
Semiautomatic Porting of the C Library

Ludek Dolihal and Tomas Hruska
Faculty of Information Technology, BUT

Bozetechova 1/2,
612 66 Brno, Czech Republic

{idolihal, hruska}@fit.vutbr.cz

ABSTRACT

For testing of automatically generated C compiler
for embedded systems on simulator, it is useful to
have a C library support. Testing programs written
in C very often use I/O operations and other
functions provided by the C library. Hence not
having the library, the number of programs that can
be executed is very limited. In this paper, we
describe a method that provides semiautomatic
method of porting the C library. The processors for
which we port the library are mainly 32-bit. For this
reason, we have chosen the Newlib library.

KEYWORDS

Porting of a library, C library, compiler testing,
simulation, hardware/software co-design, Newlib,
Lissom, Codasip.

1 INTRODUCTION

This article will discuss the problematic of
testing of the automatically generated compiler.
Please note that this work is still in progress,
and we are still dealing with some difficulties.
To be more precise, the paper will discuss the
semiautomatic porting of the C library that is
essential for the thorough testing of the
compiler. As the main aim of the Lissom
project [1] (now also Codasip project-

www.codasip.com) is hardware software co-
design, we need to ensure that the compiler has
the full functionality and contains a minimum
of errors.

One of the goals of our research group is to
deliver, together with the other tools, also the
automatically generated compiler for various
architectures. Currently, we are able to generate
the compiler for various architectures including
Microprocessor without Interlocked Pipeline
Stages (MIPS) , Acorn RISC Machine (ARM)
in the seventh version and also AVR32 from
Atmel. The compiler is generated from the
processors description.

To minimize the number of errors in the
automatically generated compilers as much as
possible, it is necessary to put the generated
compilers under thorough testing. As we do not
have all the platforms for which we develop
available for testing, we use the generated
simulators instead in majority of cases. Note
that this simulator is also automatically
generated from the processors description as
well as the compiler.

The role of the compiler in the whole
process of testing is crucial. We commonly use
tests written in C for the compiler testing and
the tests frequently use I/O functions, functions
for memory management etc. Should we not

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 86

possess the C library , we could not use over
50% of our test cases.

This paper is going to discuss the
problematic of semiautomatic porting of the
Newlib[4] library and is organized in the
following way. The second section gives a brief
overview of the Lissom project, section three
provides some information about related work,
section four describes the mechanism of the
semiautomatic testing, and section five
concludes this paper.

2 OVERVIEW OF THE PROJECT

The Lissom project focuses mainly on the
hardware software co-design. As we try to
deliver the best possible solution, we deliver
also the C compiler, because the C is still the
main development language for the embedded
systems. Besides the C compiler there are
various other tools generated from the
processors description. The processor is
described in the ISAC language [2]. Amongst
the generated tools are:

• simulators,

• assembler,

• disassembler,

• debugger and

• verification environment.

The generated simulator was thoroughly
described in the article [2] and verification
environment description can be found in [3].

As is apparent, the tools are usually after
several steps generated from the specification in
the ISAC language. This description will play a
crucial part also in case of semiautomatic library
port. The primary role of the C library is to
enlarge the range of constructions that can be
used during the process of testing. It is without
all doubts important to test the basic
constructions such as if statement, loops,
function calls etc. On the other hand, it is highly
desirable to have a possibility of printing either
to standard or error outputs or exiting program
with different exit values or reading the the
input from the file. And this cannot be done

without C library support. Exit values are the
basic notification of program evaluation and
debugging dumps are also one of the core
methods of debugging. Note that all the tests are
designed for the given embedded system, and
the tests are run on the simulator.

For the use in the embedded systems, we
looked for the library that was small, modular,
provided the basic functionality and was still in
the process of development. After trying several
of them we decided to use the library called
Newlib.

3 RELATED WORK

Some basic information about the porting of
the Newlib library can be found at the official
pages of the project [4]. It is a quite detailed
guide to the process of the creation of the port to
the new architecture. However, the description
contained on the project pages is far from being
automatic. The user has to conduct quite a lot of
manual steps to get the functional version of the
library.

The automatic process of porting is in the
center of the paper Automatic Porting of Binary
File Descriptor Library [5]. This approach is
quite similar to the process that is going to be
described in this paper. Nevertheless, the
mentioned paper describes port of the GNU
Binutils core. The BFD library is used for the
manipulation of the object files, so its purpose is
completely different of the Newlib library. The
process takes as the inputs, the architecture
description and templates. But the process of
generation is not described in details in this
paper.

Unisim project [6] was developed as an open
simulation environment which should deal with
several crucial problems of today simulators. It
looks at the problematic from the different
perspective. One of the problems is a lack of
interoperability. This could be solved, according
to the article, by a library of compatible
modules and also by the ability to inter-operate
with other simulators by wrapping them into
modules. Though this may seem to be a little
out of our concern the idea of the interface
within the simulator that allows adding any

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 87

library is quite interesting. In our case we will
have the possibility to add or remove modules
from the library in a simple way. But the idea
from the Unisim project would make the import
of any other library far easier than it is now.

4 SEMIAUTOMATIC PORTING

We have modified the Newlib so it is now
using a CMake system. We have divided it into
two parts that are placed in a separate
directories. One part is common for all
platforms. This part is placed in the directory
called newlib. The directories that contain
platform dependent files are stored in the
directory with the model. This is done to have
all the platform dependent files in one place in
the strictly given directory structure.

Let’s have a look at the platform dependent
files. Strictly spoken, the directories does not
contain only the platform dependent files.
There are also files that are the same for all our
platforms but the division is done on the level of
directories and not on the level of files itself.
The directories that are kept together with the
model are the directories libgloss and directory
newlib (this is the subdirectory of the directory
newlib mentioned the above paragraph).

While the directory newlib contains mainly
header files with various settings and definition
of the setjmp.S the directory libgloss takes care
of the syscalls handling. The syscalls are very
important for our project, because this
mechanism allows us to get the information in
and out of the simulator. In this paper we will
focus on the way how to automatize the process
of syscalls creation.

There are several ways how to cope with
syscalls porting. After we gathered all the
necessary information about what syscalls are
necessary for our simulation and tried several
ways of implementation we found out, that only
very small part of the syscalls must be done in
assembler. The rest can be written in C and that
makes the code platform independent. The
Newlib defines 20 syscalls, but we need just 6
of them. Nevertheless, the rest of the syscalls
could be implemented the same way as the 6
supported ones. The syscalls are defined in the

header file, and have numbers from 1 to 20. The
first 6 are the supported ones and the rest of the
numbers is assigned to the unsupported ones.

For the syscalls itself, we have defined the
structure called params. This structure contains
the parameters that are needed for each syscall.
This structure slightly varies depending on the
actual syscall. But it is written in C, which
makes it also platform independent. What is
only done in the the assembler and is hence
platform dependent is the
PERFORM_SYSCALL function. In fact, it is
not a function but multiple line macro defined in
inline assembler. Assume, that multiple line
macro can have the following form:

#define PERFORM_SYSCALL(ADDR) \
 __asm__("REGr1=add

REG0,%0" : :"r"(ADDR)); \
 __asm__("syscall");

This macro is not taken from any existing
processor. We have defined it just for model
purpose. Now let’s have a closer look at the
macro itself. This macro takes only one
parameter. The ADDR parameter is the address
of the structure that contains the parameters of
the syscall as mentioned above. This address is
assigned to the register that is used for passing
of the parameters. This register can be specially
marked as we will see later on. Then there is
the special syscall instruction in this case it has
the name syscall.

This two lines can be determined from the
description of the core performed in the ISAC
language. We will introduce the constructions
that are necessary for that. The
PERFORM_SYSCALL macro itself is a
template. The necessary information is filled
into this generic template before the compilation
time of the library.

First lets have a look at the syscall
instruction. We simply scan the model for the
instruction that bears this name. In case the
instruction is not found, we search the model for
the construction in the following form:
#define syscall instruction
perform_syscall

In case this construction is found, we use
this instruction in the second line of the multiple

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 88

line macro. Please note that in this case, the
instruction does not take any parameters. If this
instruction was parameterized we would
determine the parameters from the syntax.
Nevertheless, this instruction does not have to
be found. In such case, the template would be
incomplete and error should be reported.

The process is shown on the following
picture.

Figure 1. Scheme of the system

As far as the first line of the macro is
concerned, we need to assure, that in the register
which is used for passing the parameters we
assign the address of the structure with the
parameters. So we search the model for the
instruction add or instruction with similar
functionality. In the syntax section of the
instruction, we find the actual form. Then we
find the register for passing parameters in our
model that also bears special description. From
this parts of information, we should be able to
put together the first line of the macro. This
approach works for standard architectures. But
there may occur architectures, for which might
arise difficulties. The Newlib library in the
current version support only 32-bit
architectures.

5 CONCLUSION

In this short paper, we proposed the way
how to automatically port the syscalls in the C
library called Newlib. This approach saves time
to the developer when creating the model of the
microcontroller and needs the support of the C
library. But this is just the part of the whole
process of the Newlib porting. In the future, we
would like to focus on automatic creation of the
crt0.s and other platform dependent files. After
this process is finished, the port should be fully
automatized. We hope that this approach should
shorten the time needed for the porting of
syscalls significantly and at the same time it
should widen rapidly the amount of programs
that can be tested.

ACKNOWLEDGEMENTS

This work was supported by the IT4
Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] Lissom Project,
http://www.fit.vutbr.cz/research/groups/lissom

[2] Z. Přikryl, K. Masařík, T. Hruška, A. Husár,
“Generated cycle-accurate profiler for C language”,
13th EUROMICRO Conference on Digital System
Design, DSD'2010, Lille, France, pp. 263—268.

[3] M . Simkova, Z. Prikryl, T. Hruska and Z. Kotasek,
“Automated functional verification of application
specific instruction-set processors,” IFIP Advances in
Information and Communication Technology,
Heidelberg: Springer Verlag, 2013, vol. 4, no. 403,
pp. 128-138. ISSN 1868-4238

[4] Newlib Project.
http://www.embecosm.com/appnotes/ean9/ean9-
howto-newlib-1.0.html

[5] M. Abbaspour, J. Zhu, “Automatic porting of Binary
File Descriptor library”,
www.eecg.toronto.edu/~jzhu/.../doc/tr-09-01.pdf

[6] S. Onder, R. Gupta, “Automatic generation of
microarchitecture simulators”, Computer Languages,
1998. Proceedings. 1998 International Conference on
, vol., no., pp.80-89, 14-16 May 1998

Proceedings of the International Conference on Computer Science, Computer Engineering, and Education Technologies, Kuala Lumpur, Malaysia, 2014

ISBN: 978-1-941968-02-4 ©2014 SDIWC 89

http://www.embecosm.com/appnotes/ean9/ean9-howto-newlib-1.0.html
http://www.embecosm.com/appnotes/ean9/ean9-howto-newlib-1.0.html
http://www.fit.vutbr.cz/~isimkova/pubs.php?id=10268
http://www.fit.vutbr.cz/~isimkova/pubs.php?id=10268
http://www.fit.vutbr.cz/research/groups/lissom

