

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

DESIGN AND IMPLEMENTATION OF CACHE
MANAGER FOR HYBRID STORAGE

Seongjin Lee, Youjip Won

Department of Electronics and Computer Engineering

Hanyang University, Seoul, Korea

E-mail: {insight|yjwon}@hanyang.ac.kr

ABSTRACT

The technology and cost barrier of the SSD motivated

many research groups and companies to merge the SSD

with low cost and large capacity storage device, Hard

Disk Drive (HDD). As the NAND flash memory

technology is getting more advanced, price of NAND

flash memory dropped dramatically. As number of bits

per cell in NAND flash memory is increasing, the price

of $/GByte is reduced. This trend will continue until the

market sought for another media as a stable and fast

storage media. NAND flash based Solid State Drive

(SSD) is considered as a choice for replacing Hard Disk

Drive (HDD) to reduce and minimize the gap between

IO latency DRAM of a storage device. In this work, we

first examine three existing cache manager solutions

and study if advertised measurements hold in in-house

benchmark environment. We describe what has to be

considered in implementing cache managers, and also

describe design and implementation of a cache manager

and measure its caching performance.

KEYWORDS

Hybrid Storage, Cache Manager, SSD, Performance

Evaluation, Machine Learning

1 INTRODUCTION

As the NAND flash memory technology is getting

more advanced, price of NAND flash memory

dropped dramatically [1]. As number of bits per

cell in NAND flash memory is increasing, the price

of $/GByte is reduced. This trend will continue

until the market sought for another media as a

stable and fast storage media. NAND flash based

Solid State Drive (SSD) is considered as a choice

for replacing Hard Disk Drive (HDD) to reduce

and minimize the gap between IO latency DRAM

of a storage device. Making decision on changing a

main storage device from HDD to SSD is not easy

because capacity of a SSD is not as large as HDD

and as cheap as HDD. Recently number of works

has proposed to use SSD as a cache device for a

HDD.

One most attractiveness of using a SSD as a
cache device in a storage system is that it provides

faster storage performance and better life time of

SSD. When a SSD is used as a cache device on a

storage system and used a read cache, users can

enjoy faster random IO performance. As it is

known, benefit of SSD over a HDD is IO

performance, and power. So, SSD in a hybrid

storage system not only allows a HDD to stay in

spin down state but also reduce power

consumption significantly [2]. Another benefit of

having SSD as a cache in a storage system is

shortened application launch time. A research [3]

shows that by allocating files accessed in launch

time to SSD speeds up the application launch

process.

It seems like market has interest in hybrid

storage solutions as well. There are a few

manufacturers including Intel that tries to provide

hybrid storage solutions. Intel provides Rapid

Storage Technology which includes hybrid

storage enabler called Smart Response

644

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

Technology [4]. Their product significantly

reduces IO bottleneck by using SSD as cache

device. Marvell [5] and SilverStone [6] are also

interested in providing hybrid storage solutions

with host controllers at a low price. Recently

Samsung announced that they acquired storage

caching software company Nvelo [7] which

shows how serious the industry takes caching

business in storage system. Nvelo is a software

company specialized in cache managers. One of

their products is DataPlex [8], a nonvolatile cache

management solution. There are number of SSD

form-factors that are different in size and shape to

meet various criteria of vendors and users. The

fact there are various form-factors makes difficult

for Hardware solutions like HyperDuo [5] or

HDDBoost [6] to cover all the needs. Software

solutions like DataPlex [8] are certainly has

meaningful position in the market.

In this work, we first examine existing cache

manager solutions and study if advertised

measurements hold in in-house benchmark

environment. Next, we describe what has to be

considered in implementing cache managers. We

also provide design and implementation of a

cache manager and measure its caching

performance.

In Section 2, we describe the works that are

done in field of hybrid storage. Section 3

compares three storage systems: HDD, SSD,

hybrid disk. Section 4 describes benchmark

environment and workload we used in the

benchmark. Section 5 explores performance of

existing cache manager solutions and compares

its advertised solution against actual

measurements. Section 6 describes design and

implementation of cache manager, and Section 7

describes the result of using the cache manager.

Section 8 concludes the paper.

2 RELATED WORK

There a number of works that tries to improve

energy consumption and IO performance by using

hybrid storage system that exploits SSD as a cache

device. Kgil et al. [9] proposed NAND flash based

disk cache in server system. The disk cache is

separated into read and write regions and serves

different purposes depending on types of requested

IO. The system improved power consumption up to

3 times compared to HDD only system. Hsieh et al.

[10] shows another flash memory based cache

system that reduces energy. Their trace driven

simulation shows that 20% of energy can be saved

while two thirds of response time is reduced by

using the flash memory. Byun [11] proposed index

management scheme in hybrid storage system,

which enhances search and update performance by

caching data objects. The proposed scheme tries to

minimize the number of update operation in flash

memory. Bisson et al. [12] proposes to use flash

memory to reduce long write IO latency in HDD.

Their result shows that 70% of write latency can be

reduced by using flash memory as nonvolatile

cache.

Some of other works tries to speed up the launch

time of applications by using the hybrid storage

system. Joo et al. [3] proposed to reduce the

application launch time by exploiting hybrid disk

with pinning only a small portion of an application

launch sequence into flash memory. They have

come up with latency model of hybrid storage, and

solved integer linear programming problem to

figure out optimal pinned set that goes to flash

memory. Another work done by Joo et al [13]

extends their previous work [3] and presents SSD-

aware application prefetching scheme.

Many of works in the field of hybrid storage

caching schemes use pattern mining algorithms to

efficiently relocate frequently accessed objects in

storage devices. Zaki proposed SPADE mining

algorithm that discovers pattern sequences. SPADE

algorithm discovers all sequences in only three

database scans [14]. Ayres et al [15] improves

SPADE by exploiting bitmap representation of the

data for efficient counting. Yan et al. [16] proposed

data mining technique called CloSpan to improve

IO performance in storage systems by exploiting

correlations among blocks in storage systems.

CloSpan finds only closed frequent subsequences

which are a subsequence whose support is not

equal to support of its super-sequences. Li et al.

[17] observed that CloSpan only produces the

closed frequent subsequences rather than every

frequent subsequence, which limits the number of

the frequent subsequences. To resolve issue in

645

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

CloSpan, Li et al. proposed more scalable and

space-efficient algorithm using non-overlapping

and relatively large cutting window size.

3 BACKGROUND

3.1 Storage System

In general, storage devices are characterized by

their capacity, bandwidth, throughput, and latency,

which are measured in GB or TB, MB/sec, IOPS,

and msec or µsec, respectively. This section

describes difference in storage devices, and their

characteristics.

HDD: HDD is composed of magnetic disk with

mechanically actuated read/write recording heads.

When the magnetic disk rotates, a concentric

virtual circle called track is created with radius of

defined by location of the recording head on a

disk. The head picks up signals from magnetized

track from the disk. A track is series of sectors of

consecutive bits with same radius. IO latency of a

HDD depends on how fast it can switch between

tracks and find requested sector, which is the

process called seek. Since essential parts of HDD

are managed by mechanical components, it is

inevitable that they are prone to sensitive to noise,

vibration, and shock. Figure 1(a) shows a brief

structure of HDD in logical IO hierarchy.

SSD: Figure 1(b) illustrates a brief structure of

SSD in IO hierarchy. Since SSDs are composed

of NAND flash memory, it has high bandwidth in

random IOs, low power, low noise, and fast

response time. SSDs use Serial-ATA interface

which allows host system to recognize it as a

block device, which allows maneuvering existing

IO subsystem. However, there are significant

distinction between SSD and HDD. What is

special about SSD is that it cannot in-place update

a page which is basic read and write unit of

operation. Instead, updated page has to be out-of-

place updated. For example, upon receiving

update request on a page, the requested page is

invalidated; a new page is allocated for the data.

There is one additional unit of operation. Erase

operation is performed on a block, which is group

of pages. In general, the number of pages in a

block is 128 or 256, depending on choice of

manufacturers. These units of operations have

different latency. Table 1 compares initial

operating time, delay time, power, and noise.

Hybrid Disk: Figure 1(c) illustrates brief

structure of a hybrid disk. The hybrid disk

combines NAND flash media and magnetic disk

as a single storage device. HDD uses the NAND

flash media as a large buffer to store cache data.

The cache device is not visible to the user; thus,

the size of hybrid disk is dependent on the main

storage device. However, physical size of the

hybrid disk should include the size of cache

device as well.

Although many researchers have worked on

hybrid disks, there are still numerous issues that

have to be solved and optimizations to be made.

There are at least four issues in designing a hybrid

disk. First, it is important to determine what

attributes are stored in non-volatile memory in the

hybrid disk. Attributes may be metadata, file, or

logical block address. Length or size of the

attribute also has to be determined. For example,

non-volatile memory may store only partial of a

file, or a whole file. Second issue is to

identification of attributes to be stored. It is

important to maximize the hit ratio and reduce IO

latency via exploiting the cache media, which is

non-volatile memory in the hybrid disk. It would

be preferable to have a silver bullet for identifying

the attributes in all sorts of workloads but in

general, every application tends to create unique IO

requests. Therefore, hybrid disk needs a good

machine learning algorithms with low

computational overhead that identifies the

attributes on-the-fly. Third issue in hybrid disk is

to determine when and how identified attributes are

relocated to cache and flushed back to main storage

device. This leads to fourth issue which is

managing wear-level of non-volatile memory.

NAND flash is a fast device but with limited erase

count.

4 ENVIRONMENT

We conducted all our experiments on a machine

with an Intel 3.3GHz i5-2500, 256KB of L1 cache,

and 6MB of L2 cache. The motherboard was a

646

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

Gigabyte Z68X. The machine contained 4GB of

DDR3 RAM. The system disk was a 7200 RPM

Western Digital (SD10EALX) with 1TB capacity.

The specification of computing environment is

briefly listed on Table 2.

4.1 Workload

We captured three applications to test the

performance of cache manager. Applications are

(i) Boot up (Win7), (ii) Spreadsheet (Excel), and

(iii) Presentation (Powerpoint). Description of

tracing of each application is shown in Table 3.

Figure 2 illustrates request length of read and

write IO of each application.

5 EFFECT OF CACHE MANAGER ON

HYBRID DISKS

In this section we review four different cache
management solutions and compare with a HDD

to illustrate importance of choosing a good cache

manager. We evaluate three hybrid disk solutions

available in the market.

5.1 Cache Manager Solutions

HyperDuo: Figure 3(a) illustrates structure of

HyperDuo [5] with 88SE9130 host controller

which supports two 6Gb/s SATA peripheral

interfaces and a 5.0 Gb/s PCIe host interface.

HyperDuo is connected to host computer with

PCIe host interface and two heterogeneous storage

devices, SSD and HDD, are connected to

HyperDuo with SATA interface. Note that there

are mismatch in maximum transmission speed of

two interfaces. HyperDuo combines two

heterogeneous storage devices in RAID 0 or 1

depending on the mode that user makes. There are

two choices in using HyperDuo. First choice is to

use it in capacity mode, which concatenates two

heterogeneous storage devices, and second choice

(a) HDD

(b) SSD

(c) Hybrid Storage

Figure 1 Disk models and their possible logical structures

Table 1 Device Specification

Spec. SSD [18] HDD [19]

Initial

Operating

Time

1.5s 8s

Delay,

Search Time

Read Latency: 65us

Write Latency: 85us

Avg. search: 12ms

Avg. delay: 4.2ms

Power Active: 150mW

Idle: 75mW

Active: 2500mW

Idle: 960mW

Noise
N/A

Idle Mode: 2.3 Bels

Search Mode: 2.5 Bels

Table 2 Environment

Device Model

CPU Intel i5-2500 3.3Ghz

RAM DDR3 1333MHz 4G

M/B Gigabyte Z68X-UD3H-B3

HDD WD SD10EALX (1T, SATA3, 7200

RPM, 32M)

SSD OCZ-Solid3 60G (SATA3, 20k IOPS)

O/S Win7 32bit Home Premium English ed.

Benchmark PCMark Vantage 1.0.2

HyperDuo [5] Highpoint RocketRAID 62X (Safe Mode)

HDDBoost [6] SilverStone HDDBoost Rev-1.02

SRT [4] Rapid Storage Technology 10.6.0.1002

(Enhanced Mode)

647

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

is to use safe mode, which mirrors the content on

the storage. For example, when 60GB SSD is used

with 500GB HDD, the total size of disk is 560GB

on Capacity mode and 500GB on Safe mode.

Purpose of SSD in this system is to store hot files

in SSD [20]. HyperDuo determines Hot files to

load to SSD. Some categories of files that it

relocates are files from Office, Media player,

Adobe Creative Suites, iTunes, Internet Browsers,

and OS-related files.

HDDBOOST: Figure 3(b) illustrates structure of

HDDBoost [6] with three SATA ports. HDDBoost

is a RAID 1 controller with data caching ability.

HDDBoost modifies the traditional RAID 1

controller to mirror the HDD storage area to the

SSD. Unlike HyperDuo, HDDBoost uses SATA

interface and provides mirror mode only.

HDDBoost connects host system and two

heterogeneous storage devices with SATA

interface. At the initial phase, fixed area with size

of SSD is mirrored to SSD. In a way to preserve

program/erase cycle of SSD, HDDBoost reads

from SSD first but writes to HDD first and

accesses the other device. HDDBoost exploits the

fact that random IO is fast in SSD, and seek time

in HDD is time consuming.

SRT: Smart response Technology, SRT [4] tries

to provide SSD-like system responsiveness by

directly embedding its core technology in Z68

chipset. The motherboard chipset includes RAID

controller. Two heterogeneous devices are

attached to motherboard without any other extra

peripherals because all are integrated to the

motherboard. There are two modes of operation

available in SRT enabled motherboard: Enhance

mode and Maximized mode. Enhanced mode uses

Write-thru and Maximized mode uses write-back

mode. There might be performance gain in using

Maximizing mode that uses write-back. Unlike

storage system with volatile cache, SRT uses SSD

as a cache storage, which means it has tolerance

against power failures and corruption of data.

5.2 Performance of the Cache Solutions

We used benchmarking environment illustrated in

Table 2. PCMark Vantage 1.0.2 is used to

benchmark different cache manager solutions.

Table 4 illustrates advertised performance of

given cache manager solution and measured

performance. The in-house benchmark result

shows that HyperDuo and HDDBoost show about

half the advertised performance, whereas SRT

shows about 20% better performances than the

advertised. Note that models used in the

benchmark are not the same; however, SSD used

in in-house benchmark is a higher throughput

device and yet the measurements read lower

scores on PCMark Vantage. Only SRT seems to

reflect the performance gap in using higher

throughput device.

(a) Boot up

(b) Spreadsheet

(c) Presentation

Figure 2 CDF of request length of applications (Unit: sectors)

Table 3 User Workload Scenario

Workload Scenario

Boot-up Booting Win7 home. Log on and stay idle for 3

minutes

Spreadsheet Executing Excel and maintain idle time for 1

minute

Presentation Executing Powerpoint and maintain idle time

for 1 minute

648

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

6 CACHE MANAGER

In this section, we explain our implementation of
cache manager for hybrid storage system. Purpose

of cache manager is to read in an arbitrary IO

trace file to test and optimize various cache

algorithms and to provide insights into how a

cache must be designed. As an output of the cache

manager, we acquire hit ratio and response time

of read and write lOs. There are three parts to the

cache manager. First is IO tracer, which acquires

IOs from a running system. We traced IO traces

from number of applications. Second is mining

algorithm, which finds a frequently accessed

sector address and makes sequences of frequently

accessed sectors. Third is address checker which

combines the result of the tracer and the mining

algorithm to measure hit ratio and response time

of IO requests.

6.1 Implementation of Tracer

Trace used in this paper is acquired using DiskMon

[21] from the same environment described in Table

2. Trace file acquired from DiskMon is not directly

applicable to mining algorithm or to cache

manager because output of the program has many

features that are not required in our application.

DiskMon captures all of IO activities under file

system as shown in Figure 4. Table 5 shows data

format that DiskMon produces. Raw output of

DiskMon is parsed and converted to a format that

the mining algorithm can read. Note that raw

output of DiskMon produces offset of a file not

actual sector address of the file. Our application

consults Master File Table in NTFS to locate the

sector address of the file.

6.2 Implementation of Mining Algorithm

Purpose of mining algorithm in the cache

manager is to find frequently accessed sectors and

relocate them to SSD. Every application has set of

files or sectors that are frequently accessed. Some

example of accessed files is various library files

with extension of “dll.” According to our

experiments, about 50 files are accessed during a

(a) Hyper Duo

(b) HDDBoost

Figure 3 Structure of Cache Manger Solutions

Table 4 User Workload Scenario

 Factory Adv. In-house Measured

HyperDuo X25-M 25,000 OCZ-Solid3 13.676

HDDBoost OCZ800EX 10,600 OCZ-Solid3 6,136

SRT Intel SSD 311 16,548 OCZ-Solid3 19,852

Figure 4 Trace Capturing Tool

Figure 5 Mining Algorithm

649

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

launch time of a spreadsheet program and they are

accessed 946 times in the launch time. Top five

files accessed by the spreadsheet program issues

about 230 IO requests, which is about one fourth

of total IO requests. The mining algorithm

computes to figure out these frequently accessed

sectors and turn them into a sequence of

frequently accessed sectors.

Parsed trace from the tracer is used as input
trace file for mining sequence of frequently

accessed sectors. A naïve way to finding

frequently accessed sectors is to count frequency

of each sector. Frequency counting is a simple and

may serve the purpose of generating table of

frequently accessed sectors; however, it not only

time consuming and does not reflect IO access

behavior of an application.

A better way to reflect IO access behavior of an

application is to find frequently accessed sequence

of sectors. Figure 5 illustrates process of finding

frequently accessed sectors. There are four key

parameters that the mining algorithm uses to

generate the table of frequently accessed sequence

of sectors: Window size notifies large sequence of

sectors that are analyzed in a mining process.

Cutting window size determines a sub-group of

sectors within the window to generate sequences

of sectors for finding frequent sectors. Minimum

support determines if a sequence is qualified as a

sequence with meaningful access count. And,

Maximum gap determines distance of each

sequence, which prevents from overlapping of

sequences.

The algorithm first segments given trace file into
a window. Then, it looks for most frequently

accessed sector address. Upon finding frequently

accessed sector from each cutting window size,

the mining algorithm computes to find sequence

of sectors that are most frequently accessed within

a gap. Second sector in the sequence is determined

by comparing frequent sector in all of the window

groups. Second sector is concatenated to the first

sector. The mining process continues until it

cannot find a sector with frequency count larger

than a threshold. When the process ends, we are

left with a sequence DB, which holds series of

frequent sequences.

6.3 Implementation of Cache Manager

Figure 6 illustrates structure of the cache manager.

A trace file generated from the tracer is input to

mining algorithm and address checker module. As

explained in previous section, mining algorithm

generates series of frequently accessed sequence

of sectors. The input trace file and result of mining

algorithm is process in address checker module.

The address checker module has two
components, cache loader and data allocator.

Cache loader keeps a mapping table to identify

which data in HDD is stored in which page in

SSD. Since there are two physically independent

storage devices, a mapping table is required to

keep track of location of physical block address

and page of HDD and SSD, respectively.

Another use of the mapping table is to exploit

information written in the table for wear-leveling

of SSD. Along with physical address and page

number of devices, it also notifies access count,

state of the sector, and sequence number on the DB.

There are three states, empty, valid, and dirty.

Data allocator copies data on HDD to SSD and

updates mapping table on cache loader. When host

requests data the address checker consults mapping

table. If the requested data is in SSD, the data is

fetched from SSD and returns to the host. If the

data is in HDD, it serves from HDD. Upon

Table 5 Raw Data Structure of DiskMon

Field Description

Relative Time Relative time of observed IO request

Duration Duration of processing IO request (unit: usec)

Process Name Name of the process that called from the app.

Operation IO type

Category Indication of read or write operation

Path Path of a file that requested IO

Detail Information on offset and size of IO

Figure 6 Structure of Cache Manager

650

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

receiving IO request, address checker keeps track

of time that each device has received and processed

each IO.

7 RESULTS

Figure 7 illustrates the result of running mining

algorithm in the cache manager. We examine boot

up process and two office applications, Excel and

Powerpoint. Two measurements are shown in the

y-axis. Average response time is shown on the left

hand side of the graph and hit ratio in percentile is

shown on the right hand side. To distinguish the

two results, average response time is given in bar

and hit ratio is depicted in a line. Mining

parameters used in the experiment is shown in

heading and x-axis of the graph. Cutting window

size is 100, minimum support is set to 2, and

maximum gap is set to 40. We varied window

size from 2,000 to 10,000 in multiples of two.

In boot-up workload (Figure 7(a)), as the

window size increase response time increased and

hit ratio is decreased with our mining algorithm. It

is because sequences are not frequently accessed

again in the boot-up process, even though there are

more frequent sequences generated and stored in

the SSD. Response time difference on window size

of 2,000 and 10,000 is only 0.5msec, and about 8%

difference on the hit ratio. On the other hand,

spreadsheet (Figure 7(b)) has lot to gain from our

cache manager because as window size increases

response time has dropped about one thirds. Hit

ratio improved only about 4% when window size is

increased to 10,000. Considering that there are

about 50 files accessing during the launch time, it

seems we achieved reasonably high hit ratio.

Response time of Presentation tool (Figure 7(c))

has increased about 2msec as the window size

increased from 2,000 to 10,000, and hit ratio

dropped about 10%. This result seems to be like

the case with Boot-up workload. It does not benefit

much from using our mining algorithm that

searches frequently accessed sequence of sectors.

7 CONCLUSION

Although price of SSD is becoming cheaper, it is

still hard to win over the GB/$ of HDD. Some

manufacturers have turned their focus to use SSD

as cache. Four related products, namely Dataplex

from Nvelo, HyperDuo from Marvell, HDDBoost

from SilverStone, and Smart Response

Technology from Intel, are reviewed in this

document. These products are some of highly

acclaimed cache system for HDD using SSD. In

this document, we have taken initiative to analyze

the aforementioned products and provide

benchmark results on our own test environment.

Test results shows that Smart Response

Technology gives highest and closest performance

result as test configuration, and other two cache

managers did not perform as expected. After

explaining four points that has to be considered in

designing hybrid storage, we discussed design and

implementation of cache manager for hybrid

storage. We implemented three core modules in

(a) Boot up

(b) Spreadsheet

(c) Presentation

Figure 7 Hit Ratio and Response Time

651

ISBN: 978-0-9853483-3-5 ©2013 SDIWC

cache manager to examine the performance of

hybrid storage, and three modules are tracer,

mining algorithm, and address checker. We have

captured traces in Boot-up process, spreadsheet,

and presentation and used them as an input to the

cache manager. Result shows that mining

algorithms finds frequent sequence of accessed

sectors and improves storage performance by

allocating them to SSD.

As a future work, we are going to refine the

cache simulator and validate it more rigorously.

First, mining algorithm can be improved by

refining its sequence generating algorithm. Second,

reading and writing to SSD and flushing back to

HDD can be optimized to reduce cache manager

overhead of finding the location in the mapping

table. Third, although we believe it is a good

caching algorithm for improving launch time of an

application, this paper lacks in comparison with

other caching algorithms. We are going to compare

the algorithm with other caching algorithms to

improve the algorithm described in this paper.

ACKNOWLEDGMENT

This work is sponsored by IT R&D program

MKE/KEIT. [No.10035202, Large Scale hyper-

MLC SSD Technology Development].

REFERENCES

[1] D. Reinsel and J. Janukowicz, “Datacenter SSDs:

Solid footing for growth,” ed: IDC Corporation, Tech.

Rep., 2008.

[2] R. L. J. C. Dave B. Anderson, Walter Fry, “Flash Cache

Form Factors & HDD Economics,” in Flash Memory

Summit 2010, 2010.

[3] Y. Joo, Y. Cho, K. Lee, and N. Chang, “Improving

application launch times with hybrid disks,” in Proc.

of the 7th IEEE/ACM international conference on

Hardware/software codesign and system synthesis,

Grenoble, France, Oct. 2009, pp. 373–382.

[4] Intel, “Smart Response Technology,” 2012. [Online].

Available:http://www.intel.com/content/www/us/en/so

lid-state-drives/ssd-smart-response-video.html

[5] Marvell, “HyperDuo,” 2012. [Online]. Available:

http://www.marvell.com/storage/system-

solutions/sata-controllers/hyperduo/

[6] SilverStone, “HDDBOOST,” 2012. [Online]. Available:

http://www.silverstonetek.com/product.php?pid=245

[7] Nvelo, “Samsung Electronics Acquires NVELO :

Acquisition Adds Storage Software Expertise to Next-

generation SSD Solutions,” Dec. 2012. [Online].

Available: http://www.nvelo.com/company/press-

release/2012-12-14

[8] ——, “Dataplex,” 2012. [Online]. Available:

http://www.nvelo.com/dataplex

[9] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND

flash based disk caches,” in Proc. of the 35th

International Symposium on Computer Architecture,

Washington, DC, USA, June 2008, pp. 327–338.

[10] J. W. Hsieh, T. W. Kuo, P. L. Wu, and Y. C. Huang,

“Energy efficient and performance-enhanced disks

using flash-memory cache,” in Proc. of the 2007

international symposium on Low power electronics

and design, Portland, OR, USA, Aug. 2007, pp. 334–

339.

[11] S. Byun, “Enhanced index management for

accelerating hybrid storage systems,” Journal of

Convergence Information Technology, vol. 4, no. 2,

pp. 164–169, 2009.

[12] T. Bisson and S. A. Brandt, “Reducing hybrid disk

write latency with flash-backed i/o requests,” in Proc.

of the 2007 15th International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, Washington, USA, Oct.

2007, pp. 402–409.

[13] Y. Joo, J. Ryu, S. Park, and K. Shin, “Fast: quick

application launch on solid-state drives,” in

Proceedings of the 9th USENIX conference on File

and Storage Technologies, 2011, pp. 19–19.

[14] M. Zaki, “Spade: An efficient algorithm for mining

frequent sequences,” Machine Learning, vol. 42, no. 1,

pp. 31–60, 2001.

[15] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu,

“Sequential pattern mining using a bitmap

representation,” in Proc. of the eighth ACM SIGKDD

international conference on Knowledge discovery and

data mining, New York, USA, July 2002, pp. 429–435.

[16] X. Yan, J. Han, and R. Afshar, “Clospan: Mining

closed sequential patterns in large datasets,” in Proc.

of the Third SIAM International Conference on Data

Mining, 2003, pp. 166–177.

[17] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-

miner: Mining block correlations in storage systems,”

in Proc. of the 3rd USENIX Conference on File and

Storage Technologies, San Francisco, CA, April 2004,

pp. 173–186.

[18] Intel, “Intel x25-m mainstream sata solid-state drives,”

2009.

[19] Seagate, “Momentus laptop hard drives,” 2010.

[Online]. Available: http://www.seagate.com/www/en-

us/products/laptops/laptop-hard-

drives/#tTabContentSpecifications

[20] Marvell, “Marvell hyperduo for 6gb/s sata controllers:

Automated ssd/hdd tiering: 80% SSD Performance at

1/3 the Cost http://www.marvell.com/storage/system-

solutions/assets/Marvell-HyperDuo-Product-Brief.pdf

[21] Microsoft, “Diskmon for windows v2.01.” [Online].

Available:http://technet.microsoft.com/en-

us/sysinternals/bb89664

652

