (MAARIFAH) – King Abdulaziz
City for Science and Technology – the Kingdom of Saudi
Arabia, award number (13-INF544-10).

APPENDIX

A. Sphere Function (f1)

Definition: f1(x) =
∑n

i=1 x
2
i .

Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f1(x

∗) = 0.

B. Schwefel Function (f2)

Definition: f2(x) =
∑n

i=1 |xi|+Πn
i=1|xi|.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f2(x

∗) = 0.

C. Schwefel Function (f3)

Definition: f3(x) =
∑n

i=1(
∑i

j=1 xj)
2.

Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f3(x

∗) = 0.

D. Schwefel Function (f4)

Definition: f4(x) = maxi=1,...n{|xi|}.
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f4(x

∗) = 0.

E. Rosenbrock Function (f5)

Definition: f5(x) =
∑n−1

i=1

[
100

(
x2
i − xi+1

)2
+ (xi − 1)

2
]
.

Search space: −30 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f5(x

∗) = 0.

F. Step Function (f6)

Definition: f6(x) =
∑n

i=1(⌊xi + 0.5⌋)2.
Search space: −100 ≤ xi ≤ 100, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f6(x

∗) = 0.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 6

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
1

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

9

Generations

F
un

ct
io

n
V

al
ue

s

f
2

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
3

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

Generations

F
un

ct
io

n
V

al
ue

s

f
4

F
ul

l G
M

T
er

m
in

at
io

n

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s

f
5

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
6

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Generations

F
un

ct
io

n
V

al
ue

s

f
7

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
−12000

−10000

−8000

−6000

−4000

−2000

0

Generations

F
un

ct
io

n
V

al
ue

s

f
8

F
ul

l G
M

T
er

m
in

at
io

n

Fig. 6: Automatic Termination Performance Using GM (f1 – f8)

ISBN: 978-1-941968-16-1 ©2015 SDIWC 7

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

400

450

Generations

F
un

ct
io

n
V

al
ue

s

f
9

F
ul

l G
M

T
er

m
in

at
io

n
0 20 40 60 80 100 120 140

0

5

10

15

20

25

Generations

F
un

ct
io

n
V

al
ue

s

f
10

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

Generations

F
un

ct
io

n
V

al
ue

s

f
11

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s

f
12

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s

f
13

F
ul

l G
M

T
er

m
in

at
io

n

Fig. 7: Automatic Termination Performance Using GM (f9 – f13)

G. Quartic Function with Noise (f7)

Definition: f7(x) =
∑n

i=1 ix
4
i + random[0, 1).

Search space: −1.28 ≤ xi ≤ 1.28, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f7(x

∗) = 0.

H. Schwefel Functions (f8)

Definition: f8(x) = −
∑n

i=1

(
xi sin

√
|xi|

)
.

Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (420.9687, . . . , 420.9687), f8(x

∗) =
−418.9829n.

I. Rastrigin Function (f9)

Definition: f9(x) = 10n+
∑n

i=1

(
x2
i − 10 cos (2πxi)

)
.

Search space: −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f9(x

∗) = 0.

J. Ackley Function (f10)

Definition: f10(x) = 20 + e − 20e−
1
5

√
1
n

∑n
i=1 x2

i −
e

1
n

∑n
i=1 cos(2πxi).

Search space: −32 ≤ xi ≤ 32, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); f10(x

∗) = 0.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 8

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
1

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

10

Generations

F
un

ct
io

n
V

al
ue

s

f
2

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
3

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Generations

F
un

ct
io

n
V

al
ue

s

f
4

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18
x 10

5

Generations

F
un

ct
io

n
V

al
ue

s

f
5

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
6

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

Generations

F
un

ct
io

n
V

al
ue

s

f
7

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

7

Generations

F
un

ct
io

n
V

al
ue

s

f
8

E
m

pt
y

LM

T
er

m
in

at
io

n

Fig. 8: Automatic Termination Performance Using LM (f1 – f8)

ISBN: 978-1-941968-16-1 ©2015 SDIWC 9

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

450

500

Generations

F
un

ct
io

n
V

al
ue

s

f
9

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Generations

F
un

ct
io

n
V

al
ue

s

f
10

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

Generations

F
un

ct
io

n
V

al
ue

s

f
11

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s

f
12

E
m

pt
y

LM

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s

f
13

E
m

pt
y

LM

T
er

m
in

at
io

n

Fig. 9: Automatic Termination Performance Using LM (f9 – f13)

K. Griewank Function (f11)

Definition: f11(x) = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1.

Search space: −600 ≤ xi ≤ 600, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f11(x

∗) = 0.

L. Levy Functions (f12, f13)

Definition:
f12(x) = π

n{10 sin
2(πy1) +∑n−1

i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+ (yn − 1)2} +∑n

i=1 u(xi, 10, 100, 4), yi = 1 + xi−1
4 , i = 1, . . . , n.

f13(x) = 1
10{sin

2(3πx1) +∑n−1
i=1

[
(xi − 1)2(1 + sin2(3πxi + 1))

]
+ (xn − 1)2(1 +

sin2(2πxn)) +
∑n

i=1 u(xi, 5, 100, 4),

u(xi, a, k,m) =

{
k(xi − a)m, xi > a;
0, −a ≤ xi ≤ a;
k(−xi − a)m, xi < a.

Search space: −50 ≤ xi ≤ 50, i = 1, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f12(x∗) = f13(x

∗) = 0.

REFERENCES

[1] Thomas Back, David B Fogel, and Zbigniew Michalewicz. Handbook
of evolutionary computation. IOP Publishing Ltd., 1997.

[2] James Edward Baker. Adaptive selection methods for genetic algo-
rithms. In Proceedings of an International Conference on Genetic
Algorithms and their applications, pages 101–111. Hillsdale, New
Jersey, 1985.

[3] Swagatam Das, Ajith Abraham, Uday K Chakraborty, and Amit Konar.
Differential evolution using a neighborhood-based mutation opera-
tor. Evolutionary Computation, IEEE Transactions on, 13(3):526–553,
2009.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 10

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

[4] Marco A Montes De Oca, Thomas Stützle, Mauro Birattari, and Marco
Dorigo. Frankenstein’s pso: a composite particle swarm optimiza-
tion algorithm. Evolutionary Computation, IEEE Transactions on,
13(5):1120–1132, 2009.

[5] Andries P. Engelbrecht. Computational Intelligence: An Introduction.
John Wiley - Sons, Chichester, England, 2003.

[6] Matthew S Gibbs, Holger R Maier, Graeme C Dandy, and John B
Nixon. Minimum number of generations required for convergence of
genetic algorithms. In Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on, pages 565–572. IEEE, 2006.

[7] Fred Glover and Gary A Kochenberger. Handbook of metaheuristics.
Springer Science & Business Media, 2003.

[8] Nikolaus Hansen. The cma evolution strategy: a comparing review.
In Towards a new evolutionary computation, pages 75–102. Springer,
2006.

[9] Pierre Hansen, Nenad Mladenović, and José A Moreno Pérez. Variable
neighbourhood search: methods and applications. Annals of Operations
Research, 175(1):367–407, 2010.

[10] Abdel-Rahman Hedar and Masao Fukushima. Hybrid simulated an-
nealing and direct search method for nonlinear unconstrained global
optimization. Optimization Methods and Software, 17(5):891–912,
2002.

[11] Abdel-Rahman Hedar and Masao Fukushima. Minimizing multimodal
functions by simplex coding genetic algorithm. Optimization Methods
and Software, 18(3):265–282, 2003.

[12] Abdel-Rahman Hedar and Masao Fukushima. Heuristic pattern search
and its hybridization with simulated annealing for nonlinear global
optimization. Optimization Methods and Software, 19(3-4):291–308,
2004.

[13] Abdel-Rahman Hedar and Masao Fukushima. Tabu search directed
by direct search methods for nonlinear global optimization. European
Journal of Operational Research, 170(2):329–349, 2006.

[14] Abdel-Rahman Hedar, Bun Theang Ong, and Masao Fukushima. Ge-
netic algorithms with automatic accelerated termination. Department
of Applied Mathematics and Physics, Kyoto University, Tech. Rep, 2,
2007.

[15] Francisco Herrera, Manuel Lozano, and Daniel Molina. Continuous
scatter search: an analysis of the integration of some combination
methods and improvement strategies. European Journal of Operational
Research, 169(2):450–476, 2006.

[16] Francisco Herrera, Manuel Lozano, and Jose L. Verdegay. Tackling real-
coded genetic algorithms: Operators and tools for behavioural analysis.
Artificial intelligence review, 12(4):265–319, 1998.

[17] Brijnesh J Jain, Hartmut Pohlheim, and Joachim Wegener. On ter-
mination criteria of evolutionary algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO-2001, San
Francisco, CA, Morgan Kaufmann Publishers, 2001.

[18] Amit Konar. Computational intelligence: principles, techniques and
applications. Springer Science & Business Media, 2006.

[19] Manuel Laguna and Rafael Martı́. Experimental testing of advanced
scatter search designs for global optimization of multimodal functions.
Journal of Global Optimization, 33(2):235–255, 2005.

[20] Chang-Yong Lee and Xin Yao. Evolutionary programming using
mutations based on the lévy probability distribution. Evolutionary
Computation, IEEE Transactions on, 8(1):1–13, 2004.

[21] Yiu-Wing Leung and Yuping Wang. An orthogonal genetic algorithm
with quantization for global numerical optimization. Evolutionary
Computation, IEEE Transactions on, 5(1):41–53, 2001.

[22] Jing J Liang, A Kai Qin, Ponnuthurai Nagaratnam Suganthan, and
S Baskar. Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions. Evolutionary Computation, IEEE
Transactions on, 10(3):281–295, 2006.

[23] Hui Liu, Zixing Cai, and Yong Wang. Hybridizing particle swarm
optimization with differential evolution for constrained numerical and
engineering optimization. Applied Soft Computing, 10(2):629–640,
2010.

[24] Jose A Lozano. Towards a new evolutionary computation: Advances
on estimation of distribution algorithms, volume 192. Springer Science
& Business Media, 2006.

[25] Manuel Lozano, Francisco Herrera, Natalio Krasnogor, and Daniel
Molina. Real-coded memetic algorithms with crossover hill-climbing.
Evolutionary computation, 12(3):273–302, 2004.

[26] M Hadi Mashinchi, Mehmet A Orgun, and Witold Pedrycz. Hybrid
optimization with improved tabu search. Applied Soft Computing,
11(2):1993–2006, 2011.

[27] Nenad Mladenović, Milan Dražić, Vera Kovačevic-Vujčić, and Mirjana
Čangalović. General variable neighborhood search for the continuous
optimization. European Journal of Operational Research, 191(3):753–
770, 2008.

[28] Pablo Moscato. Memetic algorithms: A short introduction. In New
ideas in optimization, pages 219–234. McGraw-Hill Ltd., UK, 1999.

[29] Quang Huy Nguyen, Yew-Soon Ong, and Meng Hiot Lim. A probabilis-
tic memetic framework. Evolutionary Computation, IEEE Transactions
on, 13(3):604–623, 2009.

[30] Nasimul Noman and Hitoshi Iba. Accelerating differential evolution
using an adaptive local search. Evolutionary Computation, IEEE
Transactions on, 12(1):107–125, 2008.

[31] Yew Soon Ong and Andy J Keane. Meta-lamarckian learning in
memetic algorithms. Evolutionary Computation, IEEE Transactions on,
8(2):99–110, 2004.

[32] Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, and Kok-Wai Wong.
Classification of adaptive memetic algorithms: a comparative study.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 36(1):141–152, 2006.

[33] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential
evolution: a practical approach to global optimization. Springer Science
& Business Media, 2006.

[34] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. Differ-
ential evolution algorithm with strategy adaptation for global numer-
ical optimization. Evolutionary Computation, IEEE Transactions on,
13(2):398–417, 2009.

[35] Krzysztof Socha and Marco Dorigo. Ant colony optimization for contin-
uous domains. European journal of operational research, 185(3):1155–
1173, 2008.

[36] Jasper Vrugt, Bruce Robinson, James M Hyman, et al. Self-adaptive
multimethod search for global optimization in real-parameter spaces.
Evolutionary Computation, IEEE Transactions on, 13(2):243–259,
2009.

[37] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming
made faster. Evolutionary Computation, IEEE Transactions on, 3(2):82–
102, 1999.

ISBN: 978-1-941968-16-1 ©2015 SDIWC 11

Proceedings of The Fourth International Conference on Informatics & Applications, Takamatsu, Japan, 2015

