
Improvement of Equivalent Mutant Detection Using Loop Count Restriction

Wang Weitao , Hirohide Haga
Graduate School of Science and Engineering, Doshisha University

1-3 Miyakotani, Tatara, Kyotanabe, 610-0321, Japan
wwang@ishss10.doshisha.ac.jp , hhaga@mail.doshisha.ac.jp

ABSTRACT

Software testing is an indispensable part of the soft-
ware development process. Mutation analysis is
regarded as an effective software testing method.
By adopting mutation operators on the original pro-
gram, mutation analysis generates mutants to sim-
ulate possible bugs, and then it creates a test case
suite working on both mutants and the original pro-
gram to analyze the difference in the results and
find these bugs. Mutation analysis improves the test
case suite until it is strong enough to find all possi-
ble bugs. If the result of running a mutant is differ-
ent from the result of running the original program
for at least one test case in the input test case suite,
the seeded fault denoted by the mutant is detected.
However, in the process of seeding into the fault,
there is the equivalent mutant that has exactly the
same behavior as the original program generated.
These equivalent mutants obstruct the precise as-
sessment of the quality of the test case suite. There-
fore, it is necessary to remove them. In this article,
we improve a previously proposed novel approach
to equivalent mutant detection that uses symbolic
computation. When we apply symbolic computa-
tion to a statement with loop description, the path
explosion problem occurs. To overcome this path
explosion problem, this article proposes a method
that restricts the number of iterations to improve the
detection ratio of equivalent mutants.

KEYWORDS

Software Testing, Fault-based Testing, Mutation
Analysis, Structured Programing, Test Cases

1 INTRODUCTION

With the rapid progress of information tech-
nology, the dependence of human society on
information systems has grown steadily. To
meet people’s growing demand for software
functions, the scale and complexity of software

will also continue to expand. The stability
and security of the software are important at-
tributes and constitute an important foundation
to ensure the integrity of software functions.
However, the software-building process, in-
cluding design, development and maintenance,
may contain some defects that can lead to soft-
ware vulnerabilities. Such defects in various
types of software are unavoidable, and once
they have been discovered by hackers, they can
allow unauthorized access or system damage.
Therefore, software testing is an indispensable
part of the software development process.

Mutation analysis[1] is regarded as an effective
software testing method. By adopting muta-
tion operators on the original program, muta-
tion analysis generates mutants to simulate the
possible bugs, and then it creates a test case
suite working on both mutants and the orig-
inal program to analyze the difference in the
results and find these bugs. Mutation analysis
improves the test case suite until it is strong
enough to find all possible bugs. Thus far,
there have been few studies on the evaluation
method of the software test case suite. Unlike
other software testing methods, mutation anal-
ysis is a structural testing method aimed at im-
proving the adequacy of the test case suite. In
mutation analysis, the faulty programs are gen-
erated artificially by making syntactic changes
in the original program. The faulty program
is called a mutant, and each mutant contains
only one syntactic change. To assess the qual-
ity of a given test case suite, these mutants are
executed against the input test case suite. If
the result of running a mutant is different from
the result of running the original program for
at least one test case in the input test case suite,
the seeded fault denoted by the mutant is de-
tected. However, in the process of seeding into
the fault, there is an equivalent mutant[2] with

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 90

exactly the same behavior as the original pro-
gram generated. These equivalent mutants ob-
struct the precise assessment of the quality of
the test case suite. If large numbers of equiva-
lent mutants are included in the set of mutants,
the mutation score remains low, and testers
cannot decide whether to add more test cases.
Therefore, it is necessary to remove them. In
this article, we improve a previously proposed
novel approach[3] to equivalent mutant detec-
tion that uses symbolic computation[4]. When
we apply symbolic computation to a statement
with loop description, the path explosion prob-
lem occurs. To overcome this path explosion
problem, this article proposes a method that re-
stricts the number of iterations to improve the
detection ratio of equivalent mutants.

2 BRIEF SUMMARY OF MUTATION
ANALYSIS

2.1 Mutation analysis overview

Mutation analysis is a method of white box
testing in software testing[1], with its purpose
to measure and improve the quality of the test
case suite instead of testing the program itself.
In mutation analysis, program faults are inten-
tionally injected into a program. The error-
injected faulty program is called a mutant. The
syntactic modifications responsible for a mu-
tant are determined by a set of mutant opera-
tors. This set is determined by the language
of the program being tested and the mutation
system used for testing. Since there are sev-
eral possibilities in error injection, one orig-
inal code will generate several different mu-
tants. Consider the example shown in Fig. 1:
the mutation operator Arithmetic Operator Re-
placement (AOR) replaces each occurrence of
one of the arithmetic operators (+, - ,* ,/) with
another arithmetic operator. Figure 2 shows the
program before being modified. We call it the
original. Figure 3 shows a typical example of a
mutant. In this program, the assignment oper-
ator was changed from “+=” to “-=”.

a - b
a + b =⇒ a * b

a / b

Figure 1. Mutation operator AOR

int sum (int x) {
int sum = 0;
for (int i = 1; i <= x; i++) {

sum += i;
}
return sum;

}

Figure 2. Original (Sum)

2.2 Mutation operator

A mutation operator is a rule that specifies
syntactic variations of strings generated from
a grammar. Mutation operators are created
with one of two goals: to induce simple syn-
tax changes based on errors that programmers
typically make (for example, using the wrong
variable names) or to force common testing
goals (for example, higher coverage)[6]. In our
system, we used the following mutation opera-
tor shown in Tab.1: each of the mutation oper-
ators is represented by a three-letter acronym.

2.3 Equivalent Mutant

In the process of mutant creation, some mu-
tants with specific features may be created.
Consider the following mutant shown in Fig.4.
In the case of Fig.4, the statement of the return
value was modified by changing “return
sum” to “return Math.abs (sum)”. If
the statements within the for loop do not
modify the value of i, the original program and

int sum (int x) {
int sum = 0;
for (int i = 1; i <= x; i++) {

sum -= i;
}
return sum;

}

Figure 3. Example mutant of Sum

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 91

Table 1. Mutation operators used in this article

Operator Description
ABS Absolute Value Insertion
AOR Arithmetic Operator Replacement
ROR Relational Operator Replacement
COR Conditional Operator Replacement
SOR Shift Operator Replacement
LOR Logical Operator Replacement
ASR Assignment Operator Replacement
UOI Unary Operator Insertion
UOD Unary Operator Deletion
SVR Scalar Variable Replacement
BOM Bomb Statement Replacement
BVI Border Value Increment

int sum(int x){
int sum = 0;
for(int i=1; i<=x; i++){
sum += i;

}
return Math.abs(sum);

}

Figure 4. Equivalent Mutant of Sum

its mutant produce identical outputs. There-
fore, no test case can detect this kind of mu-
tant. Such a mutant is called an equivalent
mutant[3]. In other words, an equivalent mu-
tant has a syntactically different part but is se-
mantically identical to the original program.

2.4 Mutation Score(MS)

Mutation score is an objective measure to eval-
uate the test case suite adequacy against mu-
tation testing. From one original source pro-
gram, several mutants are generated. After the
generation of sufficient mutants, the original
program and its mutants are executed using the
same test case suite (set of test cases). A mu-
tant is said to be killed when the output of the
original and mutant are different. When the
mutant is killed, this mutant is considered to
be dead. A mutant is an equivalent to the given
program if it always produces the same output
as the original program. The quality of the test
case suite can be computed by the following
ratio called the mutation score:

MS =
D

M − E
× 100 (1)

where

• D: the number of killed mutants,

• M : the number of all mutants,

• E: the number of equivalent mutants.

A mutation score for a set of test cases is the
percentage of non-equivalent mutants killed by
the test case suite. The test case suite is said to
be mutation-adequate if its mutation score is
100%.
Equivalent mutants reduce the mutation score
(MS) because no test case can detect them.
MS is an important indicator of the decision
about test case suite quality. To estimate the
test case suite ’s quality, equivalent mutants
must be removed from the set of mutants. As
for detecting whether a program and one of its
equivalent mutant programs is theoretically un-
decidable, additional human efforts are neces-
sary to find and remove the equivalent mutants
from the set of mutants.

2.5 Symbolic Computation

Symbolic computation is a natural extension of
conventional computation[4, 7]. It is used, for
example, to transform original programs into
more effective programs[9] or to generate test
cases automatically[7]. Symbolic computation
uses an input variable as a symbol value to sim-
ulate programs and various operations on the
symbol. Unlike conventional program compu-
tation based on actual data values, the symbolic
computed value of the variable is composed of
symbols and constant expression. In our sys-
tem, symbolic computation is adopted to de-
tect equivalent mutants. Symbolic computa-
tion uses input values as symbolic values in-
stead of actual concrete values. Therefore, the
output of symbolic computation is not an ac-
tual value but a function or expression of sym-
bolic inputs. Symbolic computation generates
a specific condition (path condition) to get a
specific symbolic output[3, 4].
Consider the program “min” in Fig. 5 as an
example. In normal computation, the concrete
values of x and y are given. Then, the function

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 92

returns smaller values of x and y. However,
in symbolic computation, the result shown in
Table 2 is obtained.

int min(int x, int y){
int min = x;
if (x > y) {

min = y;
}
return min;

}

Figure 5. Function min

Table 2. Symbolic computation result

Computation result Path condition
y x>y
x !(x>y)

In this table, “Computation result” is the
symbolic result of the computation and “Path
condition” means the condition of the sym-
bolic inputs to get the corresponding result. In
this program, there are two computation result
possibilities: y and x. To get the y result,
the corresponding path condition (x>y) must
hold. Symbolic computation generates all of
the possible output results and their path condi-
tion. Since it generates more details of compu-
tation information than normal concrete com-
putation, equivalent mutants may be detected
by this rich information.

2.6 XML and JavaML

XML is a markup language describing the
structural information of documents. It is a
subset of SGML, the Standard Generalized
Markup Language. The XML language is de-
signed to represent the set of data in an easily
understandable format both for machine and
human being. JavaML[8] is one instance of
XML (Extensible Markup Language). JavaML
is used for describing Java programming lan-
guage. It provides a complete self-describing
representation of Java source code in XML. In
this article, the converter JJmlt.jar[5] is ap-
plied to convert Java source code into JavaML.
Fig.6 shows a simple XML document which

is sufficient for containing the syntax of XML
document. XML document consists of XML
declaration, element and attribute. Here we
simply introduce the JavaML, the detail con-
tent will be provided in Section 3.

<? xml version=”1.0” encoding=”utf−8”?>
<Root>
<user id=”001”>
<admin>
<name>wwang</name>
<password>islab</password>
<age>27</age>

</admin>
<admin>
<name>zcui</name>
<password>123456</password>
<age>28</age>

</admin>
</user>

</Root>

Figure 6. Sample of XML document

3 IMPLEMENTATION OF THE DE-
TECTION FUNCTION OF EQUIVA-
LENT MUTANTS

Without detecting all equivalent mutants, the
mutation score will never reach 100%. Thus,
the tester will not have complete confidence in
the program and the test data. Also, the tester
will be left wondering whether the remaining
mutants are equivalent or the test case suite
is insufficient. Detecting equivalent mutants
by hand is very time-consuming, which con-
tributes to making the cost of mutation analysis
prohibitively high. Therefore, we proposed a
method for automatically detecting equivalent
mutants using symbolic computation[3]. Sym-
bolic computation executes a given program by
providing symbolic values instead of concrete
values. The final result of symbolic computa-
tion is a pair of expressions; one is a compu-
tation result and the other is a path condition,
both of which may contain symbols. The re-
sult of equivalent mutants is identical to that
of its original for any input. Thus, a mutant is
proved to be an equivalent mutant if the sym-
bolic output of the mutant is identical to that of
the original[3].
The implemented system is for Java program-
ming language. However, the concept of the

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 93

proposed system can be applied to any pro-
gramming language. First, the system con-
verts an original and its mutants represented in
Java to JavaML. Then, both programs repre-
sented in JavaML are executed symbolically,
and the outputs for arbitrary inputs are gen-
erated. Then, if the output of the mutant is
equivalent to that of the original, the system
determines that the mutant is an equivalent
mutant. The evaluation experiments proved
that the proposed method detects more equiva-
lent mutants than conventional methods in sim-
ple programs with assignment instructions and
branch instructions.

3.1 JavaML as an intermediate represen-
tation of source code

Machine code is not suitable to symbolically
execute a program. No information about such
symbols as names is stored in the machine
code. Nor is the textual form of the original
source code appropriate for symbolic computa-
tion. This is partly because no structural infor-
mation, such as “if then structure”, is explicitly
represented in textual form. To extract the nec-
essary information for symbolic computation,
such additional processing as both lexical and
syntax analysis is necessary. Since these re-
quire additional computational cost, appropri-
ate intermediate representation should be used
for symbolic computation[3].

The prototype system uses the XML form as
an intermediate representation. More specifi-
cally, it uses JavaML. With JavaML, both hu-
mans and machines can recognize sufficient in-
formation of the source program[8]. JavaML
representation holds all the syntactical infor-
mation and some additional semantic informa-
tion. Since JavaML is an application of general
XML representation, various kinds of software
libraries are available for XML processing that
help develop programs for processing JavaML.
Appendix A is the JavaML representation of
the function sum in Fig. 2.

3.2 Symbolic computation on JavaML

We implemented a symbolic computation pro-
gram for Java using C#. LINQ to XML is
also used as an XML processing tool. Since
JavaML can be seen as tree representation of
source code, a symbolic computation program
traverses a JavaML tree in a post-order and in-
vokes an appropriate routine to execute pro-
gram components[3].
When symbolic computation starts, one spe-
cific object called the “symbolic computation
status” is created. This object, which con-
tains all the status information of each execu-
tion path, consists of three fields: (1) evalua-
tion result field, (2) path information field, and
(3) all the stored values of the local variables.
All the fields are updated when each node in
the JavaML tree is executed.
Consider the JavaML program given in Ap-
pendix A. This is an XML representation of the
original program shown in Fig. 2. For exam-
ple, after traversing this JavaML representation
in post-order, we could get the computation re-
sult by using the symbolic computation method
we proposed. Appendix B is a symbolic com-
putation result of the JavaML-based program.
By comparing the computation results of the
original and the mutant, we can find the equiv-
alent mutant.

3.3 Symbolic computation problem

In practice, symbolic computation always has
a path explosion problem for large programs.
The increase of line of code (LOC) causes an
exponential growth of the feasible paths, which
would even be infinite when an unbounded
loop exists in the program. This article fo-
cuses on this problem of symbolic computa-
tion, which contains iterations implemented by
loop statements. Such a problem will lead the
symbolic computation path to become infinite,
and computation cannot be stopped. Consider
the following mutant shown in Fig. 7.
In this case, this mutant was generated by mod-
ifying line 7 from “return v” to “return
Math.abs (v)”. v is substituted for 1 as
the initial value because the factorial computa-

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 94

int factorial(int x) {
int i;
int v = 1;
for (i = x; i > 0; i--) {

v *= i;
}
return Math.abs(v);

}

Figure 7. Program factorial

tion results of v and Math.abs(v) in line 7
are always identical; so this kind of mutant is
an equivalent mutant.
Since the location of the change of equivalent
mutant is line 7, symbolic computation must
reach line 7. The computation result is shown
in Table 3. Because the number of iterations
depends on input parameter “x”, the symbolic
computation program cannot determine how
many times the iteration part of the program
is executed. Features of this kind of equivalent
mutant are as follows: the mutation point is af-
ter the iteration statement, and it contains an it-
eration implemented with a non-fixed number
of iterations; the number of iterations cannot fit
in a finite number of times; and the symbolic
computation result cannot be constructed.

3.4 Implementation of proposed method

The above explosion problem may be over-
come by restricting the number of iterations,
which can improve the detection ratio of an
equivalent mutant. Specifically, we set an up-
per bound of iteration. When the number of it-
erations reaches the upper bound, even if the
target statement has not been covered, sym-
bolic computation will be stopped immedi-
ately.
There are mainly three types of loops in Java:
for, while and do-while. Consider the
following example shown in Fig. 8. All of
them could be divided into four parts: init, test,
update and loop body.
In symbolic computation, the process to handle
loop statements is shown in Table 4.
As the process in Table.4 shows, each out-
put corresponds only to one execution path.
Suppose there are N execution paths gener-

for (inin; test; update)
{

loop-body;
}

(a) for loop

init;
while(test) {

loop-body;
}

(b) while loop

init;
do {

loop-body;
} while (test);

(c) do-while loop

Figure 8. Three types of loop statement

ated after the symbolic computation. Then, N
becomes constant when it has no relation to
loop-index and method-parameter; otherwise
N would be infinite and path explosion would
occur.

If N is constant, only N execution paths need
to be covered; thus all of the equivalent mu-
tants could be detected. When N is infinite,
only the first k paths could be compared. Con-
sider the example shown in Fig.9; we assume
that the set value of k is 2. When the mutant
part exists within the loop, we cannot detect all
of the equivalent mutants and Detection Error
may occur.

When k equals 2, there are two computation
paths being handled. The computation results
of the above two programs are shown in Table
5.

From this example, we can see that the mutant
would be determined as an equivalent mutant
incorrectly. Obviously, by increasing the value
of k, we could improve the accuracy of equiv-
alent mutant detection. In conclusion, the ac-
curacy and detection ratio could be improved
by increasing as much as possible the compu-
tation paths in the loop condition.

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 95

Table 3. Symbolic computation result of factorial

Result Condition
1 x <= 0
1 x > 0 && !(x - 1 > 0)
2 x > 0 && x - 1 > 0 && !(x - 2 > 0)
· · · · · ·

n*(n-1)*. . .* 1 x > 0 && x - 1 > 0 && … && !(x - n > 0)
· · · · · ·

Table 4. Process of loop statement

Step Content
1 initial −→ output 0
2 test
3 loop body
4 update −→ output1
5 test
6 loop body
7 update −→ output1
· · · · · · · · ·
N update −→ output1
· · · · · · · · ·

Table 5. Symbolic computation result

Computation result Path condition
2 x<=0
4 0<x<=1

int method(int x){
int n=2;
for (int i=0;i<x;i++){

n*=2;
}
return n;

}

(a) Original Program

int method(in
int n=2;
for (int i=0;i<x;i++){

n+=2;
}
return n;

}

(b) Mutant Program

Figure 9. Original and mutant

4 EXPERIMENT

In this section, we describe the experiments we
conducted. Using the proposed method, we
conducted experiments assessing how many
generated equivalent mutants can be detected.
By restricting the number of iterations, com-
pared to the previously proposed approach, we
expect to see improvement in the detection ra-
tio. In the experiment, we used Windows 7 Ul-
timate, running on an Intel Core i7-2600 CPU
3.40 GHz with 12GB RAM.

4.1 Experimental contents

The following are steps of the experiment.

1. Apply the mutation operators to the origi-

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 96

Table 6. Experimental results

Program Name Ntm Nem Ndm r
Sum 17 2 2 100%
Pi 39 3 3 100%

Factorial 18 2 2 100%
MaxAbs 44 13 13 100%

NewtonSqrt 69 13 5 38%
FactRec 35 4 2 50%
MoonAge 569 46 12 26%

nal program to generate mutants.

2. Execute all programs (original program
and its mutants) on test case suite.

3. Select candidates for equivalent mutant by
comparing the computation results of the
original and the mutants. Mutants with
identical results are possibly equivalent
mutants.

4. For all equivalent mutant candidates, ap-
ply the proposed method to check if they
are equivalent mutants or not.

5. Determine whether the equivalent mu-
tants are detected by the proposed
method.

4.2 Experimental results

Table 6 shows the results of the experiment. In
Table 6,

• Ntm: number of total mutants

• Nem: number of equivalent mutants

• Ndm: number of detected equivalent mu-
tants

• r: detection ratio (= Ndm/Nem).

4.3 Discussion

This article mainly overcomes the path explo-
sion problem for loop description, and thus all
programs to be tested contain loop iteration.
From the experimental results, compared to the

· · · · · · · · ·
38 int m;
39 for (m=1; m<month; m++)
40 {
41 saday += calcM(m, year);
42 }
43 return saday;
44 }

Figure 10. A part of MoonAge program

previously proposed approach, we can see the
proposed method has made great progress.

Using the proposed method, the detection
ratios of Factorial and MaxAbs were
100%; all of the equivalent mutants were au-
tomatically detected. The previous method
provided the detection ratios of MoonAge
26%, MaxAbs 38%, Factorial 50%, and
MoonAge 13%[3]. This experiment proved
that the detection ratio is improved greatly. Be-
cause symbolic computation needs to compare
all the path conditions and corresponding com-
putation results, when encountering the pro-
grams containing iteration statements with a
non-fixed number of iterations, the number of
path conditions is infinite, and symbolic com-
putation cannot be stopped in the previous
method. By restricting the number of iterations
for a small-scale program, all of the equivalent
mutants were detected.

However, several programs’ detection ratios
were still not ideal. These programs usually
contained complex iteration statements and
had a fairly large scale. Consider the program
shown in Fig. 10.

Executing such programs by symbolic compu-
tation will lead to the stack overflow exception
problem. Therefore, in order to effectively al-
leviate the symbolic computation path explo-
sion problem, we should make use of large
computing power, such as distributed multi-
processor, multi-core, and cloud computing,
which enable the traditional symbolic compu-
tation to execute in parallel.

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 97

5 CONCLUSION

This article proposed a method to improve the
previous approach to equivalent mutant detec-
tion that uses symbolic computation. Sev-
eral studies exist on the automatic detection
of equivalent mutants. Our proposed method
involves restricting the number of iterations
and generating shorter and simpler computa-
tion results and path conditions to get results.
By comparing these two pieces of information,
equivalent mutants can be detected more effec-
tively than by the conventional method. Also,
by restricting the number of iterations, the de-
tection ratio shows obvious improvement.
By restricting the number of iterations for a
small-scale program, all of the equivalent mu-
tants were detected. However, several pro-
grams ’detection ratios were still not ideal.
These programs usually contained complex it-
eration statements and had a fairly large scale.
Due to the huge number of branches and iter-
ations, there exists exponential growth of the
execution path; thus, the practical application
of symbolic computation will encounter the
potential path explosion problem, which has
become the bottleneck of symbolic computa-
tion applications. To effectively alleviate the
symbolic computation path explosion problem,
in the future, we should make use of large
computing power, such as distributed multipro-
cessor, multi-core[11], and cloud computing,
which enable the traditional symbolic compu-
tation to execute in parallel.

REFERENCES

[1] P. Ammann, J. Offutt, Introduction to software
testing, Cambridge University Press, Cambridge,
UK, 2008.

[2] J. Offutt and J. Pan, “Automatically Detecting
Equivalent Mutants and Infeasible Paths, ” Jour-
nal of Software Testing, Verification and Reliabil-
ity, 7(3), pp.165-192, 1997.

[3] T. Ueshiba, H. Haga, “Detecting Equivalent Mu-
tants Using Symbolic Computation,” Proceed-
ings of the International Conference on Electrical,
Electronics, Computer Engineering and their Ap-
plication, pp.6-11, 2014.

[4] J.C. King, “Symbolic Execution and Program
Testing,” Communications of the ACM, 19(7),
pp.385–394, (1976)

[5] H. Aman, “JJmlt, A Java-JavaML Transla-
tor,”, http://se.cite.ehime-u.ac.jp/
tool/JJmlt/

[6] J. M. Bieman, S. Ghosh and R. T. Alexander. “A
Technique for Mutation of Java Objects,” Proceed-
ings.16th Annual International Conference on. Au-
tomated Software Engineering (ASE), pp. 337–
340, 2001.

[7] Y. Futamura “Partial evaluation of computation
process – an approach to a compiler-compiler,”
Higher-Order and Symbolic Computation, 12(4),
pp.381–391, 1999.

[8] G. Badros, “JavaML: A Markup Language for Java
Source Code,” Proceedings of 9th International
World Wide Web Conference on Computer net-
works, pp.159–177, 2000.

[9] A. Coen-Porisini, “Software specialization via
symbolic execution,” IEEE Transactions on Soft-
ware Engineering, SE-17(9), pp.884–891, 1991.

[10] C Cadar, K Sen, “Symbolic execution for software
test: three decades later,” Communications of the
ACM, 56(2), pp.82–90, 2013.

[11] M. Staats, C. Păsăreanu, “Parallel Symbolic Ex-
ecution for Structural Test Generation,” Proceed-
ings of the 19th international symposium on Soft-
ware testing and analysis, pp.183–194, 2010.

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 98

A JAVAML REPRESENTATION OF
THE FUNCTION SUM

Following is a JavaML representation of the
function Sum in Figure.2.

<java−source−program>
<java−class−file name=”Test\Sum\Test.

java”>
<class name=”Test”>
<superclass name=”java.lang.Object” />
<method name=”test” visibility=”public

” static=”true” id=”Test:mth−1”>
<type name=”int” primitive=”true” />
<formal−arguments>
<formal−argument name=”x” id=”

Test:frm−1”>
<type name=”int” primitive=”true

” />
</formal−argument>

</formal−arguments>
<block>
<local−variable name=”sum” id=”

Test:var−1”>
<type name=”int” primitive=”true

” />
<literal−number kind=”integer”

value=”0” />
</local−variable>
<local−variable name=”i” id=”Test:

var−2”>
<type name=”int” primitive=”true

” />
<literal−number kind=”integer”

value=”1” />
</local−variable>
<loop kind=”for”>
<test>
<binary−expr op=”<=”>
<var−ref name=”i” idref=”

Test:var−2” />
<var−ref name=”x” idref=”

Test:frm−1” />
</binary−expr>

</test>
<update>
<unary−expr op=”++” post=”

true”>
<var−ref name=”i” idref=”

Test:var−2” />
</unary−expr>

</update>
<block>
<assignment−expr op=”+=”>
<lvalue>
<var−set name=”sum” />

</lvalue>
<var−ref name=”i” idref=”

Test:var−2” />
</assignment−expr>

</block>
</loop>
<return>
<var−ref name=”sum” idref=”

Test:var−1” />
</return>
</block>

</method>
</class>

</java−class−file>

</java−source−program>

B SYMBOLIC EXECUTION RESULT

Following is an execution result represented in
XML.

<output>
<value>
<binary−expr op=”+”>
<literal−number kind=”integer” value=

”0” />
<literal−number kind=”integer” value=

”1” />
</binary−expr>
</value>

<constraint>
<binary−expr op=”&&”>
<binary−expr op=”&&”>
<literal−boolean value=”true” />
<binary−expr op=”<=”>
<literal−number kind=”integer”

value=”1” />
<var−ref name=”x” />

</binary−expr>
</binary−expr>
<unary−expr op=”!” post=”false”>
<binary−expr op=”<=”>
<binary−expr op=”+”>
<literal−number kind=”integer”

value=”1” />
<literal−number kind=”integer”

value=”1” />
</binary−expr>
<var−ref name=”x” />

</binary−expr>
</unary−expr>

</binary−expr>
</constraint>

</output>
<output>
<value>
<binary−expr op=”+”>
<binary−expr op=”+”>
<binary−expr op=”+”>
<literal−number kind=”integer”

value=”0” />
<literal−number kind=”integer”

value=”1” />
</binary−expr>

<binary−expr op=”+”>
<literal−number kind=”integer”

value=”1” />
<literal−number kind=”integer”

value=”1” />
</binary−expr>

</binary−expr>
<var−ref name=”i” />

</binary−expr>
</value>
<constraint>
<binary−expr op=”&&”>
<binary−expr op=”&&”>
<binary−expr op=”&&”>
<binary−expr op=”&&”

>
<literal−boolean value=”true”

/>
<binary−expr op=”<=”>

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 99

<literal−number kind=”integer
” value=”1” />

<var−ref name=”x” />
</binary−expr>

</binary−expr>
<binary−expr op=”<=”>
<binary−expr op=”+”>
<literal−number kind=”integer

” value=”1” />
<literal−number kind=”integer

” value=”1” />
</binary−expr>

<var−ref name=”x” />
</binary−expr>

</binary−expr>
<binary−expr op=”<=”>
<var−ref name=”i” />

<var−ref name=”x” />
</binary−expr>
</binary−expr>
<unary−expr op=”!” post=”false”>

<binary−expr op=”<=”>
<binary−expr op=”+”>
<var−ref name=”i” />
<literal−number kind=”integer”

value=”1” />
</binary−expr>
<var−ref name=”x” />

</binary−expr>
</unary−expr>

</binary−expr>
</constraint>

</output>

Proceedings of the International Conference on Software Engineering, Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 100

