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ABSTRACT

In this paper, we propose a new methodol-
ogy for the speed scaling problem based on its
link to scheduling with controllable processing
times and submodular optimization. It results
in faster algorithms for traditional speed scal-
ing models, characterized by a common speed
cost (or energy consumption) function. In ad-
dition, it handles efficiently the most general
models with job-dependent speed cost func-
tions, on a single machine and on multiple par-
allel machines, which to the best of our knowl-
edge have not been addressed in prior research.
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1 INTRODUCTION

Scheduling models with variable speeds of ma-
chines have been drawing considerable atten-
tion since the 1990s. In those models, pro-
cessors can work at different voltage/frequency
levels, achieving lower level of energy con-
sumption at the cost of performing computa-
tion at a slower rate. The introduction of multi-
processor computer systems with processors
having changeable speeds has led to further de-
velopments in processors’ power management.
The topic has become particularly important
in recent years with increased importance of
energy saving demands, and is known un-

der the names “energy-aware scheduling” [7],
“energy-saving scheduling” [2], and “green
scheduling” [8].
Informally, in speed scaling problems it is re-
quired to determine the processing speed of
each job either on a single machine or on par-
allel machines. The speeds are selected in such
a way that (i) the cost of speed changing, of-
ten understood as energy needed to maintain a
certain speed, is minimized, and (ii) the actual
processing time of each job allows its process-
ing within a given time window.
It is widely recognized that the 1995 paper by
Yao et al. [32] provides a fundamental speed
scaling algorithmic technique for the most ba-
sic model of scheduling n jobs (computational
tasks) on a single processor. For almost 20
years the O(n3)-time YDS algorithm has re-
mained the main item of reference in the area,
with the number of citations exceeding 1200
according to Google Scholar. A recent imple-
mentation of this technique allows reducing its
running time to O (n2); see [17].
The multi-processor version of the problem
received attention quite recently, see [4, 5,
6]. The fastest strongly polynomial-time al-
gorithm proposed in [4] solves repeatedly a
series of the max-flow problems and results
into a O (n4 log n)-time algorithm. The link to
the max-flow problem is also exploited in [6];
however, the running time of the resulting al-
gorithm is not strongly polynomial.
In our study, we provide a new insight into the
underlying model of the speed scaling prob-
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lem (SSP) by establishing its link to optimiza-
tion of a convex function over submodular con-
straints, which results into a new methodologi-
cal framework for handling the problem.
The proposed methodology makes it possible
to address a more general version of the SSP in
comparison to those previously studied. While
traditionally it is assumed that the energy con-
sumption functions are identical for all jobs, in
reality heterogeneous jobs may differ in their
energy characteristics (e.g., due to their differ-
ent read/write characteristics, the sizes of in-
put/output files, the usage of internal and ex-
ternal memory, etc.). The need to consider in-
dividual energy models for tasks dependent ei-
ther on their computation intensity or on data
intensity is widely recognized in the comput-
ing community, see, e.g., [7] for an example of
a job-dependent energy function.
We demonstrate that the most general SSP
with job-dependent energy consumption can
be solved by the submodular optimization
techniques in O(n2) and O(n4) time for the
single-machine and multi-machine cases, re-
spectively. To the best of our knowledge, these
are the first results for this general type of the
speed scaling model, and the running times
compare favorably to those earlier available
for solving the SSP with job-independent cost
functions.
Formally, in the SSP, the jobs of set N =
{1, 2, . . . , n} have to be processed either on
a single machine M1 or on parallel machines
M1,M2, . . . ,Mm, where m ≥ 2. Each job
j ∈ N is given a release date r(j), before
which it is not available, and a deadline d(j),
by which its processing must be completed,
and its processing volume or size w(j). The
value of w (j) can be understood as the ac-
tual processing time of job j, provided that the
speed s(j) of its processing is set equal to 1.
In the processing of any job, preemption is al-
lowed, so that the processing can be interrupted
on any machine at any time and resumed later,
possibly on another machine (in the case of
parallel machines). It is not allowed to process
a job on more than one machine at a time, and
a machine processes at most one job at a time.

The actual processing time p(j) of a job j ∈ N
depends on the speed of the processor which
may change over time. In the SSP literature,
the power consumption of a machine operat-
ing at speed s is proportional to s3, or in gen-
eral is described by a convex non-decreasing
function f(s). Given a schedule with a spec-
ified allocation of jobs to machines and fixed
time intervals for processing jobs or their parts,
the energy is calculated as power integrated
over time. Due to the convexity of f , the
power is minimized if each job j is processed
with a fixed speed s (j) ≥ 1, which does
not change during the whole processing of a
job; see, e.g., [4]. This property also holds
if energy consumption functions are different
for different jobs. Thus, the actual processing
time of job j is equal to p(j) = w (j) /s (j)
and the total cost of processing job j is equal
to (w(j)/s(j))fj(s(j)), where fj (s (j)) is the
cost of keeping the processing speed of job j to
be equal to s (j) for one time unit; each func-
tion is convex non-decreasing.
In the SSP, the goal is to find an assignment of
speeds to jobs such that

(i) the energy consumption is minimized, and

(ii) a feasible schedule (with no job j
processed outside the time interval
[r(j), d(j)]) exists.

The corresponding cost function is defined as

F =
n∑
j=1

w(j)

s(j)
fj(s(j)). (1)

Notice that the prior research on the SSP fo-
cuses on minimizing a simpler function

Φ =
n∑
j=1

w(j)

s(j)
f(s(j)), (2)

in which the speed cost function f is a convex
function, common to all jobs.
In a broad sense, the SSP belongs to the area
of scheduling models in which a decision-
maker is able to control processing parameters.
One type of such models, known as schedul-
ing models with controllable processing times
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appears to be especially relevant to the SSP.
Scheduling problems of the latter type have
been actively studied since the 1980s; see sur-
veys [22, 24]. To demonstrate the link be-
tween the problems with controllable process-
ing times and the SSP, below we give a descrip-
tion of the former model for a machine envi-
ronment similar to that of SSP.

In the model with controllable processing
times (CPT), the jobs of set N = {1, 2, . . . , n}
have to be processed with preemption either
on a single machine M1 or on parallel ma-
chines M1,M2, . . . ,Mm, where m ≥ 2. Each
job j has a release date r(j) and a deadline
d(j). A decision needs be made about the ac-
tual duration p (j) of a job: it should belong
to a given interval [l(j), w(j)]. Such a deci-
sion results in compression of the longest pro-
cessing time w(j) down to p(j), and the value
z (j) = w(j) − p(j) is called the compres-
sion amount of job j. Compression may de-
crease the completion time of each job j but
incurs additional cost. The purpose is to find
the actual processing times such that a feasible
schedule exists and the total compression cost∑

j∈N α (j) z (j) is minimized, where α (j) is
the cost of compressing job j by one time unit.

The SSP and scheduling problems with CPT
are similar; however, they are based on prin-
cipally different types of control of the actual
processing times, and involve different objec-
tive functions. Still, there are several aspects
that make the formulated problems with CPT
relevant to the SSP. As we demonstrate in this
paper, efficient CPT algorithms can be used
as subroutines for solving more complex SSP
problems (see Section 5 which makes use of
an algorithm from [14] for solving a single
machine problem with controllable process-
ing times to minimize the total compression
time

∑
j∈N z (j)). Most importantly, unlike

the previous purpose-built techniques with a
schedule-based reasoning, in our study we con-
sider both types of models, SSP and CPT, as
optimization problems with submodular con-
straints. This ‘step change’ research allows
us to develop a common toolkit for solving
scheduling problems of a similar nature. The

success of this new methodology for the CPT
models has been demonstrated in a series of pa-
pers [25]–[29]. As a result, powerful methods
of submodular optimization have been used to
develop and justify the fastest available algo-
rithms for both single criterion and bicriteria
problems with CPT. What we see as a method-
ological contribution of this paper is the devel-
opment of a general framework for handling
the SSP. We establish links between the SSP on
one hand, and the flow problems and submodu-
lar optimization problems with non-linear ob-
jective functions. This allows us to come up
with the faster available methods not by de-
signing purpose-built algorithms, but rather by
adapting the existing flow and submodular op-
timization techniques.
In this paper, we reformulate the SSP as the
problem of minimizing function F of the form
(1) on parallel machines as a min-cost max-
flow problem with a non-linear convex separa-
ble objective function; see Section 2. The lat-
ter problem is then linked to a non-linear con-
vex minimization problem under submodular
constraints, which can be solved by adapting a
decomposition algorithm of [9]; see Section 3.
In Sections 4 and 5, we show how to imple-
ment the decomposition algorithm in such a
way that the original SSP is solvable in O (n4)
time on parallel machines and in O (n2) time
on a single machine. In the multi-machine case
with the objective function Φ we rely on a non-
trivial result in [20, 21] to reduce the problem
to the minimization problem with a separable
quadratic objective, which allows the SSP to
be solved in O (n3) time.

2 REDUCTION TO MINIMIZING
FLOW COST

Given a set N = {1, 2, . . . , n} of jobs to be
processed on either a single machine M1 or on
m parallel machines M1,M2, . . . ,Mm, where
m ≥ 2, consider the speed scaling problem
(SSP, for short). For each job j ∈ N , we are
given

• w (j), volume of computation of job j,
i.e., its processing time at speed equal to
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1;

• r (j), the release date;

• d(j), the deadline;

• fj (s (j)), the cost of keeping the process-
ing speed of job j to be equal to s (j) for
one time unit.

It is required to minimize a function of the
form (1). We can rewrite the problem with the
decision variables p (j) = w (j) /s (j), where
p (j) is understood as an actual processing time
of job j ∈ N . The objective function F be-
comes

F̂ =
n∑
j=1

p(j)fj

(
w (j)

p (j)

)
. (3)

This function has to be minimized over all fea-
sible values of p (j). We reformulate the result-
ing problem as a min-cost max-flow problem
in a bipartite network with a non-linear convex
objective. For completeness, below we intro-
duce the concepts related to flows in networks,
mainly relying on the book [1].
Introduce the following generic bipartite net-
work G = (V,A). Here the node set V =
{s, t} ∪ N ∪W consists of a source s, a sink
t and two sets N and W . The set A of arcs is
defined as A = As ∪ A0 ∪ At, where As is the
set of arcs that go from the source s to nodes in
N , At is the set of arcs that go from the nodes
in W to the sink t, and A0 is the set of arcs that
go from nodes in N to nodes in W .
The capacity of an arc (u, v) ∈ A is denoted
by µ(u, v), which can be infinite for some arcs.
We say that x : A→ R is a feasible s-t flow in
G if it satisfies the flow balance constraint∑

u∈V : (u,v)∈A

x(u, v) =
∑

v∈V : (u,v)∈A

x(u, v)

for all nodes v ∈ V \ {s, t} and the capac-
ity constraint 0 ≤ x(u, v) ≤ µ(u, v) for all
arcs (u, v) ∈ A. The value of the flow x is
the total flow

∑
j∈N x(s, j) on the arcs that

leave the source (or, equivalently, the total flow∑
i∈W x(i, t) on the arcs that enter the sink). A

maximum flow is a feasible s-t flow with the
maximum value. In the max-flow problem it is
required to find a maximum flow.
A partition (S, T ) of the node set V is called
a cut. Given a cut (S, T ), introduce the set of
arcs

A(S, T ) = {(u, v) ∈ A | u ∈ S, v ∈ T}

and define the capacity of the cut as

µ(S, T ) =
∑

(u,v)∈A(S,T )

µ(u, v),

A cut (S, T ) is called an s-t cut if s ∈ S and
t ∈ T . A minimum s-t cut is an s-t cut of the
smallest capacity. The famous max-flow min-
cut theorem guarantees that if x is a maximum
flow and (S, T ) is a minimum s-t cut, then∑

j∈N

x(s, j) = µ(S, T ) (4)

holds. Moreover, if (4) holds, then x is a max-
imum flow and (S, T ) is a minimum s-t cut.
See [1] for details.
In the min-cost flow problem, each arc
(u, v) ∈ A is associated with a cost function
c(u,v)(x(u, v)) for flow x(u, v). It is required to
find a feasible s-t flow of a given value that has
the smallest cost. In this paper, we mainly will
be interested in the min-cost max-flow prob-
lem, i.e., the problem of finding the maximum
flow of the smallest cost.
Given an instance of the SSP, we can associate
it with a variant of network G. Divide the in-
terval [minj∈N r(j),maxj∈N d(j)] into subin-
tervals by using the release dates r(j) and the
deadlines d(j) for j ∈ N as break-points. Let
τ0, τ1, . . . , τγ , where 1 ≤ γ ≤ 2n − 1, be the
increasing sequence of distinct numbers in the
list (r(j), d(j) | j ∈ N). Introduce the inter-
vals Ih = [τh−1, τh], 1 ≤ h ≤ γ, and define
the set of all intervals W = {Ih|1 ≤ h ≤ γ}.
Denote the length of interval Ih by ∆h = τh −
τh−1. Interval Ih is available for processing job
j if r(j) ≤ τh and d(j) ≥ τh+1. For a job j, de-
note the set of the available intervals by Γ(j),
where

Γ(j) = {Ih ∈ W | Ih ⊆ [r(j), d(j)]} . (5)
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ForX ⊆ N , define the set of all intervals avail-
able for precessing the jobs of set X as

Γ(X) =
⋃
j∈X

Γ(j). (6)

Introduce the following variant of the generic
bipartite network G = (V,A), which we de-
note by G∞. The node set is given by V =
{s, t} ∪ N ∪ W , where N is the set of job
nodes and W is the set of interval nodes, i.e.,
W = {I1, I2, . . . , Iγ}. The arc set A is given
as A = As ∪ A0 ∪ At, where

As = {(s, j) | j ∈ N},
A0 = {(j, Ih) | j ∈ N, Ih ∈ Γ(j)},
At = {(Ih, t) | h = 1, 2, . . . , γ},

so that the source is connected to each job
node, each interval node is connected to the
sink, and each job node is connected to the
nodes associated with the available intervals.
We define the arc capacities as follows:

µ(s, j) = +∞, (s, j) ∈ As,
µ(j, Ih) = ∆h, (j, Ih) ∈ A0,
µ(Ih, t) = m∆h, (Ih, t) ∈ At.

As proved in [15], the problem of verifying
whether there exists a feasible schedule with
fixed processing times p(j), j ∈ N , can be
translated in terms of the network flow prob-
lem. In fact, given a nonnegative vector p =
(p(1), . . . , p(n)), a feasible schedule for pro-
cessing the jobs of set N on m parallel identi-
cal machines (or on a single machine if m =
1), such that job j ∈ N has the actual process-
ing time of p(j), exists if and only if there ex-
ists a feasible s-t flow x : A→ R+ in network
G such that x(s, j) = p(j) for all j ∈ N .
For a network with a set of nodes V , an algo-
rithm by Karzanov [16] finds the max-flow in
O(|V |3) time. Since |N | = n and |W | ≤ 2n,
Karzanov’s algorithm checks the existence of
a feasible schedule on m parallel machines in
O(n3) time.
A feasible flow x(j, Ih) on arc (j, Ih) defines
for how long job j is processed in the time
interval Ih. On a single machine, a feasible
flow easily translates into a feasible schedule

and vice versa, since there is a one-to-one cor-
respondence between the flow incoming into
an interval node Ih and durations of jobs pro-
cessed within the corresponding time interval
by a single machine.
In the case of m identical parallel machines,
the link between a feasible flow and a feasi-
ble schedule is less evident. To know the flow
values x(j, Ih) is insufficient to define a sched-
ule. We need a linear time algorithm by Mc-
Naughton [18] to find a feasible preemptive
schedule for each interval Ih, and then the over-
all schedule can be found as a concatenation of
these schedules.
In the case of the SSP, the values of p(j) have
to be chosen to minimize the function (3). This
can be made by solving an appropriate min-
cost/max-flow problem, i.e., the problem of
finding the maximum flow of the smallest cost.
Let x(s, j) denote the amount of flow on an arc
(s, j), j ∈ N ; then the associated cost of that
flow is x(s, j)fj(w(j)/x(s, j)), which is a con-
vex function with respect to x(s, j). The cost
of flow on all other arcs is set to be zero. Then
the SSP reduces to finding a maximum s-t flow
x∗ in G that minimizes the total cost∑

j∈N

x(s, j)fj

(
w(j)

x(s, j)

)
.

For our purposes, we need a link of flow prob-
lems in networks structurally similar to G to
submodular optimization. These issues are dis-
cussed in the next section.

3 LINKS TO SUBMODULAR OPTI-
MIZATION

We briefly describe the necessary concepts re-
lated to submodular optimization and estab-
lish its links to the network flow problems
and scheduling problems of interest. Unless
stated otherwise, we follow the comprehensive
monographs [10] and [23].
A set function ϕ : 2N → R is called submodu-
lar if the inequality

ϕ(X ∪ Y ) + ϕ(X ∩ Y ) ≤ ϕ(X) + ϕ(Y ),

holds for all X, Y ∈ 2N . Function ϕ is called
monotone if ϕ(X) ≤ ϕ(Y ) holds for every
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X, Y ∈ 2N with X ⊆ Y . For a monotone
submodular function ϕ : 2N → R+ such that
ϕ(∅) = 0, the pair (2N , ϕ) is called a polyma-
troid, while ϕ is referred to as the polymatroid
rank function.
For a vector p = (p(1), . . . , p(n)) ∈ RN , de-
note p(X) =

∑
j∈X p(j). Given a polymatroid

(2N , ϕ), define two polyhedra

P(+)(ϕ) =
{
p ∈ RN | p(X) ≤ ϕ(X)
X ∈ 2N , p ≥ 0

}
;

B(ϕ) =
{
p ∈ RN | p ∈ P(+)(ϕ),
p(N) = ϕ(N)}

called a polymatroid polyhedron and a base
polyhedron, respectively, associated with the
polymatroid. Notice that B(ϕ) represents the
set of all maximal vectors in P(+)(ϕ).
Take a network G described in Section 2. Con-
sider the polyhedron

P =
{
p ∈ RN

+ | ∃ feasible s− t flow x
in G with p(j) = x(s, j) for j ∈ N} .

It is known (see, e.g., [19, Lemma 4.1], [10,
Section 2.2], [13]) that such a polyhedron is a
polymatroid polyhedron with a rank function
ϕ : 2N → R+ given by

ϕ(Y ) = max
Y⊆N

{∑
j∈Y

x(s, j)| x is a

feasible s− t flow x in G} .
(7)

Furthermore, all possible maximum flows can
be characterized as a base polyhedron B(ϕ) of
the polymatroid. Thus, in terms of submodular
optimization, the SSP on parallel machines can
be reformulated as

min
n∑
j=1

p(j)fj(w(j)/p(j))

s. t. p ∈ B(ϕ).
(8)

The problem (8) falls into the category of prob-
lems of minimizing a separable convex func-
tion with submodular constraints:

min
n∑
j=1

hj(p(j))

s. t. p ∈ B(ϕ),
(9)

where hj(·) is a convex function and B(ϕ) is a
base polyhedron. In particular, for hj(p(j)) =
p(j)fj(w(j)/p(j)), problem (9) coincides with
problem (3).
To solve problem (9), we can adapt a decom-
position algorithm by Fujishige [9] and Groen-
evelt [12] (see also Section 8.2 of [10]) given
below.

Algorithm Decomp

Step 1. Find an optimal solution b ∈ RN of
the following “relaxed” problem with a
single constraint:

min
∑
j∈N

hj(p(j))

s. t. p(N) = ϕ(N), p ≥ 0.

Step 2. Find a maximal vector q ∈ RN satis-
fying q ∈ P(+)(ϕ) and q ≤ b.

Step 3. Find a (unique) maximal set Y∗ ⊆ N
such that ϕ(Y∗) = q(Y∗).

Step 4. If Y∗ = N , then output the vector q
and stop. Otherwise, go to Step 5.

Step 5. Find an optimal solution p1 ∈ RY∗ of
the following problem:

min
∑
j∈Y∗

hj(p(j))

s. t. p(X) ≤ ϕ(X), X ∈ 2Y∗ ;
p(Y∗) = ϕ(Y∗);
p(j) ≥ 0, j ∈ Y∗.

Step 6. Find an optimal solution p2 ∈ RN\Y∗

of the following problem:

min
∑

j∈N\Y∗
hj(p(j))

s. t. p(X) ≤ ϕ(X ∪ Y∗)− ϕ(Y∗),
X ∈ 2N\Y∗ ;

p(N \ Y∗) = ϕ(N)− ϕ(Y∗);
p(j) ≥ 0, j ∈ N \ Y∗.

Step 7. Output the direct sum p∗ = p1⊕p2 ∈
RN and stop.
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Notice that the problems to be solved in Steps 5
and 6 are of the same structure as the initial
problem, and they are solved recursively. The
depth of recursion is at most n.
It is easy to verify that vector b ∈ RN found in
Step 1, is such that

dhj(b(j))

dp(j)
= λ, j ∈ N,

provided that each function hj is differentiable.
We assume that Step 1 can be implemented in
O(n) time. This is, for example, true for the
most common case studied in the speed scaling
literature when

hj(p(j)) = w(j)α/p(j)α−1 (10)

which corresponds to the power consumption
function of the form fj(s(j)) = s(j)α, where
α > 1 is a constant. Notice that the case
of α = 3 models the well-known cube root
rule for CMOS devices: the speed is approx-
imately the cube root of the power, or equiv-
alently fj(s(j)) = s(j)3. For hj(p(j)) of
type (10), the solution to Step 1 is given by
p(j) = ϕ(N)w(j)/

∑n
j=1w(j), j = 1, . . . , n.

In scheduling terms this implies that in an opti-
mal solution to the relaxed problem of Step 1,
each job j is processed at the same speed
s(j) = w(N)/ϕ(N).
Problem (9) and Algorithm Decomp admit the
following interpretation in scheduling terms
for base polyhedron B(ϕ). The rank func-
tion ϕ(X), X ⊆ N , specifies the total du-
ration of all time intervals available for pro-
cessing the jobs of set X . Thus, the values of
b(j), j ∈ N , found in Step 1 can be understood
as actual processing times of jobs such that
their total duration p(N) is equal to the total
duration ϕ(N) of all available intervals. This
is achieved by processing the jobs at the com-
mon speed defined as the total work require-
ment of all jobs w(N) divided by intervals’
length ϕ(N). The values of b(j) are not nec-
essarily feasible durations for all jobs or some
subsets of jobs. The required feasible values
q(j), j ∈ N , are found in Step 2. The set Y∗
found in Step 3 identifies a set of jobs with the
total duration equal to the length of all intervals

available for processing these jobs. In other
words, for each job j ∈ Y∗ its actual duration
cannot be further extended.
In the subsequent sections, we explain how to
implement the steps of Algorithm Decomp in
the case of the speed scaling problems on par-
allel identical machines and on a single ma-
chine. In fact, we only need to focus on the im-
plementation details of Steps 2 and 3. If T23(k)
denotes the time that is required for Steps 2
and 3 with k decision variables, k ≤ n, then,
under the assumption regarding the time com-
plexity of Step 1, the overall running time of
Algorithm Decomp is O(nT23(n)).
In fact, in the scheduling applications dis-
cussed in Sections 4 and 5, we describe how to
find a set Y∗ (see Step 3) which not only satis-
fies q(Y∗) = ϕ(Y∗), but also satisfies a stronger
condition

q(Y∗) = ϕ(Y∗); q(j) = b(j), j ∈ N\Y∗.
(11)

In scheduling terms, this means that for the
jobs j ∈ Y∗ the processing times q(j) cannot
be further enlarged due to the insufficient pro-
cessing capacity, while for the jobs j ∈ N\Y∗
the processing times reach their respective cur-
rent upper bounds b(j).

4 SOLVING SSP ON PARALLEL MA-
CHINES

We start with the problem (8), where the speed
cost functions fj are job-dependent. We show
that Steps 2 and 3 of Algorithm Decomp with k
decision variables, k ≤ n, can be implemented
in O(k3) time. For simplicity, we present our
analysis for an iteration with n decision vari-
ables; see [30] for a complete proof. Suppose
that in Step 1 of the algorithm the values b(j),
j ∈ N , are found. The problem to be solved
in Step 2 can be seen as the max-flow prob-
lem in network Gb, obtained from G∞ by set-
ting the upper bound on the capacity of an arc
(s, j) equal to b(j), j ∈ N . This can be done
in O(n3) time, as mentioned in Section 2. Let
y(j) be the found flow on arc (s, j), j ∈ N .
Then the required value of q(j) is equal to the
flow y(j).
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The problem of finding the set Y∗ is deeply re-
lated to a minimum s-t cut in the network Gb.
Indeed, we can find a set Y∗ ⊆ N that satisfies
(11) from a minimum cut.

Lemma 1 Let (S, T ) be a minimum s-t cut in
network Gb. Then, Y∗ = S ∩N satisfies (11).

Proof: Let x : A → R be a maximum s-
t flow in Gb, so that (4) holds. Modify the
capacity function by increasing the capacity
µ(s, j) for arcs (s, j) with j ∈ S ∩ N to +∞
and decreasing the capacity µ(s, j) for arcs
(s, j) ∈ E with j ∈ T ∩ N to 0. Let the ob-
tained network be calledG′. Note that (S, T )
is still a minimum s-t cut in G′ as it was in
Gb, since the arcs (s, j) with j ∈ S ∩ N are
not contained in A(S, T ) and the arcs (s, j)
with j ∈ T ∩N are contained inA(S, T ). On
the other hand, the definition of ϕ in (7) im-
plies that the max-flow value in the modified
network G′ is equal to ϕ(S ∩N). Hence, we
have

µ(S, T )−
∑

j∈T∩N

µ(s, j) = ϕ(S ∩N),

where the left-hand side of the equality
above is equal to the capacity of the s-t cut
(S, T ) after the modification of the capacity
function is performed. Combining the two
previous equalities, we obtain∑

j∈N

x(s, j) = ϕ(S ∩N) +
∑

j∈T∩N

µ(s, j),

from which it follows that∑
j∈S∩N

x(s, j) = ϕ(S ∩N);

x(s, j) = µ(s, j), j ∈ T ∩N,

since x is a feasible s-t flow and therefore
satisfies∑

j∈X

x(s, j) ≤ ϕ(X), X ⊆ N ;

x(s, j) ≤ µ(s, j), j ∈ N.

This implies that set Y∗ = S ∩ N satisfies
(11).1qed

Given a maximum s-t flow in network G, a
minimum s-t cut can be found in O(|A|) =
O(n2) time; see, e.g., [1] and [23].
Thus, each of n iterations of Algorithm De-
comp requires O(n3) time. Applying this al-
gorithm, we find the actual processing times
p(j) of the jobs, and the optimal speeds can
be defined as s(j) = w(j)/p(j).

Theorem 1 The SSP on m parallel machines
to minimize the function (1) can be solved in
O(n4) time.

In the remainder of this section, we consider
the SSP, assuming that the speed cost func-
tions are job-independent, i.e., the speed
cost function becomes Φ of the form (2). In
terms of the decision variables p(j), j ∈ N ,
the objective function is Φ̂ given by

Φ̂ =
n∑
j=1

p(j)f

(
w (j)

p (j)

)
(12)

We show that in this case, the problem can
be solved faster. The basis of our reason-
ing is a non-trivial statement due to [20] and
[21] that reduces the problem of minimizing
(12) to the problem of quadratic optimiza-
tion.

Theorem 2 Suppose that function f in the
definition (12) of Φ̂ is differentiable and
strictly convex. Then, the problem of min-
imizing the function Φ̂(p) under the con-
straint p ∈ B(ϕ) is equivalent to the problem
of minimizing a separable quadratic convex
function

∑n
j=1 p(j)

2/w(j) under the same
constraint.

Thus, to minimize function Φ̂ we do not
need Algorithm Decomp. Instead we can
solve the problem of minimizing a separa-
ble quadratic convex function over a base
polyhedron. In terms of network flow, the
latter problem is a problem of finding a flow
in network G∞ that minimizes a separable
quadratic convex cost function, with non-
zero costs only on the arcs linked to the
source. Exactly such a problem is consid-
ered in [11] and [13], where the problem is
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reduced to the parametric max-flow prob-
lem in networkG and can be solved inO(n3)
time.

Theorem 3 The SSP on m parallel machines
to minimize the function (2) can be solved in
O(n3) time.

Notice that the running time of O(n3) estab-
lished in Theorem 3 is considerably faster
than the best previously known running
time mentioned in Section 1. For a more
general problem in Theorem 1, with job-
dependent speed costs, we are not aware of
any prior results.

5 SOLVING SSP ON SINGLE MA-
CHINE

In this section, we discuss the implementa-
tion of Steps 2 and 3 in an iteration of Al-
gorithm Decomp in the case of a single ma-
chine. As in Section 4, we present our analy-
sis for an iteration with n decision variables.
In scheduling terms, the problem to be
solved in Steps 2 and 3 is a version of a
single machine problem with controllable
processing times to minimize total compres-
sion time. More specifically, the problem
to be solved in Step 2 is that of determin-
ing the actual processing times q(j) of jobs
of set N to maximize the total processing
time

∑
j∈N q(j), provided that no job j is

scheduled outside the interval [r(j), d(j)].
Clearly, to maximize

∑
j∈N q(j) is the same

as to minimize the total compression time∑
j∈N z(j), where z(j) = w(j)− q(j).

The latter problem with controllable pro-
cessing times can be solved by algorithms
developed by [14] and [31]. In particu-
lar, the algorithm by [14] uses the UNION-
FIND technique and guarantees that the ac-
tual processing times of all jobs and the cor-
responding optimal schedule are found in
O(n) time, provided that the jobs are num-
bered in non-increasing order of their re-
lease dates, i.e.,

r(1) ≥ r(2) ≥ · · · ≥ r(n); (13)

additionally, we assume that if r(j) = r(j +
1) for some j ∈ N then d(j) ≤ d(j+1) holds.
The Hochbaum-Shamir algorithm is based
on the latest-release-date-first rule. Infor-
mally, the jobs are taken one by one in the
order of their numbering and scheduled in
a “backwards” manner: each job j ∈ N is
placed into the current partial schedule to
fill the available time intervals consecutively,
from right to left, starting from the right-
most available interval. The assignment of a
job j is complete either if its actual process-
ing time q(j) reaches its upper bound b(j)
or if no available interval within the interval
[r(j), d(j)] is left.
For our purposes, however, we not only need
the optimal values q(j) of the processing
times, but also a set Y∗ ⊆ N with q(Y∗) =
ϕ(Y∗). This can be achieved by a slight
modification of the Hochbaum-Shamir algo-
rithm, which does not affect its linear run-
ning time. In addition, for the resulting set
Y∗ condition (11) holds.
Recall that the meaning of the rank function
ϕ is such that ϕ(X) is the total duration of
all intervals available for processing the jobs
of set X. A job that belongs to the set Y∗ is
called critical. The length of a critical job
cannot be extended (even ignoring its upper
bound) without compromising feasibility of
the schedule. If a job j is not critical, then
the job does not use the whole interval even
if its processing time is fully extended (and
could have been extended further if we had
ignored the upper bound b(j)). Based on
this idea, we can obtain a maximal Y∗ satis-
fying the condition (11) in O(n) time as well.
See [29] where a similar adaptation of the
Hochbaum-Shamir algorithm is presented
to be used to as a subroutine for solving a
certain single machine scheduling problem
with controllable processing times.
We explain the implementation details of
how to compute vector q and set Y∗ in
Steps 2 and 3 of Algorithm Decomp in the
case of a single machine.
In the description of the algorithm below,
the jobs are assumed to be numbered in ac-
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cordance with (13). For a feasible sched-
ule, an interval during which the machine
is permanently busy is called a block. Recall
that a schedule delivered by the Hochbaum-
Shamir algorithm can be seen as a collection
of blocks separated by idle intervals.

Algorithm HSY

Step 1. Set Y 0
∗ := ∅.

Step 2. For each job v from 1 to n do

(a) Schedule job v in accordance with
the algorithm by [14].

(b) If in the current schedule the in-
terval [r(v), d(v)] has no idle time,
then find a block Bv in which
job v completes and determine the
set Y v of all jobs that complete
in the same block; define Y v

∗ :=
Y v−1
∗ ∪ Y v. Otherwise (i.e., if in

the current schedule the interval
[r(v), d(v)] has an idle time), de-
fine Y v

∗ := Y v−1
∗ .

Step 3. Output Y∗ := Y v
∗ and stop.

Each lemma below is applied to schedule Sv,
which is the schedule found in Step 2(a) of
Algorithm HSY for the jobs 1, . . . , v.

Lemma 2 In schedule Sv any job j ≤ v starts
and finishes in one block.

Proof: Suppose [t1, t2] and [t3, t4], where
t1 < t2 < t3 < t4, are two consecutive blocks
in Sv such that job j, j ≤ v, is processed
in each of these blocks. Due to the feasi-
bility of schedule Sv, we have that r(j) <
t2 < t3 < d(j), i.e., the interval [t2, t3] could
be used for processing job j, but is left idle.
This contradicts to the way the Hochbaum-
Shamir algorithm operates.

Lemma 3 If the interval [r(v), d(v)] has no
idle time in schedule Sv, then Y v satisfies
q(Y v) = ϕ(Y v).

Proof: Lemma 2 implies that in Step 2(b)
of Algorithm HSY, Y v is the set of jobs that
start and complete in block Bv. Since job v
has the smallest release date among all jobs
in schedule Sv and the interval [r(v), d(v)]
has no idle time, it follows that block Bv

contains the interval Î = [r(v), t], where
t = max{d(j)|j ∈ Y v}. Let δ denote the to-
tal length of all busy subintervals within the
interval Î . Then q(Y v) = t − r(v) − δ. On
the other hand, no job of set Y v can start be-
fore time r(v), complete after time t and be
assigned to the intervals which are already
busy, so that ϕ(Y v) = t − r(v) − δ. Thus,
q(Y v) = ϕ(Y v).

Note that the set Y∗ which is output in
Step 3 of Algorithm HSY is given as the
union of sets Y 1, Y 2, . . . , Y n, and each Y v

(v = 1, 2, . . . , n) satisfies q(Y v) = ϕ(Y v) by
Lemma 3. By the submodularity of ϕ, the
equality q(Y∗) = ϕ(Y∗) holds.
For job v ∈ H , if [r(v), d(v)] has no idle time
in Sv, then v is included in Y v, and therefore
v ∈ Y v ⊆ Y∗ holds. Hence, if v ∈ H \ Y∗,
then [r(v), d(v)] has idle time in Sv, implying
that q(v) = b(v). Thus, set Y∗ found by the
algorithm satisfies the condition (11).
Recall that the Hochbaum-Shamir algo-
rithm manipulates the intervals of machine
availability organized in sets of contiguous
intervals. In particular, it uses the FIND
function to determine the set that contains
any given original interval by retrieving
the first interval in that set. Moreover, it
uses the procedure UNION to merge two
sets of intervals into a new set. Since the
Hochbaum-Shamir algorithm actually de-
termines the length of processing of each
job v in the original intervals of availability,
the required block Bv (the set of intervals
that contains the latest interval for process-
ing job v) will be found (see Step 2(b)). To
be able to determine the set Y v of the jobs
in block Bv, we assume that for each block
(or a set of intervals) the list of jobs assigned
to be processed in this block is maintained.
Once the jobs of set Y v are added to set
Y v
∗ , the corresponding block together with
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its list of jobs is deleted. When two sets of in-
tervals merge (a larger block is formed), the
corresponding lists of jobs are linked. Thus,
the running time of the original algorithm
by Hochbaum and Shamir is not affected.
Algorithm HSY can be used to implement
Steps 2 and 3 of Algorithm Decomp. The
jobs can be renumbered in accordance with
(13) once inO(n log n) time, so that the over-
all running time of Algorithm Decomp is
O(n log n + nT23(n)) = O(n2), and the fol-
lowing statement holds.

Theorem 4 The SSP on a single machine to
minimize the function (1) can be solved in
O(n2) time.

6 CONCLUSION

In our study, we have provided a new
methodology for solving the speed scaling
problem (SSP) based on submodular opti-
mization. Exploiting the properties of the
underlying submodular optimization model
for different versions of the SSP, we produce
three efficient algorithms, two of which are
based on the decomposition method by Fu-
jishige [10].
For the model with a single machine and
job-dependent speed cost functions fj , the
decomposition algorithm can be imple-
mented in O(n2) time, matching the best
known running time given in [17] for the
special case of the problem with a speed cost
function f common for all jobs. In fact, all
previously known algorithms for single ma-
chine speed scaling, including the famous
YDS algorithm can be seen as implementa-
tions of Algorithm Decomp; see [30] for de-
tails.
For a multi-machine model, our approach
achieves a substantial speed up in compari-
son with the existing ones by [4] and [6].
The proposed methodology provides a new
insight into the underlying optimization
model and demonstrates a potential for han-
dling advanced features of enhanced mod-
els. It delivers the first efficient solution al-
gorithm to the most general multi-machine

model with job-dependent speed cost func-
tions fj .
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