

KEYWORDS

XML, SOA, Context, Trustworthiness,
ConfiguredService.

1 INTRODUCTION

In service oriented applications, the three
main activities are service publication,
service discovery and service provision.
Service publication refers to defining the
service contract by service providers and
publishing them through available
service registries. Service discovery
refers to the process of finding services
that have been previously published and

that meet the requirements of a service
requester [1]. Typically, service
discovery includes service query, service
matching, and service ranking. Service
requesters define their requirements as
service queries. Service matching refers
to the process of matching the service
requester requirements, as defined in the
service query, with the published
services. Service ranking is the process
of ordering the matched services
according to the degree they meet the
requester requirements. The ranking will
enable the service requester to select a
specific or a most relevant service from
the list of candidate services. Service
provision refers to the process of
executing a selected service. The
execution may include some form of an
interaction between the service requester
and service provider.

A service, when published, defines the
contract that it can guarantee. However,
a service cannot guarantee its contract in
all situations. It can only guarantee it in
a predefined set of conditions related to
the context of the service consumer and
requester. Contextual information is any
information used to characterize the
situation of an entity, such as location,
time and purpose [2]. In addition, legal
rules will further constrain the
publication and provision of services.
For example, a wireless Internet provider
may include in the service contract a
guarantee of excellent quality, but this
guarantee is not absolute. It may have a

Languages for the Publication and Discovery of
Context-dependent Services

261

Naseem Ibrahim Ismail Al-Ani
Albany State University Ittihad University

Albany, GA, USA RAK, UAE
 naseem.ibrahim@asurams.edu iialani@ittihad.ac.ae

ABSTRACT

FrSeC is a framework for the provision
and composition of trustworthy context-
dependent services. To support FrSeC,
this paper introduces the ConfiguredService
Description Language (CSDL) and the
ConfiguredService Query Language
(CSQL). CSDL is an XML based language
for the description of ConfiguredServices by
service providers. This description is
published through service registries to
enable the discovery of these services.
ConfiguredService is a package in which the
service contract, functionality, nonfunctional
properties are bundled with the associated
contextual conditions. CSQL is another
XML based language that can be used by
service requester to query the service
registry for available ConfiguredServices. A
case study is also presented to illustrate the
use of CSDL and CSQL.

constraining condition stating that in
order to ensure excellent quality; the
consumer should be located within 100
meters from the wireless station. This
constraint is related to the contextual
information of the service consumer.

In addition, local legal rules may black-
out wireless service in secure-critical
locations. Such legal rules should also be
part of the contract. A distinction should
be made between legal rules and
nonfunctional requirements. If a
nonfunctional property is ’a soft’
requirement it may be ignored. However
ignoring a legal rule is equivalent to a
’legal violation’, which might land in
legal disputes and even lead to loss of
entire business. In essence, not enforcing
a legal rule prevents the execution of a
contract. Almost all current approaches
use only functional and nonfunctional
properties to enable the publication,
discovery and provision of services. In
the literature [3], no distinction is made
between legal rules and non-functional
properties. Failure to include contextual
information and legal rules will only
mislead the consumer to believe in
excellent quality of wireless service,
regardless of where the consumer is
domiciled. We have introduced
contextual information and legal rules in
service contracts in the newly introduced
service model called ConfiguredService.

In recent publications [4], [5] and [6],
we have given a formal framework,
called FrSeC, in which service
publications, and service compositions
are formally described. In this paper,
after briefly reviewing this previous
work related to, we present CSDL: the
ConfiguredService Description
Language and CSQL: the
ConfiguredService Query Language.

CSDL is concerned with service
publication while CSQL is concerned
with service discovery.

In Section 2 we briefly review FrSeC. In
Section 3, CSDL is introduced. Section 4
introduces CSQL. Section 5 introduces a
case study from the automotive domain.
Section 6 discuses a prototype
implementation. In Section 7 we briefly
compare our work with related work.
We conclude the paper in Section 8.

2 FrSeC

The introduction of FrSeC was
motivated by the need for a framework
that supports the publication, discovery
and provision of services with context-
dependent contracts. The main elements
of FrSeC are shown in Figure1. A
complete formal definition of FrSeC is
presented in the two recent papers [4]
and [6]. Below is a brief summary of
their features.

Figure 1. FrSeC Architecture.

Service Provider (SP): It is the entity
that provides an implementation of a
service specification. The service
specification is published by the SP
using SRe.

262

Service Registry (SRe): It is a central
repository for services, in which Service
Providers publish their services and PU
discovers services. It includes semantic
definitions for domain specific concepts.

Context Gathering Unit (CGU): FrSeC
contains at least three context gathering
units. One unit collects contextual
information to assist SR in formulating
their service queries. Another unit
collects contextual information relevant
to SP. The third unit collects contextual
information to assist EU and PU in
dynamic planning activities. A central
context manager may be added to
monitor and trigger the adaptive context-
aware behavior of the framework.

Service Requester (SR): It is the entity
requiring a certain functionality to be
satisfied. It represents the client side of
the interaction. It can be an application
or another service. SR defines its
requirements by a service query.

The Authentication Agency (AU): It is
the entity responsible for ensuring
trustworthy access to SRe. It provides
requesters with certificates (token) that
allow them to access SRe. The
certificate type depends on the legal and
contextual information of the requester.

Planning Unit (PU): It is responsible
for managing the service discovery
process by interacting with SR, SRe and
AU. It also defines service composition.
The composition includes defining the
plans that can satisfy a query
requirement. A plan defines the
execution logic of a service or multiple
services that collectively achieve the
functional, nonfunctional and
trustworthiness requirements of the
requester. A complete formal

composition theory is defined in [5].
This theory considers the functional,
nonfunctional, legal and contextual parts
of the service when defining the
composition result.

Plan Selection Unit (PSU): It is
responsible for helping SR to select one
or more plans from the set of plans
received from PU. For each plan
received, it requests additional
information, such as data parameters,
from SR and verifies that the
information in the plan is complete with
respect to the request. If it finds the
information incomplete the chosen plan
is ignored, otherwise the plan is selected
for SR.

Execution Unit (EU): It is responsible
for managing the provision of services.
It executes the selected plan. The
execution process will include
communicating with the service
providers involved in the plan by
sending service requests and obtaining
service responses.

3. CSDL

Service providers publish service
definitions through the service registry
to be available for discovery. In current
approaches, the service contract includes
the functional and nonfunctional
requirements together with any semantic
information the service provider wishes
to make public. But in FrSeC the service
definition is much richer. It includes the
service contract together with the related
contextual conditions. Hence, we
introduce ConfiguredService, which is a
package in which service functionality,
service contract, and service provision
context are bundled together. SP
publishes the ConfiguredService two

263

main elements; namely the contract and
context. The contract includes function,
nonfunctional properties and legal
issues. The context part of the
ConfiguredService includes the main
parts; context info and context rules. The
context info defines the contextual
information of the ConfiguredService.
The context rules define the contextual
information related to SR that should be
true for SP to guarantee its
ConfiguredService contract.

CSDL is used to describe the
ConfiguredServices to be published. The
meta-model of CSDL is shown in Figure
2. The two main elements of a
ConfiguredService are contract and
context. Below is detailed discussion of
each of these elements and how they are
supported by CSDL.

 Figure 2. CSDL Meta-model.

3.1 Contract

The contract includes function,
nonfunctional properties and legal
issues. Below is a brief introduction of
each element followed by the XML
schema definition.

Function: ConfiguredService provides a
single function. The function definition
will include the function signature,
result, preconditions and postconditions.
The signature part defines the function
identifier, the invocation address, and
the parameters of the function. Each
parameter has an identifier and a type.
The result part defines the returned data
of the service function. The
preconditions define the conditions that
should be true before the function
invocation. The postconditions define
the conditions that are guaranteed to be
true after the function invocation. Below
is the XML schema for defining function
using CSDL.

<xs:complexType name="Precondition">
 <xs:sequence>
 <xs:element name="Condition" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="Postcondition">
 <xs:sequence>
 <xs:element name="Condition" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="Signature">
 <xs:sequence>
 <xs:element name="ID" type="xs:string"/>
 <xs:element name="Address" type="xs:string"/>

<xs:element name="Parameter" type="Parameter"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
</xs:complexType>
<xs:complexType name="Parameter">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="DataType" type="xs:string"/>
 <xs:element name="DefaultValue" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="Return">
 <xs:sequence>
 <xs:element name="ID" type="xs:string"/>

<xs:element name="Parameter" type="Parameter"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
</xs:complexType>
<xs:complexType name="Function">
 <xs:sequence>
 <xs:element name="Signature" type="Signature"/>

264

 <xs:element name="Return" type="Return"/>
<xs:element name="Precondition" type="Precondition"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Postcondition" type="Postcondition"
minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
</xs:complexType>

Nonfunctional properties: A
ConfiguredService definition includes
nonfunctional properties that it can
guarantee. These properties are to be
chosen carefully so that they are
verifiable, and encompass both quality
and quantity aspects of service.
Trustworthiness and Price are examples.
Trust itself is further divided into
ConfiguredService trust and provider
trust. ConfiguredService trust defines
the trustworthiness properties that are
related to service provision. It includes
the features safety, security, availability,
and reliability [7]. Safety defines the
critical conditions that are guaranteed to
be true by Service Providers, such as
timing conditions. Security is a
composite of data integrity and
confidentiality. Availability can be
defined as the extent of readiness for
providing correct services. Availability
is specified as the maximum accepted
time of repair until the service returns
back to operate correctly. Reliability is
the quality of continuing to provide
correct services despite a failure. It is
defined as the accepted mean time
between failures. Below is the XML
schema for defining reliability and
availability using CSDL.

<xs:complexType name="Reliability">
 <xs:sequence>
 <xs:element name="constraint" minOccurs="0"/>
 <xs:element name="reliabilityRate" type="xs:double"
minOccurs="0"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="Availability">
 <xs:sequence>
 <xs:element name="constraint" minOccurs="0"/>
 <xs:element name="availabilityRate" type="xs:double"
minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

Provider trust defines the trustworthiness
properties that are related to the Service
Provider. It may include
recommendations from other clients and
organizations, and lowest prices
guarantees. There is no agreed upon
definition for Provider trust. The main
issue here is the inclusion of verifiable
information that makes a seller trusted.
Below is the XML schema for defining
client recommendations and price
guarantees in CSDL.

<xs:complexType name="ClientRecommendation">
 <xs:sequence>
 <xs:element name="Client" type="xs:string"/>
 <xs:element name="Recommendation" type="xs:double"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="OrganizationalRecommendation">
 <xs:sequence>
 <xs:element name="Organization" type="xs:string"/>
 <xs:element name="Recommendation" type="xs:double"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="PriceGuarantee">
 <xs:sequence>
 <xs:element name="Price" type="Price"/>
 <xs:element name="Guarantee" type="xs:boolean"/>
 </xs:sequence>
</xs:complexType>

Legal Issues: One of the essential
elements of the ConfiguredService
contract is the set of legal rules that
constrain the contract. Business rules,
such as refund conditions, interest and
administrative charges, and payment
rules, form one part of legal issues.
Another part is the set of trade laws
enforced in the context of service request
and delivery. Examples of the later kind
are service requester’s rights, privacy
laws, and censor rules. Below is the
XML schema for defining payment rules
using CSDL.

<xs:complexType name="PaymentRules">
 <xs:sequence>
 <xs:element name="PaymentTime" type="PaymentTime"/>

<xs:element name="PaymentMethod"
type="PaymentMethod" maxOccurs="unbounded"/>
<xs:element name="PaymentDiscount"
type="PaymentDiscount" minOccurs="0"/>
<xs:element name="PaymentMethodFee"
type="PaymentMethodFee" minOccurs="0"

 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

265

3.2 Context

The context part of the
ConfiguredService will include the main
parts; ConfiguredService context and
context rules. The ConfiguredService
context defines the contextual
information of the ConfiguredService.
Context is formally defined in [8] using
dimensions and tags along the
dimensions. We illustrate context
specification using the three dimensions
WHERE, WHEN and WHO. The
dimension WHERE is associated with a
location, which may be one or more of
{Point, Region, Address, Route, URI,
IP}. The dimension WHEN is associated
with temporal information, such as time
and date. The dimension WHO is
associated with subject identities, such
as the names of Service Providers and
Service Requesters. We can also use
WHO dimension to associate
information from job roles. The context
rules define the contextual information
related to the Service Requester that
should be true for the Service Provider
to guarantee the contract associated with
the ConfiguredService. Rules are
defined as logical expressions within the
first order predicate logic (FOPL).
Below is the XML schema for defining
an address using CSDL.

<xs:complexType name="Address">
 <xs:sequence>

<xs:element name="StreetAddress" type="xs:string"
minOccurs="0"/>
<xs:element name="Unit" type="xs:string"
minOccurs="0"/>
<xs:element name="PostalCode" type="xs:string"
minOccurs="0"/>
<xs:element name="Region" type="Region" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="PhoneNumber" minOccurs="0"
maxOccurs="unbounded">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="Number" type="xs:string"/>
 <xs:element name="Ext" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

4 CSQL

The ConfiguredService Query Language
CSQL is an XML based language used
for the specification of service requester
requirements. The meta-model of CSQL
is shown in Figure 3. The Service Query
consists of the four main parts required
function, required legal issues, required
nonfunctional properties and requester
and consumer context. Each element is
specified by the service requester. Also,
a service requester assigns a weight to
each requirement. This weight defines
the priority of each requirement and is
used in ranking the set of candidate
ConfiguredServices when matching is
performed.

 Figure 3. CSQL Meta-model.

The required functional properties
defines the functionality required by the
service requester and is defined in terms
of the domain, functionality name,
preconditions and postconditions. Below
is the XML schema for specifying the
required function in CSQL.

<xs:element name="RequiredFunction">
 <xs:complexType>
 <xs:sequence>

<xs:element name="Precondition" minOccurs="0"
maxOccurs="unbounded">

 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Precondition">
 <xs:sequence>

 <xs:element name="weight" type="xs:int"/>

266

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

<xs:element name="Postcondition" minOccurs="0"
maxOccurs="unbounded">

 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="Postcondition">
 <xs:sequence>

 <xs:element name="weight" type="xs:int"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Functionality" type="xs:string"/>
 <xs:element name="Domain" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The required nonfunctional properties
define the nonfunctional properties
required by the service requester. The
definition of the nonfunctional properties
in CSQL is identical to the definition of
the nonfunctional properties in CSDL.
The only exception is the addition of the
weights. The required legal rules are the
legal rules required by the service
requester. Its definition is also identical
to the definition in CSDL with the
addition of the weights. The contextual
information of the service requester and
consumer also use the same definition of
the contextual information in CSDL.

5 AUTOMOTIVE CASE STUDY

In this section, we illustrate the use of
CSDL and CSQL on a case study chosen
from the automotive industry. This case
study has been used in the literature of
SOA by several researchers [9] and [10].

Vehicles today are equipped with
multiple sensors and actuators that
provide the driver with services that
assist in driving the vehicle more safely,
such as vehicle stabilization systems.
Here we will focus on the road
assistance scenario. This scenario deals
with the case of a car failure. For

example, the vehicles oil lamp indicates
low oil level. This will trigger the
diagnostic system to analysis the values
obtained by the oil level sensor. The
diagnostic system then reports, for
example, the failure in one cylinder head
and the car is no longer drivable. This
information and the location information
obtained from the GPS system is send to
the road assistance center. The road
assistance center will use this
information to identify the appropriate:
repair shop (garage), tow truck and car
rental. After that, the driver makes an
appointment with the repair shop, the
results of the diagnosis are automatically
sent to the repair shop, which will allow
the garage to identify the spare parts
needed to repair the car. When the driver
orders a tow truck and a rental car, the
GPS coordinates of the vehicle and
repair shop are sent along. The driver is
required to deposit a security payment
before being able to order any service.
Each service can be denied or canceled,
causing an appropriate compensation
activity.

Here, we are focusing on single service
request and response, and not
considering composition. We will
assume that the requests are done
sequentially and not simultaneously.
First a request for repair shop is
performed, and then the driver makes an
appointment with this repair shop.
Second, a request for a tow truck is
performed, and then the driver calls the
tow truck company. Finally, a request
for a car rental is performed, and the
driver calls the car rental company. We
focus here on illustrating the
specification of the ConfiguredServices
providing repair shops using CSDL and
the specification of the query for the
repair shop using CSQL.

267

Figure 4. ConfiguredServices Details.

Repair shops Service Providers access
the Registry to publish their services.
They search for the appropriate domain
until they find the Repair shop domain.
Under this domain they search for the
appropriate functionality which is in this
case Reserve. Then, they will verify that
their parameters are defined under the
Reserve functionality. Next, Service
Providers will publish the
ConfiguredServices.

The service registry contains 5
ConfiguredServices that provide the
repair shop functionality. The details of
these ConfiguredServices are shown in
Figure 4.

The 5 ConfiguredServices were
specified using CSDL. Due to space
limitation, we will only state sample
parts of the CSDL specification of the
ConfiguredService Repair-Shop1. We
will first start by the CSDL specification
of the contract elements function,
nonfunctional and legal issues.

<Function>
 <Signature>
 <ID>ReserveRS</ID>

 <Address>XXX.XXX</Address>
 <Parameter>
 <Name>CarBroken</Name>
 <DataType>bool</DataType>
 </Parameter>
 <Parameter>
 <Name>deposit</Name>
 <DataType>double</DataType>
 </Parameter>
 <Parameter>
 <Name>CarType</Name>
 <DataType>string</DataType>
 </Parameter>
 <Parameter>
 <Name>failureType</Name>
 <DataType>string</DataType>
 </Parameter>
 </Signature>
 <Return>
 <ID>ResultRS</ID>
 <Parameter>
 <Name>HasAppointment</Name>
 <DataType>bool</DataType>
 </Parameter>
 <Parameter>
 <Name>numberOfHours</Name>
 <DataType>int</DataType>
 </Parameter>
 </Return>
 <Precondition>
 <Condition>CarBroken==T</Condition>
 </Precondition>
 <Postcondition>
 <Condition>HasAppointment==T</Condition>
 </Postcondition>
</Function>
<NonFunctional>
 <Price>
 <value>60</value>
 <currency>dollar</currency>
 <unit>hour</unit>
 </Price>
 <ProviderTrust>
 <ClientRecommendation>
 <Client>ClientX</Client>
 <Recommendation>4</Recommendation>
 </ClientRecommendation>
 <ClientRecommendation>
 <Client>ClientY</Client>
 <Recommendation>6</Recommendation>
 </ClientRecommendation>
 </ProviderTrust>

268

</NonFunctional>
<LegalIssue>
 <PriceCondition>
 <Price>
 <value>60</value>
 <currecny>dollar</currecny>
 <unit>hour</unit>
 </Price>
 <Condition>CarType==toyota</Condition>
 </PriceCondition>
 <DepositRule>
 <Amount>300</Amount>
 <Currency>dollar</Currency>
 <Rule>On Time</Rule>
 <Date>2011-07-30</Date>
 <Time>00:00:00</Time>
 </DepositRule>
<Warranty>
 <Duration>3</Duration>
 <Condition>No Condition</Condition>
 </Warranty>
</LegalIssue>

Below is the CSDL specification of the
Repair-Shop1 ConfiguredService
context part.

<Context>
 <ContextInfo>
 <Location>
 <Region>
 <Type>City</Type>
 <Name>Montreal</Name>
 </Region>
 /<Location>
 </ContextInfo>
 <RequesterContextRules>
 <WhoRequester>
 <Membership>CAA</Membership>
 </WhoRequester>
 </RequesterContextRules>
</Context>

The Service Requester, in this case the
Vehicle, accesses the Service Registry to
find the domain and functionality, in this
case Repair shop and Reserve. The
Service Requester will then access the
functionality parameters and will use
them in defining the Service Query.
Figure 5 shows the Service Query.

 Figure 5. Service Query Details.

Next is the CSQL specification of this
Query.

<Query-w>
 <RequiredFunction>
 <Precondition>
 <Condition>CarBroken==T</Condition>
 <weight>6</weight>
 </Precondition>
 <Postcondition>
 <Condition>HasAppointment==T</Condition>
 <weight>6</weight>
 </Postcondition>
 <Functionality>Reserve</Functionality>
 <Domain>RepairShop</Domain>
 </RequiredFunction>
 <RequiredNonFunctional>
 <Price>
 <value>45</value>
 <currecny>dollar</currecny>
 <unit>hour</unit>
 <weight>3</weight>
 </Price>
 <ProviderTrust>
 <ClientRecommendation>
 <weight>3</weight>
 <value>4</value>
 </ClientRecommendation>
 </ProviderTrust>
 </RequiredNonFunctional>
 <RequiredLegalIssue>
 <PriceCondition>
 <Price>
 <value>60</value>
 <currecny>dollar</currecny>
 <unit>hour</unit>
 </Price>
 <Condition>CarType==toyota</Condition>
 </PriceCondition>
 <DepositRule>
 <Amount>280</Amount>
 <Currency>dollar</Currency>
 <Rule>NoRule</Rule>
 <Date>2011-07-30</Date>
 <Time>00:00:00</Time>
 </DepositRule>
 <Warranty>
 <Duration>3</Duration>
 <Condition>NoCondition</Condition>
 </Warranty>
 <Rights>String</Rights>
 <weight>6</weight>
 <weight>4</weight>
 <weight>5</weight>
 </RequiredLegalIssue>
 <RequesterContext>
 <WhoRequester>
 <Membership>CAA</Membership>
 </WhoRequester>
 </RequesterContext>
 <AuthenticationCertificate>Certificate
 Type1</AuthenticationCertificate>
</Query-w>

The Service Query is send to the
Planning Unit. The Planning Unit will
then send service lookups to the Service
Registry. The lookups result will be
matched with the Service Query
requirements by the Planning Unit. The
Planning Unit will also rank the
matching result. The matching and

269

ranking result of the case study is shown
below:

• ConfiguredService RepairShop5
is matched by 100.0%

• ConfiguredService RepairShop4
is matched by 88.19%

• ConfiguredService RepairShop1
is matched by 83.33%

• ConfiguredService RepairShop2
is matched by 80.56%

• ConfiguredService RepairShop3
is matched by 78.12%

6 IMPLEMENTATION

A Java based application has been
implemented to represent the Planning
Unit. This application takes as input the
set of ConfiguredService that provide a
specific functionality as returned from
the service registry, and the service
query. The application will then match
between the service query and the
candidate ConfiguredServices taking
into consideration the functional,
nonfunctional, legal, and contextual
information. Two types of matching
have been implemented:

1) exact match and,
2) weighted match.

The ranking algorithm has also been
implemented.

The application was tested on a standard
PC using an Intel Centrino processor
with 4GB of memory and running
Windows 7 Professional. The testing
was on multiple case studies including
an extended version of the case study
represented in the previous section. The
average matching and ranking time was
in milliseconds for each
ConfiguredService which eliminate the
concerns of scalability issues.

7 RELATED WORK

Related work can be divided into related
provision frameworks, and related
service discovery and ranking
approaches. Related frameworks, such as
eFlow [11], SELFSERV [12] and
SWORD [13] do not provide support for
including contextual information. On the
other hand, frameworks such as SeGSeC
[14], SHOP2 [15] and Argos [16] do
provide some support to include
contextual information but context is not
formally represented and the relationship
between the contract and context is
never considered. To our knowledge, no
published framework supports all the
features of FrSeC presented in Section 2.
They do not support the formal
specification of legal rules and
contextual information, and the
relationship between context and
contract.

Related work such as [17] and [18], on
discovery and ranking use only
functionality to enable the discovery and
ranking of services. Approaches, such as
[19], [20], [21] and [22] use
nonfunctional properties to enhance
service discovery and ranking. However,
none of the available approaches use
collectively functional, nonfunctional,
legal, and contextual information in
service discovery and ranking. In our
work we do it, and we use formalism
selectively in the different stages. This
effort has led to the formal verification
of the matching result and the
satisfaction of the contractual and
contextual obligations. No other
approach does that.

270

8 CONCLUSIONS AND FUTURE
WORK

We have presented FrSeC that supports
the publication, discovery, and provision
of services with context-dependent
contracts. FrSeC is formally based and
considers legal rules and contextual
conditions during service provision. It
also supports an adaptive re-discovery
and re-ranking operations. We are
currently working on a complete
implementation of FrSeC and associated
tools.

REFERENCES

1. Papazoglou, M.P.: Web Services: Principles

and Technology. first edn. Prentice Hall
(2008)

2. Dey, A.K.: Understanding and using
context. Personal Ubiquitous Comput. 5(1)
(2001) 4–7

3. OSullivan, J.: Towards a Precise
Understanding of Service Properties. Phd
thesis, Queensland University of
Technology, Brisbane, Australia (September
2007)

4. Ibrahim, N., Mohammad, M., Alagar, V.:
Managing and delivering trustworthy
context dependent services. In: Proceeding
8th IEEE International Conference on e-
Business Engineering (accepted), IEEE
Computer Society (October 2011)

5. Ibrahim, N., Alagar, V., Mohammad, M.:
Specification and verification of context-
dependent services. In: Proceeding of the
7th Int’l Workshop on Automated
Specification and Verification of Web
Systems (WWV2011), Reykjavik, Iceland
(June 2011)

6. Ibrahim, N., Mohammad, M., Alagar, V.:
An architecture for managing and delivering
trustworthy context-dependent services. In:
Proceeding of the 8th IEEE International
Conference on Services Computing,
Washington, DC, USA, IEEE Computer
Society (July 2011)

7. Mohammad, M., Alagar, V.: A formal
approach for the specification and
verification of trustworthy component-based

systems. J. Syst. Softw. 84(1) (2011) 77 –
104

8. Wan, K.: Lucx: Lucid Enriched with
Context. Phd thesis, Concordia University,
Montreal, Canada (January 2006)

9. ter Beek, M.H., Gnesi, S., Koch, N.,
Mazzanti, F.: Formal verification of an
automotive scenario in service-oriented
computing. In: Proceedings of the 30th
international conference on Software
engineering. ICSE ’08, New York, NY,
USA, ACM (2008) 613–622

10. Berndl, D., Koch, N.: Sensoria automotive
scenario: Illustrating service specification.
Technical report, - FAST, No. 2 (August
2007)

11. Casati, F., Ilnicki, S., Jin, L.j.,
Krishnamoorthy, V., Shan, M.C.: Adaptive
and dynamic service composition in eflow.
In: Proceedings of the 12th Int’l Conference
on Advanced Info. Systems Engineering,
Springer-Verlag (2000) 13–31

12. Sheng, Q.Z., Benatallah, B., Dumas, M.,
Mak, E.O.Y.: Self-serv: a platform for rapid
composition of web services in a peer-to-
peer environment. In: Proceedings of the
28th international conference on Very Large
Data Bases, VLDB Endowment (2002)
1051–1054

13. Ponnekanti, S.R., Fox, A.: Sword: A
developer toolkit for web service
composition. In: Proceedings of the 11th
International WWW Conference. (2002)

14. Fujii, K., Suda, T.: Semantics-based context-
aware dynamic service composition. ACM
Trans. on Autonomous and Adaptive
Systems 4(2) (2009) 1–31Hyvarinen, A.,
Oja, E.: Independent Component Analysis:
Algorithms and Applications. Neural
Networks 13, 411--430 (2000).

15. Wu, D., Parsia, B., Sirin, E., Hendler, J.,
Nau, D., Nau, D.: Automating daml-s web
services composition using shop2. In:
Proceedings of 2nd International Semantic
Web Conference. (2003)

16. Ambite, J.L., Weathers, M.: Automatic
composition of aggregation workflows for
transportation modeling. In: Proceedings of
the 2005 national conference on Digital
government research, Digital Government
Society of North America (2005) 41–49

17. Lu, H.: Semantic web services discovery
and ranking. In: Proceedings of the 2005
IEEE/WIC/ACM International Conference
on Web Intelligence. WI ’05, Washington,

271

DC, USA, IEEE Computer Society (2005)
157–160

18. Bellur, U., Vadodaria, H.: Web service
ranking using semantic profile information.
In: Proceedings of the 2009 IEEE
International Conference on Web Services,
Washington, DC, USA, IEEE Computer
Society (2009) 872–879

19. Al-Masri, E., Mahmoud, Q.H.: QoS-based
discovery and ranking of web services. In:
Proceedings of the 16th International
Conference on Computer Communications
and Networks. (2007) 529–534

20. Guo, L.y., Chen, H.p., Yang, G., Fei, R.y.: A
QoS evaluation algorithm for web service
ranking based on artificial neural network.
In: Proceedings of the 2008 International
Conference on Computer Science and
Software Engineering - Volume 02, IEEE
Computer Society (2008) 381–384

21. Rajendran, T., Balasubramanie, P.: An
optimal agent-based architecture for
dynamic web service discovery with qos. In:
Proceedings of the Second IEEE
International Conference on Computing
Communication and Networking
Technologies. (july 2010) 1 –7

22. Yan, J., Piao, J.: Towards qos-based web
services discovery. In Feuerlicht, G.,
Lamersdorf, W., eds.: Service-Oriented
Computing-ICSOC 2008 Workshops.
Volume 5472 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2009)
200–210

272

