
 

From Analog Signals to Digital Information 

Alex Kopaigorodski and Moshe Porat 

Department of Electrical Engineering 

Technion, Haifa, Israel 

alexkop@tx.technion.ac.il, mp@ee.technion.ac.il 

 

 

 

ABSTRACT 

 
Many information-processing applications are based 

on digital data although the origin of most sources of 

information is analog. A new signal sampling and 

representation framework for such purposes is 

introduced in this work. We use prolate spheroidal 

wave functions (PSWF) to represent analog signals 

by digital information. The proposed method can be 

applied to reconstruct signals on a finite interval from 

a finite number of discrete samples. It is shown that, 

contrary to the Nyquist approximation, the 

reconstruction error of the proposed technique can be 

made as small as desired. The new method is 

applicable to general signals including two-

dimensional sources of images. Experimental results 

are presented and discussed. Our conclusion is that 

the proposed approach to signal representation using 

PSWF could be superior to presently available 

methods and may be instrumental in most practical 

cases of digital signals, which are naturally of finite 

support. 
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1 INTRODUCTION 
 

Nyquist sampling theorem is widely accepted as 

a means of representing band-limited signals by 

their digital samples. Its main drawbacks, 

however, are that practical signals are time-

limited and therefore not band-limited and that 

in order to reconstruct a band-limited signal an 

infinite number of samples are required. 

Nevertheless, although in most cases Nyquist 

theorem cannot be used to perfectly reconstruct  

 

 

signals, it can be used as a reasonable 

approximation for the acquisition of most 

signals. 

 

In this work, we propose a new approach to the 

digitization task, providing a better 

approximation than uniform Nyquist-based 

sampling. The proposed method is more 

complex than uniform sampling, however, 

suitable hardware can easily cope with the added 

complexity. On the other hand, in order to get the 

same approximation error, the proposed method 

will require significantly fewer samples than 

uniform sampling. 

 

According to the sampling theorem, a band-

limited signal 𝑓(𝑥) can be represented as a 

function of its discrete samples 𝑓(𝑛/2𝜔). 

Mathematically, the signal representation is as 

follows: 

 

𝑓(𝑥) = ∑ 𝑓 (
𝑛

2𝜔
)
sin (2πω (x −

n
2ω
))

2πω (x −
n
2ω
)

.

∞

𝑛=−∞

 (1) 

 

It is evident that the signal reconstruction is 

affected by all its samples. Due to the scaling 

property of the Fourier transform, without loss 

of generality we will set the interval to be [−1,1] 

in this paper and only the bandwidth will be 

changed. 

 

Figure 1 depicts a band-limited signal and its 

finite sum approximation according to: 
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𝑓(𝑥) = ∑ 𝑓 (
𝑛

2𝜔
)
sin (2πω (x −

n
2ω
))

2πω(x −
n
2ω
)

𝑁

𝑛=−𝑁

, 

𝑁 = ⌊2𝜔⌋. 

(2) 

 

 
Figure 1.  Signal reconstruction using a finite number of 

samples within a given interval. As can be seen, an error 

is likely to occur mainly near both ends of the interval. 

 

Due to the decay rate of the Sinc function, it is 

reasonable to assume that adjacent samples 

affect the result more than samples that are far 

from the reconstruction point, in a reciprocal 

manner to the distance. It can be seen in Figure 

1 that at the edges of the interval the 

approximation error is larger than in the middle 

of the interval. This could be significant for short 

time support signals. 

 

Generally, the error is signal dependent. But the 

average error can be analyzed using a stochastic 

band-limited signal model: 

 

𝑓(𝑥) = ∑ 𝑐𝑛

𝑠𝑖𝑛 (2𝜋𝜔 (𝑥 −
𝑛
2𝜔
))

2𝜋𝜔 (𝑥 −
𝑛
2𝜔
)

𝑀

𝑛=−𝑀

, 

𝑀 ≫ ⌊2𝜔⌋ 

(3) 

 

where 𝑐𝑛 are zero-mean IID random variables. In 

this model the signals have a flat spectrum. 

 

Assuming that only 2𝑁 + 1 samples in an 

interval [−1,1] are known, Equation (3) can be 

approximated by: 

 

𝑠̂(𝑥) = ∑ 𝑐𝑛

𝑠𝑖𝑛 (2𝜋𝜔 (𝑥 −
𝑛
2𝜔
))

2𝜋𝜔 (𝑥 −
𝑛
2𝜔
)

𝑁

𝑛=−𝑁

, 

𝑁 = ⌊2𝜔⌋ 

(4) 

 

and the approximation error is then given by: 

 

𝐸{‖𝑠̂(𝑥) − 𝑠(𝑥)‖𝐿2
2 } = 𝐸 {∫ |𝑠̂(𝑥) − 𝑠(𝑥)|2𝑑𝑥

1

−1

}

= 𝜎𝑐
2 ∑ 𝑃(𝑛)

𝑀≥|𝑛|>𝑁

, 
(5) 

 

which is proportional to: 

 

𝑃(𝑛) = ∫ |
𝑠𝑖𝑛 (2𝜋𝜔 (𝑥 −

𝑛
2𝜔
))

2𝜋𝜔 (𝑥 −
𝑛
2𝜔
)

|

2

𝑑𝑥
1

−1

. (6) 

 

Figure 2 depicts numerical calculation of (5). It 

is apparent that the approximation error is 

decreasing with the bandwidth. 

 

 
Figure 2.  Approximation error and SNR. The horizontal 

axis indicates the bandwidth of the signal. 

 

This result is due to the fact that fewer samples 

are adjacent to edges and thus the approximation 

error is smaller. 
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2 THE PROPOSED APPROACH 
 

Given a band-limited signal 𝑦(𝑡), the goal is to 

find an 𝑁-dimensional signal 𝑦̃(𝑡) 

minimizing ‖𝑦(𝑡) − 𝑦̃(𝑡)‖𝐿2[−1,1]. Generally, nor 

𝑦(𝑡) and neither 𝑦̃(𝑡) vanish outside [−1,1]. It is 

also possible that ‖𝑦(𝑡) − 𝑦̃(𝑡)‖𝐿2[−1,1] is large. 

 

The proposed approximation is based on Prolate 

Spheroidal Wave Functions (PSWF) of order 

zero. Although PWSF were studied exhaustively 

in the past, there is little research akin to 

sampling and reconstruction using PSWF. In [1] 

the authors proposed to use PWSF to extrapolate 

a signal known in [−1,1]. In [2] the author 

proposed to interpolate band-limited functions 

using PSWF, however, did not present a 

concrete reconstruction scheme though he did 

state that PWSF are mathematically intractable 

and presented asymptotic expansion. 

 

Our approximation is based on three prominent 

properties of PSWF: (i) Prolate Spheroidal 

Wave Functions of order zero comprise an 

orthonormal basis in 𝐿2[−1,1]. (ii) The PSWF 

are bounded. According to [3] Equations (58) 

and (60) there is 𝑁 > 0, such that for all 𝑛 > 𝑁 

the following holds: 

 

𝜓𝑛
𝜔(𝑥) ≤ √𝑛 + 0.5 . (7) 

 

(iii) The eigenvalues of PWSF have a distinctive 

pattern: 

 

𝜔|𝜆𝑛
𝜔|2 ≈ 1 𝑛 ≤ 4𝜔 

(8) 0 < 𝜔|𝜆𝑛
𝜔|2 < 1 4𝜔 < 𝑛 ≤ 4𝜔 + 6 

𝜔|𝜆𝑛
𝜔|2 ≈ 0 4𝜔 + 6 < 𝑛 . 

 

It can also be shown that the eigenvalues {𝜆𝑛
𝜔}𝑛=0
∞  

have very fast decay [4]. Approximately the first 

⌊4𝜔⌋ values of 𝜔|𝜆𝑛
𝜔|2 are very close to 1. Then 

only a small number of eigenvalues are between 

0 and 1, while the rest are very close to zero. 

Figure 3 depicts a few distributions of PSWF 

eigenvalues. 

 

 
Figure 3.  The distribution of PSWF eigenvalues, as a 

function of the bandwidth ω. 

 

As a result, it will be shown that the 

approximation error of using PSWF to represent 

a signal can be made small due to the fast 

eigenvalue decay. In fact, for 𝑛 ≥ 4𝜔 + 6 the 

eigenvalues 𝜆𝑛
𝜔 have a more than exponential 

decay. An asymptotic bound is found in 

numerous numerical calculations: 

 

|𝜆𝑛
𝜔| ≤ |𝜆𝑚

𝜔 | ∙ 𝑒−𝜂(𝑛−𝑚), 

  𝑛 ≥ 𝑚 ≥ ⌈4𝜔 + 6⌉ . 
(9) 

 

Figure 4 depicts several numerical calculations. 

 

It is straightforward to show that the 

eigenfunctions {𝛹𝑛(𝑢)}𝑛=0
∞  constitute an 

orthonormal basis for 𝐿2[−𝜔,𝜔]. Hence it is 

possible to represent a signal in the frequency 

domain as a linear combination of the basis 

functions: 

 

𝛹𝑛(𝑢) = {

1

√𝜔
𝜓𝑛
𝜔 (
𝑢

𝜔
) −𝜔 ≤ 𝑢 ≤ 𝜔

0                             |𝑢| > 𝜔

 , (10) 

 

such that: 

 

‖𝑌(𝜉) − ∑ 𝑎𝑛 ∙ 𝛹𝑛(𝑢)

𝑁−1

𝑛=0

‖

𝐿2[−𝜔,𝜔]

𝑁→∞
→   0  , (11) 

𝑎𝑛 = 〈𝑌(𝜉), 𝛹𝑛(𝜉)〉𝐿2[−𝜔,𝜔]    , (12) 
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Figure 4.  Numerical presentation of the PSWF 

eigenvalue decay. 

 

where 𝑌(𝜉) is the Fourier transform of 𝑦(𝑥) and 

 {𝑎𝑛}𝑛=0
∞  are the representation coefficients. By 

using Parseval’s identity, it is possible to get the 

following set of equations (Appendix A): 

 

‖𝑦(𝑥) − ∑𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛(𝑥)

𝑁−1

𝑛=0

‖

𝐿2[−∞,∞]

𝑁→∞
→   0, (13) 

‖𝑦(𝑥) − ∑ 𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛(𝑥)

𝑁−1

𝑛=0

‖

𝐿2[−1,1]

≤ √𝜔∑|𝑎𝑛 ∙ 𝜆𝑛|
2

∞

𝑛=𝑁

 , 

(14) 

√√𝜔∑|𝑎𝑛 ∙ 𝜆𝑛|
2

∞

𝑛=𝑁

≤ √𝜔 ∙ 𝑠𝑢𝑝
𝑛≥𝑁
|𝑎𝑛| ∙ √∑|𝜆𝑛|

2

∞

𝑛=𝑁

  , (15) 

 

which indicate the norm of the error. 

 

The PSWF expansion is stable in the sense that 

a small change in the coefficients  {an}n=0
∞  causes 

only a small change in the approximation error: 

 

‖y(x) − ∑(an + Δan ) ∙ λn√ω ∙ ψn(x)

N−1

n=0

‖

L2[−1,1]

≤ √√ω∑|an ∙ λn|
2

∞

n=N

+ √∑|Δan|
2

N−1

n=0

  . 

(16) 

 

Furthermore, as known from Fourier Theory, 𝐿2 
convergence does not necessarily imply 

pointwise and uniform convergence. Here, 

however, in the PSWF reconstruction, 𝐿2 

convergence does imply uniform convergence 

and there is no Gibbs-like phenomenon. In fact, 

it can be shown that for 𝑥 ∈ [−1,1] we get 

(Appendix A): 

 

|y(x) − √ω∑ an ∙ λn ∙ ψn(x)

N−1

n=0

|

≤ √ω |∑ λnan ∙ ψn(x)

∞

n=N

| , 

(17) 

 

which means that the error can be made as small 

as desired independently of the represented 

signal. 

 

Our analysis shows that most band-limited 

signals can be reconstructed by approximately 

the ⌈4𝜔 + 6⌉ first eigenfunctions of PSWF. 

According to (18), 𝜔|𝜆𝑛|
2 is the ratio between 

the PSWF energy in [−1,1] to the PSWF total 

energy. From (8), approximately the ⌈4𝜔 + 6⌉ 
first eigenfunctions have significant energy 

inside [−1,1] while other eigenfunctions have 

most of their energy outside [−1,1]. As a result, 

only the ⌈4𝜔 + 6⌉ first eigenfunctions play a role 

in band-limited signal approximation 

inside [−1,1]: 
 

ω|λn|
2 =

‖ψn(x)‖L2[−1,1]
2

‖ψn(x)‖L2[−∞,∞]
2  . (18) 
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It is possible to perform numerical integration in 

order to calculate the expansion 

coefficients {𝑎𝑛}𝑛=0
∞ . An apparent drawback of 

numerical integration is the requirement for 

many samples of the signal and thus greater 

complexity. It is thus proposed to use an 

alternative approach that utilizes the PSWF 

properties. The sampling is not uniform, and in 

addition it requires a matrix for vector 

multiplication. The expansion coefficients are 

calculated using: 

 

ã = Ψ−1(x)y(x) , (19) 

where: 

 

Ψ(x) = [
ψ0(x0) ⋯ ψN−1(x0)
⋮ ⋱ ⋮

ψ0(xN−1) ⋯ ψN−1(xN−1)
]  , (20) 

 

After mathematical derivations we get (see 

Appendix A): 

 

‖ã − a‖
l2
≤ ‖Ψ(x)

−1
‖
l2

√Nω |∑ λnan

∞

n=N

∙ √n + 0.5| , 

(21) 

 

 
Figure 5.  𝜳(𝐱𝐙𝐞𝐫𝐨𝐬)

−𝟏
 norm bound. As can be seen, all 

the values are below the 
𝟐

√𝑵
 curve. 

and 

 

a = [√ωλ0a0, … , √ωλN−1aN−1]
T
. (22) 

 

From (21) it can be deduced that the coefficients 

error is proportional to ‖Ψ(xZeros)
−1
‖
l2

. Through 

numerical analysis it can be shown that the 

following holds: 

 

‖Ψ(xZeros)
−1
‖
l2

≤
2

√N
  . (23) 

 

Figure 5 depicts numerical calculations of (23). 

As a result, we can show that (see Appendix A): 

 

‖ã − a‖
l2
≤   2√𝜔 |∑ 𝜆𝑛𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

|. (24) 

 

The reconstruction error of a band-limited signal 

has two parts. The first part is due to the finite 

expansion (14). The second part is due to the 

expansion coefficient calculation (19). 

Combining (14), (16) and (24) yields: 

 

‖𝑦(𝑥) −∑ 𝑎̃𝑛 ∙ 𝜓𝑛(𝑥)

𝑁−1

𝑛=0

‖

𝐿2[−1,1]

≤ 

√𝜔∑|𝑎𝑛 ∙ 𝜆𝑛|
2

∞

𝑛=𝑁

+ 2√𝜔 |∑ 𝜆𝑛𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

| . 

(25) 

 

Using (9) to evaluate the right hand side of (25) 

we get: 

 

√∑|an ∙ λn
ω|2

∞

n=N

≤ sup
n≥N
|an| ∙

|λN
ω|

√1 − e−2η
 , (26) 

|∑ λn
ωan ∙ √n + 0.5

∞

n=N

|

≤ √∑|𝑎𝑛|
2

∞

𝑛=𝑁

∙ |λN
ω|

√N + 1

(1 − e−2η)
 , 

(27) 
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sup
n≥N
|an| ≤ √∑|an|

2

∞

n=N

≤ ‖y‖L2  . (28) 

 

Finally, it can be shown that (25) is bounded by: 

 

√ω√∑|an|
2

∞

n=N

∙ |λN
ω| ∙ (

1

√1 − e−2η
+
2√N + 1

(1 − e−2η)
) . (29) 

 

The reconstruction error bound is a product of 

three factors. The first factor is the residue of the 

signal’s series expansion, therefore bounded by 

the signal’s energy (28). The second factor is the 

PSWF eigenvalue of order 𝑁. The third factor is 

proportional to √𝑁 + 1. According to (9), the 

PSWF eigenvalues have more than exponential 

decay. Consequently, (29) is dominated by the 

PSWF eigenvalue of order 𝑁, and as such has 

more than exponential decay. 

 

Figure 6 depicts numerical calculation of the 

reconstruction error bound without a signal 

dependent factor: 

 

√ω ∙ |λN
ω| ∙ (

1

√1 − e−2η
+
2√N + 1

(1 − e−2η)
) . (30) 

 

It is evident that contrary to the sampling 

theorem, an additional sampling point results in 

significant improvement of the reconstruction 

error. In numerical experiments it is observed 

that the reconstruction error bound is not tight 

and in the vast majority of cases ⌈4𝜔⌉ + 4 

samples will yield good reconstructions. 

 

3 RESULTS 

 

In order to compare the two methods for the 

same number of samples, Monte-Carlo 

simulations [5] were carried out in this work. As 

can be seen in Figure 7, changing the number of 

samples for example from ⌈4𝜔⌉ + 4 to ⌈4𝜔⌉ + 6 

hardly improves the approximation error for the 

uniform method, while affecting the new 

proposed approach significantly, by 

approximately 20𝑑𝐵. A related two-dimensional 

result is shown in Fig. 8. 

 

 

4 CONCLUSION 

 

A new framework for digital signal 

representation has been introduced in this work. 

We have compared it with the standard 

bandlimited interpolation and with a fast 

decaying kernel. The main advantage of the new 

method over uniform sampling is that here a 

small increase in oversampling results in a 

significant decrease of the approximation error. 

This behavior of the approximation error is due 

to the fast decay of the eigenvalues of the PSWF- 

λN
ω for 𝑛 ≥ ⌈4𝜔⌉ + 6. 

 

Our conclusion is that the proposed approach is 

superior to presently available methods. The 

new method could be instrumental in most 

practical cases of processing of finite support 

signals [6],[7], especially in cases where the 

sampling-interval multiplied by the bandwidth is 

small. 

 

 
Figure 6.  Reconstruction Error Bound as a function of the 

bandwidth for various numbers of sampling points. 
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Figure 7.  Approximation error comparison. Shown are 

the SNR (top) and the number of sample (bottom) as a 

function of the signal bandwidth. 

 

APPENDIX A 

 

Derivation of (13): 

ℱ−1{𝛹𝑛(𝜉)} =
𝐷𝑒𝑓.

∫ 𝛹𝑛(𝜉)𝑒
𝑗2𝜋𝑥𝜉𝑑𝜉

∞

−∞

=
𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

∫
1

√𝜔
𝜓𝑛
𝜔 (
𝜉

𝜔
) 𝑒𝑗2𝜋𝑥𝜉𝑑𝜉

𝜔

−𝜔

=
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝐶ℎ𝑎𝑛𝑔𝑒

 

√𝜔 ∫𝜓𝑛
𝜔(𝑢)𝑒𝑗2𝜋𝜔𝑥𝑢𝑑𝑢

1

−1

=
𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

𝜆𝑛√𝜔 ∙ 𝜓𝑛
𝜔(𝑥). 

‖𝑌(𝜉) −∑𝑎𝑛 ∙ 𝛹𝑛(𝑢)

𝑁−1

𝑛=0

‖

𝐿2[−𝜔,𝜔]

=
𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛

 

 
 
Figure 8.  The effect of the new approach on images. As 

can be seen, in short finite-support signals (vertical 

segments marked at the 2nd image from the left) the edges 

of the segments are distorted when uniform sampling is 

used (white vertical lines in the 3rd image from the left) 

while the proposed method provides superior continuous 

reconstruction (4th image). 

 

‖𝑌(𝜉) −∑𝑎𝑛 ∙ 𝛹𝑛(𝑢)

𝑁−1

𝑛=0

‖

𝐿2[−∞,∞]

 

=
𝑃𝑎𝑟𝑠𝑒𝑣𝑎𝑙′𝑠
𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦

‖𝑦(𝑥) −∑𝑎𝑛 ∙ ℱ
−1{𝛹𝑛(𝜉)}

𝑁−1

𝑛=0

‖

𝐿2[−∞,∞]

 =
𝐸𝑞.
𝐴𝑏𝑜𝑣𝑒

 

‖𝑦(𝑥) −∑𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛
𝜔(𝑥)

𝑁−1

𝑛=0

‖

𝐿2[−∞,∞]

 

 

Derivation of (14): 

‖𝑦(𝑥) −∑𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛(𝑥)

𝑁−1

𝑛=0

‖

𝐿2[−1,1]

≤
𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

 

‖𝑦(𝑥) −∑𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛(𝑥)

𝑀

𝑛=0

‖

𝐿2[−1,1]

+ ‖∑ 𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛(𝑥)

𝑀

𝑛=𝑁

‖

𝐿2[−1,1]

≤
𝐼𝑛𝑡𝑔

 

‖𝑦(𝑥) −∑𝑎𝑛 ∙ 𝜆𝑛√𝜔 ∙ 𝜓𝑛(𝑥)

𝑀

𝑛=0

‖

𝐿2[−∞,∞]

+√𝜔∑|𝜆𝑛𝑎𝑛|
2

𝑀

𝑛=𝑁
𝐿2[−1,1]

 

By taking 𝑀 → ∞ and the orthogonality of 
{𝜓𝑛}𝑛=0

∞  one can get the result. 

 

Derivation of (17): 

|𝑦(𝑥) − √𝜔∑𝑎𝑛 ∙ 𝜆𝑛 ∙ 𝜓𝑛(𝑥)

𝑁−1

𝑛=0

| ≤
𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

 

|𝑦(𝑥) − √𝜔∑ 𝑎𝑛 ∙ 𝜆𝑛 ∙ 𝜓𝑛(𝑥)

𝑀−1

𝑛=0

|

+ √𝜔 |∑ 𝑎𝑛 ∙ 𝜆𝑛 ∙ 𝜓𝑛(𝑥)

𝑀−1

𝑛=𝑁

| 

|𝑦(𝑥0) − √𝜔∑ 𝑎𝑛 ∙ 𝜆𝑛 ∙ 𝜓𝑛(𝑥0)

𝑀−1

𝑛=0

| =
𝐹𝑇
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| ∫ (𝑌(𝜉) − ∑ 𝑎𝑛𝛹𝑛(𝜉)

𝑀−1

𝑛=0

)𝑒𝑗2𝜋𝑥0𝜉𝑑𝜉

𝜔

−𝜔

| ≤ 

∫ |𝑌(𝜉) − ∑ 𝑎𝑛𝛹𝑛(𝜉)

𝑀−1

𝑛=0

| 𝑑𝜉

𝜔

−𝜔

≤
𝐶𝑎𝑢𝑐ℎ𝑦–𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

 

2𝜔√ ∫ |𝑌(𝜉) − ∑ 𝑎𝑛𝛹𝑛(𝜉)

𝑀−1

𝑛=0

|

2

𝑑𝜉

𝜔

−𝜔

𝑀→∞
→   0 

Therefore: 

|𝑦(𝑥0) − √𝜔∑𝑎𝑛 ∙ 𝜆𝑛 ∙ 𝜓𝑛(𝑥0)

𝑁−1

𝑛=0

| ≤ √𝜔 |∑ 𝑎𝑛 ∙ 𝜆𝑛 ∙ 𝜓𝑛(𝑥0)

∞

𝑛=𝑁

| 

 

Derivation of (21) and (24): 

 

‖𝑎̃ − 𝑎‖
𝑙2
= ‖𝛹(𝑥)

−1
𝑦(𝑥) − 𝑎‖

𝑙2
= 

‖𝛹(𝑥)
−1
(𝑦(𝑥) − 𝛹(𝑥)𝑎)‖

𝑙2
≤

𝑚𝑎𝑡𝑟𝑖𝑥 
𝑛𝑜𝑟𝑚

 

‖𝛹(𝑥)
−1
‖
𝑙2
‖𝑦(𝑥) − 𝛹(𝑥)𝑎‖

𝑙2
 

‖𝑦(𝑥) − 𝛹(𝑥)𝑎‖
𝑙2

2
= ∑ |𝑦(𝑥𝑚) − √𝜔∑𝜆𝑛𝑎𝑛𝜓𝑛(𝑥𝑚)

𝑁−1

𝑛=0

|

2𝑁−1

𝑚=0

≤
17

 

∑ |∑√𝜔𝜆𝑛𝑎𝑛 ∙ 𝜓𝑛(𝑥𝑚)

∞

𝑛=𝑁

|

2𝑁−1

𝑚=0

≤
7
∑ |∑√𝜔𝜆𝑛𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

|

2𝑁−1

𝑚=0

 

= 𝑁𝜔 |∑ 𝜆𝑛𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

|

2

  

From (23) stems: 

‖𝑎̃ − 𝑎‖
𝑙2
≤ 2√𝜔 |∑ 𝜆𝑛𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

| . 

 

Derivation of (26): 

 

√∑|𝜆𝑛
𝜔|2

∞

𝑛=𝑁

≤ 𝜆𝑚
𝜔 ∙ √∑|𝑒−𝜂(𝑛−𝑚)|2

∞

𝑛=𝑁

= 𝜆𝑚
𝜔 ∙ 𝑒𝜂𝑚√∑ 𝑒−2𝜂𝑛

∞

𝑛=𝑁

= 

𝜆𝑚
𝜔 ∙ 𝑒𝜂𝑚√

1

1 − 𝑒−2𝜂
−
1− 𝑒−2𝜂𝑁

1 − 𝑒−2𝜂
= 𝜆𝑚

𝜔 ∙ 𝑒𝜂𝑚√
𝑒−2𝜂𝑁

1 − 𝑒−2𝜂

= 𝜆𝑚
𝜔 ∙

𝑒−𝜂(𝑁−𝑚)

√1 − 𝑒−2𝜂
 . 

By choosing 𝑚 = 𝑁: 

 √∑|𝜆𝑛
𝜔|2

∞

𝑛=𝑁

≤
𝜆𝑁
𝜔

√1 − 𝑒−2𝜂
 , 

Therefore: 

√∑|𝑎𝑛 ∙ 𝜆𝑛
𝜔|2

∞

𝑛=𝑁

≤ 𝑠𝑢𝑝
𝑛≥𝑁
|𝑎𝑛|√∑|𝜆𝑛

𝜔|2
∞

𝑛=𝑁

≤ 𝑠𝑢𝑝
𝑛≥𝑁
|𝑎𝑛| ∙

|𝜆𝑁
𝜔|

√1 − 𝑒−2𝜂
 . 

Derivation of (27): 

|∑ 𝜆𝑛
𝜔𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

| ≤
𝐶𝑎𝑢𝑐ℎ𝑦–𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

√∑|𝑎𝑛|
2

∞

𝑛=𝑁

√ ∑ |𝜆𝑛−1
𝜔 |2𝑛

∞

𝑛=𝑁+1

   

√ ∑ |𝜆𝑛−1
𝜔 |2𝑛

∞

𝑛=𝑁+1

≤ 𝜆𝑚
𝜔 ∙ √ ∑ 𝑛|𝑒−𝜂(𝑛−1−𝑚)|2

∞

𝑛=𝑁+1

= 

𝜆𝑚
𝜔 ∙ 𝑒𝜂(𝑚+1)√ ∑ 𝑛𝑒−2𝜂𝑛

∞

𝑛=𝑁+1

  

∑𝑛 ∙ 𝑒−𝑎𝑛
𝑁−1

𝑛=0

=
𝑒−𝑎 − 𝑒−𝑎𝑁(𝑒−𝑎 + 𝑁 − 𝑁𝑒−𝑎)

(1 − 𝑒−𝑎)2
 , 

∑ 𝑛𝑒−2𝑎∙𝑛
∞

𝑛=𝑁+1

=∑𝑛𝑒−2𝑎∙𝑛
∞

𝑛=0

−∑𝑛𝑒−2𝑎∙𝑛
𝑁

𝑛=0

= 

𝑒−2𝑎(𝑁+1)(𝑒−2𝑎 + (𝑁 + 1) − (𝑁 + 1)𝑒−2𝑎)

(1 − 𝑒−2𝑎)2
 , 

Therefore: 

𝜆𝑚
𝜔 ∙ 𝑒−𝜂(𝑚+1)√ ∑ 𝑛𝑒−2𝜂𝑛

∞

𝑛=𝑁+1

= 

𝜆𝑚
𝜔 ∙ 𝑒𝜂(𝑚+1)

𝑒−𝜂(𝑁+1)√𝑒−2𝜂 + (𝑁 + 1) − (𝑁 + 1)𝑒−2𝜂

1 − 𝑒−2𝜂
 . 

By choosing m = N: 

≤ 𝜆𝑁
𝜔 ∙
√𝑁 + 1

1 − 𝑒−2𝜂
 . 

As a consequence: 

|∑ 𝜆𝑛
𝜔𝑎𝑛 ∙ √𝑛 + 0.5

∞

𝑛=𝑁

| ≤
𝐶𝑎𝑢𝑐ℎ𝑦–𝑆𝑐ℎ𝑤𝑎𝑟𝑧

𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦

√∑|𝑎𝑛|
2

∞

𝑛=𝑁

∙ 𝜆𝑁
𝜔 ∙
√𝑁 + 1

1 − 𝑒−2𝜂
 . 
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