
OPTIMAL ELLIPTIC CURVE SCALAR MULTIPLICATION
USING DOUBLE-BASE CHAINS

Vorapong Suppakitpaisarn, Hiroshi Imai
Graduate School of Information

Science and Technology,
The University of Tokyo
Tokyo, Japan 113-0022

mr t dtone@is.s.u-tokyo.ac.jp

imai@is.s.u-tokyo.ac.jp

Masato Edahiro
Graduate School of
Information Science
Nagoya University

Nagoya, Japan 464-8601
eda@ertl.jp

ABSTRACT

In this work, we propose an algorithm to produce
the double-base chain that optimizes the time used
for computing an elliptic curve scalar multiplication,
i.e. the bottleneck operation of the elliptic curve
cryptosystem. The double-base number system and
its subclass, double-base chain, are the representation
that combines the binary and ternary representations.
The time is measured as the weighted sum in terms of
the point double, triple, and addition, as used in eval-
uating the performance of existing greedy-type algo-
rithms, and our algorithm is the first to attain the mini-
mum time by means of dynamic programming. Com-
pared with greedy-type algorithm, the experiments
show that our algorithm reduces the time for comput-
ing the scalar multiplication by 3.88-3.95% with al-
most the same average running time for the method
itself. We also extend our idea, and propose an algo-
rithm to optimize multi-scalar multiplication. By that
extension, we can improve a computation time of the
operation by 3.2-11.3%.

KEYWORDS

Internet Security, Cryptography, Elliptic Curve Cryp-
tography, Minimal Weight Conversion, Digit Set Ex-
pansion, Double-Base Number System, Double-Base

Chain

1. INTRODUCTION

Elliptic curve cryptography is an alternative
building block for cryptograpic scheme similar to
the conventional RSA, but it is widely believed
to be much more secure when implemented us-
ing the same key size. Thus, the cryptosystem
is more suitable for the computation environment
with limited memory consumption such as wire-
less sensor node, and possibly becomes the cen-
tral part of secure wireless communication in the
near future. Despite of that advantage, elliptic
curve cryptography is considered to be slower
compared to the conventional cryptosystem with
the same key size. In this work, we want to reduce
its computation by focusing on its bottleneck op-
eration, scalar multiplication. The operation to
compute

Q = rS

when S,Q are points on the elliptic curve and r
is a positive integer. The computation time of the
operation strongly depends on the representation
of r. The most common way to represent r is to

923

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 115-134
The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

use the binary expansion,

r =
n−1∑
t=0

rt2
t,

where rt is a member of a finite digit set DS . We
call

R = 〈r0, . . . , rn−1〉

as the binary expansion of r. If DS = {0, 1},
we can represent each integer r by a unique bi-
nary expansion. However, we can represent some
integers by more than one binary expansion if
{0, 1} (DS . For example, r = 15 = 20 +
21 + 22 + 23 = −20 + 24 can be represented
by R1 = 〈1, 1, 1, 1, 0〉, R2 = 〈−1, 0, 0, 0, 1〉, and
many other ways. Shown in Section 2, the compu-
tation of scalar multiplication based on the binary
expansion R2 makes the operation faster than us-
ing the binary expansion R1. The algorithm to
find the optimal binary expansion of each integer
has been studied extensively in many works [1],
[2].

The representation of r is not limited only to
binary expansion. Takagi et al. [3] have studied
about the representation in a larger radix, and dis-
cuss about its application in pairing-based cryp-
tosystem. The efficiency of representing the num-
ber by ternary expansion is discussed in the paper.

Some numbers have better efficiency in bi-
nary expansion, and some are better in ternary
expansion. Then, it is believed that double-
base number system (DBNS) [4], [5] can im-
prove the efficiency of the scalar multiplication.
DBNS of r is defined by C[r] = 〈R,X, Y 〉 when
R = 〈r0, . . . , rm−1〉 for ri ∈ DS − {0}, X =
〈x0, . . . , xm−1〉, Y = 〈y0, . . . , ym−1〉 for xi, yi ∈
Z, and

r =
m−1∑
t=0

rt2
xt3yt .

The representation of each integer in DBNS
is not unique. For example, 14 = 2330 +

2131 = 2130 + 2231 can be represented as
C1[14] = 〈〈1, 1〉, 〈3, 1〉, 〈0, 1〉〉, and C2[14] =
〈〈1, 1〉, 〈1, 2〉, 〈0, 1〉〉.

Meloni and Hasan [6] used DBNS with Yao’s
algorithm to improve the computation time of
scalar multiplication. However, the implemen-
tation is complicated to analyze, and it needs
more memory to store many points on the ellip-
tic curve. In other words, the implementation
of scalar multiplication based on DBNS is dif-
ficult. To cope with the problem, Dimitrov et
al. proposed to used double-base chains (DBC),
DBNS with more restrictions. DBC C[r] =
〈〈rt〉m−1t=0 , 〈xt〉m−1t=0 , 〈yt〉m−1t=0 〉 is similar to DBNS,
but DBC require xi and yi to be monotone, i.e.
x0 ≤ · · · ≤ xm−1, y0 ≤ · · · ≤ ym−1. Concerning
C1[14], C2[14] on the previous paragraph, C1[14]
is not a DBC, while C2[14] is.

Like binary expansion and DBNS, some inte-
gers have more than one DBC, and the efficiency
of elliptic curve cryptography strongly depends
on which chain we use. The algorithm to select
efficient DBC is very important. The problem has
been studied in the literature [7], [8], [9]. How-
ever, they proposed greedy algorithms which can-
not guarantee the optimal chain. On the other
hand, we adapted our previous works [10], where
the dynamic programming algorithm is devised
to find the optimal binary expansion. The pa-
per presents efficient dynamic programming algo-
rithms which output the chains with optimal cost.
Given the cost of elementary operations formu-
lated as in [7], [11], we find the best combina-
tion of these elementary operations in the frame-
work of DBC. By the experiment, we show that
the optimal DBC are better than the best greedy
algorithm proposed on DBC [9] by 3.9% when
DS = {0,±1}. The experimental results show
that the average results of the algorithm are better
than the algorithm using DBNS with Yao’s algo-
rithm [6] in the case when point triples is compar-
atively fast to point additions.

924

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 115-134
The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Even though our algorithm is complicated than
the greedy-type algorithm, both algorithms have
the same time complexity, O(lg2 n). Also, the
average running time of our method for 448-
bit inputs is 30ms when we implement the al-
gorithm using Java in Windows Vista, AMD
Athlon(tm) 64X2 Dual Core Processor 4600+
2.40GHz, while the average running time of the
algorithm in [7] implemented in the same com-
putation environment is 29ms. The difference be-
tween the average running time of our algorithm
and the existing one is negligible, as the average
computation time of scalar multiplication in Java
is shown to be between 400-650ms [12].

In 2010, Imbert and Philippe [13] proposed an
algorithm which can output the shortest chains
when DS = {0, 1}. Their works can be consid-
ered as a specific case of our works as our algo-
rithm can be applied to any finite digit sets. Ad-
justing the parameters of our algorithm, we can
also output the shortest chains for DBC.

In this paper, we also extend ideas in our
method to propose an algorithm that can output
the optimal DBC for multi-scalar multiplication.
The operation is one of bottleneck operations in
elliptic curve digital signature scheme, and can be
defined as

Q = r1S1 + r2S2 + · · ·+ rdSd,

where S1, . . . , Sd, Q are points on elliptic curve
and r1, . . . , rd are positive integers. We show that
our optimal DBC are better than the greedy al-
gorithm proposed on double-chain [14] by 3.2 −
4.5% when d = 2 and DS = {0,±1}, given
the cost for elementary operations shown in [6],
[7]. When DS = {0,±1 ± 5} and DS =
{0,±1,±2, 3}, our chains are 5.3− 11.3% better
than [14], [15]. For multi-scalar multiplication,
the computation time of our algorithms itself is
only less than a second for 448-bit input.

The paper is organized as follows: we describe
the double-and-add scheme, and how we utilize

the DBC to elliptic curve cryptography in Section
2. In Section 3, we show our algorithm which out-
puts the optimal DBC. Next, we present the exper-
imental results comparing to the existing works in
Section 4. Last, we conclude the paper in Section
5.

2. COMPUTATION TIME FOR DBC

2.1. Binary Expansion and Scalar Multiplica-
tion

Using the binary expansion E = 〈e0, . . . , en−1〉,
where r =

∑n−1
t=0 et2

t explained in Section 1, we
can compute the scalar multiplication Q = rS by
double-and-add scheme. For example, we com-
puteQ = 127S when the binary expansion of 127
is R = 〈1, 1, 1, 1, 1, 1, 1〉 as follows:

Q = 2(2(2(2(2(2S+S)+S)+S)+S)+S)+S.

Above, we need two elementary operations,
which are point doubles (S + S, 2S) and point
additions (S +S ′ when S 6= S ′). These two oper-
ations look similar, but they are computationally
different in many cases. In this example, we need
six point doubles and six point additions. Gener-
ally, we need n− 1 point doubles, and n point ad-
ditions. Note that we need not the point addition
on the first iteration. Also, etS = O if et = 0, and
we need not the point addition in this case. Hence,
the number of the point additions is W (E) − 1,
where W (E) the Hamming weight of the expan-
sion defined as:

W (E) =
n−1∑
t=0

W (et),

where W (et) = 0 when et = 0 and W (et) = 1
otherwise. In our case, W (E) = 7.

The Hamming weight tends to be less if the
digit set DS is larger such as DS = {0,±1} .
However, the cost for the precomputation of etS
for all et ∈ DS is higher in a bigger digit set.

925

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 115-134
The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

2.2. DBC and Scalar Multiplication

In this subsection, we show how to apply the DBC
C[r] = 〈E,X, Y 〉, when E = 〈e0, e1, . . . , em−1〉,
X = 〈x0, x1, . . . , xm−1〉, Y = 〈y0, y1, . . . , ym−1〉
to compute scalar multiplication. For example,
one of the DBC of 127 = 2030 + 2132 + 2233 is
C[127] = 〈E,X, Y 〉, where E = 〈1, 1, 1〉, X =
〈0, 1, 2〉, Y = 〈0, 2, 3〉. Hence, we can compute
Q = 127S as follows:

Q = 2132(2131S + S) + S.

In addition to point doubles and point additions
needed in the binary expansion, we also require
point triples (3S). In this case, we need two
point additions, two point doubles, and three point
triples.

In the double-and-add method, the number of
point doubles required is proved to be constantly
equal to n−1 = blg rc. Then, the efficiency of the
binary expansion strongly depends on the num-
ber of point additions or the Hamming weight.
However, the number of point doubles and point
triples are not constant in this representation. The
number of point additions is W (C) − 1 when
W (C) := m is the number of terms in the chain
C, and the number of point doubles and point
triples are xm−1 and ym−1 respectively. Hence,
we have to optimize the value

xm−1 · Pdbl + ym−1 · Ptpl + (W (C[r])− 1) · Padd,

when Pdbl,Ptpl, and Padd are the cost for point
double, point triple, and point addition respec-
tively. Note that these costs are not considered
in the literature [13] where only the Hamming
weight is considered.

2.3. Binary Expansion and Multi-Scalar Multi-
plication

To compute multi-scalar multiplication Q =
r1S1 + · · · + rdSd, we can utilize Shamir’s
trick [16]. Using the trick, the operation is

claimed to be faster than operation to compute
r1S1, . . . , rdSd separately and add them together.
We show the Shamir’s trick for joint binary ex-
pansion in Algorithm 1. For example, we can
computeQ = r1S1+r2S2 = 127S1+109S2 given
the expansion of r1, r2 as E1 = 〈1, 1, 1, 1, 1, 1, 1〉
and E2 = 〈1, 0, 1, 1, 0, 1, 1〉 as follows:

Q = 2(2(2(2(2(2D+D)+S1)+D)+D)+S1)+D,

where D = S1 + S2. Thus, our computation re-
quires 6 point doubles, 6 point additions in this
case, while we require 12 point doubles and 11
point additions for separated computation.

Algorithm 1: Shamir’s trick with joint binary
expansion
input : A point on elliptic curve S1, . . . , Sd,

the positive integer r1, . . . , rd with
the binary expansion Ei = 〈ei,t〉n−1t=0

output: Q =
∑d

i=1 riSi

1 Q← O
2 for t← n− 1 to 0 do
3 Q← Q+

∑d
i=1 ei,tSi

4 if t 6= 0 then Q← 2Q

5 end

Similar to the Hamming weight for scalar mul-
tiplication, we define the joint Hamming weight
for multi-scalar multiplication. Let

wt =

{
0 if 〈e1,t, . . . , ed,t〉 = 〈0〉,
1 otherwise.

We can define the joint Hamming weight
JW (E1, . . . , Ed) as

JW (E1, . . . , Ed) =
n−1∑
t=0

wt.

In our example, the joint Hamming weight
JW (E1, E2) is 7.

From the definition of joint Hamming weight,
we need blg(max(r1, . . . , rd))c point doubles,
and JW (E1, . . . , Ed)− 1 point additions.

926

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 115-134
The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Suppose that the input of the algorithm is r, and
we are computing C[r]. Our algorithm needs an
optimal chain of

⌊
r
2

⌋
+gb r2c and

⌊
r
3

⌋
+gb r3c. Then,

our algorithm requires an optimal chain of
⌊
r
4

⌋
+

gb r4c,
⌊
r
6

⌋
+ gb r6c, and

⌊
r
9

⌋
+ gb r9c to compute

C[
⌊
r
2

⌋
+ gb r2c] and C[

⌊
r
3

⌋
+ gb r3c]. Let the set of

possible gk be Gk, i.e. Gr = {0} when r is an
input of the algorithm. Define

G =
⋃

x,y∈Z

Gb r
2x3y c.

We show in Subsection 3.4 that G is a finite set
if DS is finite. This infers that it is enough to
compute C[

⌊
r

2x3y

⌋
+ g] for each g ∈ G when we

consider a standard
⌊

r
2x3y

⌋
. We illustrate the idea

in Example 3 and Figure 3.

Example 3 Compute the optimal DBC of 5 when
Padd = Pdbl = Ptpl = 1 and DS = {0,±1}.

When DS = {0,±1}, we can compute the
carry set G = {0, 1} using algorithm proposed
in Subsection 3.4.

We want to compute C[5] = 〈R,X, Y 〉 such
that ri ∈ DS and xi, yi ∈ Z, xi ≤ xi+1, yi ≤ yi+1.
5 can be rewritten as follows:

5 = 2×2+1 = (2+1)×2−1 = (1+1)×3−1.

We need C[2] (
⌊
5
2

⌋
= 2, g2 = 0 or

⌊
5
3

⌋
= 1,

g1 = 1) and C[3] (
⌊
5
2

⌋
= 2, g2 = 1).

It is easy to see that the optimal chain
C[2] = 〈〈1〉, 〈1〉, 〈0〉〉 and C[3] = 〈〈1〉, 〈0〉, 〈1〉〉.
P (C[2]) = P (C[3]) = 1.

We choose the best choice among 5 = 2×2+1,
5 = 3× 2− 1, 5 = 2× 3− 1. By the first choice,
we get the chain

C2,1[5] = 〈〈1, 1〉, 〈0, 0〉, 〈0, 2〉〉.

The second choice and the third choice is

C2,−1[5] = C3,−1[5] = 〈〈−1, 1〉, 〈0, 1〉, 〈0, 1〉〉.

We get

P (C2,1[5]) = P (C2,−1[5]) = P (C3,−1[5]) = 3,

and all of them can be the optimal chain.

Using the idea explained in this subsection, we
propose Algorithms 3, 4.

Algorithm 5: The algorithm finding the opti-
mal DBC for d integers on any digit set DS

input : A tuple R = 〈r1, . . . , rd〉, the finite
digit set DS , and the carry set G

output: An optimal DBC of R, C[R]

1 q ← maxi blg ric
2 while q ≥ 0 do
3 forall the x, y ∈ Z+ such that x+ y = q

do
4 vi ←

⌊
ri

2x3y

⌋
for 1 ≤ i ≤ d

5 foreach 〈gi〉di=1 ∈ Gd do
6 vai ← vi + gi for 1 ≤ i ≤ d
7 V ← 〈vai〉di=1

8 if V = 0 then
C[V]← 〈〈〉, . . . , 〈〉, 〈〉, 〈〉〉

9 else if V ∈ Dd
S then

10 C[V]←
〈〈va1〉, . . . , 〈vad〉, 〈0〉, 〈0〉〉

11 else
12 V

2
← 〈 ri

2x+13y
〉di=1

13 V
3
← 〈 ri

2x3y+1 〉di=1

14 C[V]←
FO(V,C[V

2
+Gd], C[V

3
+Gd])

15 end
16 end
17 end
18 q ← q − 1;
19 end

3.3. Generalized Algorithm for Multi-Scalar
Multiplication

In this subsection, we extend our ideas proposed
in Algorithms 3, 4 to our algorithm for multi-
scalar multiplication (Q = r1S1 + · · · + rdSd).

932

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

C[2] = 〈〈1〉, 〈1〉, 〈0〉〉, P (C[2]) = 1
C[3] = 〈〈1〉, 〈0〉, 〈1〉〉, P (C[3]) = 1

C[5] = 〈〈1, 1〉, 〈0, 0〉, 〈0, 2〉〉 or
C[5] = 〈〈1,−1〉, 〈0, 1〉, 〈0, 1〉〉

P (C[5]) = 3

C[2] = 〈〈1〉, 〈1〉, 〈0〉〉
P (C[2]) = 1

P (C[2]) + Pdbl + Padd
P (C[3]) + Pdbl + Padd

P (C[2]) + Ptpl + Padd

Figure 3. Given DS = {0,±1}, we can compute C[5] by three ways. The first way is to compute C[2], and perform a point
double and a point addition. The second is to compute C[3], perform a point double, and a point substitution (addition with
−S). The third is to compute C[2], perform a point triple, and a point substitution. All methods consume the same cost.

The algorithms are shown in Algorithms 5, 6, and
the example is shown in Example 4 and Figure 4.

Example 4 Find the optimal chain C[〈7, 9〉]
given DS = {0, 1}, Ptpl = Pdbl = Padd = 1.

Assume that we are given the optimal chain

C[〈
⌊

7

2

⌋
,

⌊
9

2

⌋
〉] = C[〈3, 4〉]

and

C[〈
⌊

7

3

⌋
,

⌊
9

3

⌋
〉] = C[〈2, 3〉],

i.e. we know how to compute Q1 = 3S1 + 4S2

and Q2 = 2S1 + 3S2 efficiently. It is obvious
that there are only two ways to compute the multi-
scalar multiplication Q = 7S1 +9S2 using DBCs.
The first way is to compute Q1, do point double
to Q3 = 6S1 + 8S2, and add the point Q3 with
D = S1 + S2. As we know the optimal chain of
Q1, the cost using this way is

P1 = PJ(C[〈7, 9〉]) = PJ(C[〈3, 4〉])+Pdbl+Padd.

The other way is to compute Q2, do point triple
to Q4 = 6S1 + 9S2, and add the point Q4 with
S1. As we know the optimal chain of Q2, the cost
using this way is

P2 = PJ(C[〈7, 9〉]) = PJ(C[〈2, 3〉])+Ptpl+Padd.

We will show later that

PJ(C[〈3, 4〉]) = PJ(C[〈2, 3〉]) = 2.

Then, P1 = P2 = 2+1+1 = 4. Hence, both ways
are the optimal one, and we can choose any of
them. Assume that we select the first way. Given

C[〈3, 4〉] = 〈E2,1, E2,2, X2, Y2〉
= 〈E2,1, E2,2, 〈x2,t〉m−1t=0 , 〈y2,t〉m−1t=0 〉

C[〈7, 9〉]) = 〈E1, E2, X, Y 〉 where

E1 = 〈1, E2,1〉,

E2 = 〈1, E2,2〉,

X = 〈0, x2,0 + 1, . . . , x2,m−1 + 1〉,

Y = 〈0, Y2〉.

Next, we find C[〈3, 4〉]. Similar to C[〈7, 9〉],
we can compute Q1 = 3S1 + 4S2 in two ways.
The first way is to compute Q5 = S1 + 2S2, dou-
ble the point to 2S1 + 4S2, and add the point with
S1 to 3S1 + 4S2. The other way is to compute
Q6 = S1 + S2, triple the point to 3S1 + 3S2,
and add the point with S2 to 3S1 + 4S2. Assume
that we know the optimal way to compute Q5 and
Q6 with the optimal cost PJ(C[〈1, 2〉]) = 2 and
PJ(C[〈1, 1〉]) = 0 (As Q6 = D, which we have
already precomputed). The optimal cost to com-
pute Q1 is

PJ(C[〈3, 4〉]) = PJ(C[〈1, 1〉]) + Ptpl + Padd

= 0 + 1 + 1 = 2.

933

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Algorithm 6: Function FO (Used in Algorithm 5)
input : V = 〈vai〉di=1, the optimal double base chain of V

2
+ g and V

3
+ g for all g ∈ Gd

output: The optimal double base chain of V , C[V]

1 foreach U = 〈ui〉di=1 ∈ Dd
S such that vai − ui ≡ 0 mod 2 for all i do

2 V C2,U ← 〈vai−ui

2
〉di=1

3 c2,U ← PJ(C[V C2,U]) + Pdbl

4 if U 6= 0 then c2,U ← c2,U + Padd

5 end
6 c2 ← minU c2,U , U2 ← minargUc2,U
7 V C2 ← V C2,U2 = 〈E2,1, . . . , E2,d, X2, Y2〉
8 foreach U = 〈ui〉di=1 ∈ Dd

S such that vai − ui ≡ 0 mod 3 for all i do
9 V C3,U ← 〈vai−ui

3
〉di=1

10 c3,U ← PJ(C[V C3,U]) + Ptpl

11 if U 6= 0 then c3,U ← c3,U + Padd

12 end
13 c3 ← minU c3,U , U3 ← minargUc3,U
14 V C3 ← V C3,U3 = 〈E3,1, . . . , E3,d, X3, Y3〉
15 if U2 = 0 and c2 ≤ c3 then
16 Ei ← E2,i for 1 ≤ 1 ≤ d
17 X ← 〈x0, . . . , xm−1〉 where xt ← x2,t + 1, Y ← Y2
18 end
19 else if c2 ≤ c3 then
20 Ei ← 〈U2,i, E2,i〉 for 1 ≤ i ≤ d
21 X ← 〈0, x1, . . . , xm−1〉 where xt ← x2,t−1 + 1, Y ← 〈0, Y2〉
22 end
23 else if U3 = 0 then
24 Ei ← E3,i for 1 ≤ i ≤ d, X ← X3

25 Y ← 〈y0, . . . , ym−1〉 where yt ← y3,t + 1

26 end
27 else
28 Ei ← 〈U3,i, E3,i〉 for 1 ≤ i ≤ d
29 X ← 〈0, X3〉
30 Y ← 〈0, y1, . . . , ym−1〉 where yt ← y3,t−1 + 1

31 end
32 C[V]← 〈E1, . . . , Ed, X, Y 〉

In this example, we use top-down dynamic pro-
gramming scheme. If we begin with C[〈7, 9〉], we
need the solutions of

C[〈
⌊

7

2

⌋
,

⌊
9

2

⌋
〉] = C[〈3, 4〉],

and

C[〈
⌊

7

3

⌋
,

⌊
9

3

⌋
〉] = C[〈2, 3〉].

Then, we need the solution of

C[〈
⌊

3

2

⌋
,

⌊
4

2

⌋
〉] = C[〈1, 2〉]

934

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

and

C[〈
⌊

3

3

⌋
,

⌊
4

3

⌋
〉] = C[〈1, 1〉]

for C[〈3, 4〉]. However, we use bottom-up dy-
namic programming algorithm in practice. We
begin with the computation of C[〈 7

2x3y
, 9
2x3y
〉]

for all x, y ∈ Z such that x + y = 3 =
blg max(7, 9)c. Then, we proceed to find the so-
lution forC[〈 7

2x3y
, 9
2x3y
〉] such that x+y = 2 using

the solution when x+ y = 3. After that, we com-
pute the case where x+ y = 1, i.e. (x, y) = (1, 0)
and (0, 1), and we get the optimal DBC when
(x, y) = (0, 0). This example is illustrated in Fig-
ure 1.

3.4. The Carry Set

As discussed in Section 3, G depends on the digit
setDS . IfDS = {0, 1}, we need only the solution
of ⌊r1

2

⌋
S1 + · · ·+

⌊rd
2

⌋
Sd,⌊r1

3

⌋
S1 + · · ·+

⌊rd
3

⌋
Sd.

However, if the digit set is not {0, 1}, we will
also need other sub-solutions. Shown in Example
1, we need

(
⌊r1

2

⌋
+ c1)S1 + · · ·+ (

⌊rd
2

⌋
+ c2)Sd,

(
⌊r1

3

⌋
+ c3)S1 + · · ·+ (

⌊rd
3

⌋
+ c4)Sd,

when c1, c2, c3, c4 ∈ {0, 1} = CS,1. Actually, the
set CS,1 = CBS,1 ∪ CTS,1 when

CBS,1 =
⋃

l∈{0,1}

{ l − d
2
|d ∈ DS ∧ d ≡ l mod 2},

CTS,1 =
⋃

l∈{0,1,2}

{ l − d
3
|d ∈ DS ∧ d ≡ l mod 3}

However, the carry set CS,1 defined above is not
enough. When, we find the solutions for each

(
⌊
r1
2

⌋
+ c1)S1 + · · ·+ (

⌊
rd
2

⌋
+ c2)Sd and (

⌊
r1
3

⌋
+

c3)S1 + · · ·+ (
⌊
rd
3

⌋
+ c4)Sd, we will need

(
⌊r1

4

⌋
+ c5)S1 + · · ·+ (

⌊rd
4

⌋
+ c6)Sd,

(
⌊r1

6

⌋
+ c7)S1 + · · ·+ (

⌊rd
6

⌋
+ c8)Sd,

(
⌊r1

9

⌋
+ c9)S1 + · · ·+ (

⌊rd
9

⌋
+ c10)Sd,

when c5, c6, c7, c8, c9, c10 ∈ CS,2 = CBS,2 ∪ CTS,2

if

CBS,2 =
⋃

l∈{0,1}

{ l + c− d
2

|d ≡ l mod 2},

CTS,2 =
⋃

l∈{0,1,2}

{ l + c− d
3

|d ≡ l mod 3},

when c ∈ CS,1 ∧ d ∈ DS .
Then, we get CS,n+1 = CBS,n+1 ∪ CTS,n+1 if

CBS,n+1 =
⋃

l∈{0,1}

{ l + c− d
2

|d ≡ l mod 2},

CTS,n+1 =
⋃

l∈{0,1,2}

{ l + c− d
3

|d ≡ l mod 3},

when c ∈ CS,n ∧ d ∈ DS . We define G as

G =
∞⋃
t=1

CS,∞.

We propose an algorithm to find G in Algorithm
5 based on breadth-first search scheme. Also, we
prove that G is finite set for all finite digit set DS

in Lemma 3.1.

Lemma 3.1 Given the finite digit set DS , Algo-
rithm 5 always terminates. And,

||G|| ≤ maxDS −minDS + 2,

when G is the output carry set.

935

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

〈
⌊

7
2330

⌋
,
⌊

9
2330

⌋
〉 = 〈0, 1〉

C[〈0, 1〉] =
〈〈0〉, 〈1〉, 〈0〉, 〈0〉〉
PJ(C[〈0, 1〉]) = 0

〈
⌊

7
2231

⌋
,
⌊

9
2231

⌋
〉 = 〈0, 0〉

C[〈0, 0〉] = 〈〈〉, 〈〉, 〈〉, 〈〉〉
PJ(C[〈0, 0〉]) = 0

〈
⌊

7
2132

⌋
,
⌊

9
2132

⌋
〉 = 〈0, 0〉

C[〈0, 0〉] = 〈〈〉, 〈〉, 〈〉, 〈〉〉
PJ(C[〈0, 0〉]) = 0

〈
⌊

7
2033

⌋
,
⌊

9
2033

⌋
〉 = 〈0, 0〉

C[〈0, 0〉] = 〈〈〉, 〈〉, 〈〉, 〈〉〉
PJ(C[〈0, 0〉]) = 0

x+ y = 3

〈
⌊

7
2131

⌋
,
⌊

9
2131

⌋
〉 = 〈1, 1〉

C[〈1, 1〉] =
〈〈1〉, 〈1〉, 〈0〉, 〈0〉〉
PJ(C[〈1, 1〉]) = 0

〈
⌊

7
2230

⌋
,
⌊

9
2230

⌋
〉 = 〈1, 2〉

C[〈1, 2〉] = 〈〈1, 0〉, 〈0, 1〉, 〈0, 1〉, 〈0, 0〉〉
PJ(C[〈1, 2〉]) = 2

〈
⌊

7
2032

⌋
,
⌊

9
2032

⌋
〉 = 〈0, 1〉

C[〈0, 1〉] =
〈〈0〉, 〈1〉, 〈0〉, 〈0〉〉
PJ(C[〈0, 1〉]) = 0

x+ y = 2

〈
⌊

7
2130

⌋
,
⌊

9
2130

⌋
〉 = 〈3, 4〉

C[〈3, 4〉] = 〈〈0, 1〉, 〈1, 1〉, 〈0, 0〉, 〈0, 1〉〉
PJ(C[〈3, 4〉]) = 2

〈
⌊

7
2031

⌋
,
⌊

9
2031

⌋
〉 = 〈2, 3〉

C[〈2, 3〉] = 〈〈0, 1〉, 〈1, 1〉, 〈0, 1〉, 〈0, 0〉〉
PJ(C[〈2, 3〉]) = 2

x+ y = 1

〈
⌊

7
2030

⌋
,
⌊

9
2030

⌋
〉 = 〈7, 9〉

C[〈7, 9〉] = 〈〈1, 0, 1〉, 〈1, 1, 1〉, 〈0, 1, 1〉, 〈0, 0, 1〉〉
PJ(C[〈7, 9〉]) = 4

x+ y = 0

Pdbl + Padd Not Available

Pdbl + Padd Ptpl + Padd Pdbl + Padd Not Available

Pdbl + Padd Ptpl + Padd

Figure 4. The bottom-up dynamic programming algorithm used for computing the optimal double base chains of R = 〈7, 9〉

Algorithm 7: Find the carry set of the given digit set
input : the digit set DS

output: the carry set G
1 Ct← {0}, G← �
2 while Ct 6= � do
3 Pick x ∈ Ct
4 Ct← Ct ∪ ({x+d

2
∈ Z|d ∈ DS} −G− {x})

5 Ct← Ct ∪ ({x+d+1
2
∈ Z|d ∈ DS} −G− {x})

6 Ct← Ct ∪ ({x+d
3
∈ Z|d ∈ DS} −G− {x})

7 Ct← Ct ∪ ({x+d+1
3
∈ Z|d ∈ DS} −G− {x})

8 G← G ∪ {x}
9 Ct← Ct− {x}

10 end

Proof Since

G =
⋃

l∈{0,1}

{ l + c− d
2

|c+ d ≡ l mod 2} ∪

⋃
l∈{0,1,2}

{ l + c− d
3

|c+ d ≡ l mod 3},

where d ∈ DS , c ∈ G.

minG ≥ minG−maxDS

2
.

Then,
minG ≥ −maxDS.

Also,
maxG ≤ −minDS + 1.

936

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

We conclude that if DS is finite, G is also finite.
And, Algorithm 5 always terminates.

||G|| ≤ maxDS −minDS + 2.

4. EXPERIMENTAL RESULTS

To evaluate our algorithm, we show some exper-
imental results in this section. We perform the
experiment on each implementation environment
such as the scalar multiplication defined on the
binary field (F2q) and the scalar multiplication de-
fined on the prime field (Fp). In this section, we
will consider the computation time of point addi-
tion, point double, and point triple defined in Sec-
tion 1 as the number of the operations in lower
layer, field inversion ([i]), field squaring ([s]), and
field multiplication ([m]), i.e. we show the av-
erage computation time of scalar multiplication
in terms of α[i] + β[s] + ξ[m]. Then, we ap-
proximate the computation time of field squaring
[s] and field inversion [i] in terms of multiplica-
tive factors of field multiplication [m], and com-
pare our algorithm with existing algorithms. If the
computation of field inversion and field squaring
are ν and µ times of field multiplication, the com-
putation time in terms of multiplicative factors of
[m] is (αν + µ+ ξ)[m].

4.1. Results for Scalar Multiplication on Binary
Field

In the binary field, the field squaring is very fast,
i.e. [s] ≈ 0. Normally,

3 ≤ [i]/[m] ≤ 10.

Basically,

Pdbl = Padd = [i] + [s] + 2[m],

and there are many researches working on opti-
mizing more complicated operation such as point
triple and point quadruple [17] [18]. Moreover,
when point addition is chosen to perform just af-
ter the point double, we can use some interme-
diate results of point double to reduce the com-
putation time of point addition. Then, it is more

effective to consider point double and point addi-
tion together as one basic operation. We call the
operation as point double-and-add, with the com-
putation time

Pdbl+add < Pdbl + Padd.

The similar thing also happens when we perform
point addition after point triple, and we also de-
fine point triple-and-add as another basic opera-
tion, with the computation time

Ptpl+add < Ptpl + Padd.

With some small improvements of Algorithms 3,
4, we can also propose the algorithm which output
the optimal chains under the existence of Pdbl+add

and Ptpl+add.
To perform experiments, we use the same pa-

rameters as [7] for Pdbl, Ptpl, Padd, Pdbl+add, and
Ptpl+add (these parameters are shown in Table
1). We set DS = {0,±1}, and randomly se-
lect 10, 000 positive integers which are less than
2163, and find the average computation cost com-
paring between the optimal chain proposed in
this paper and the greedy algorithm presented in
[7]. The results are shown in Table 2. Our re-
sult is 4.06% better than [7] when [i]/[m] = 4,
and 4.77% better than [7] when [i]/[m] = 8.
We note that the time complexity of Binary and
NAF itself is O(n), while the time complexity
of Ternary/Binary, DBC(Greedy), and Optimized
DBC is O(n2).

4.2. Results for Scalar Multiplication on Prime
Field

When we compute the scalar multiplication on
prime field, field inversion is a very expensive
task as [i]/[m] is usually more than 30. To cope
with that, we compute scalar multiplication in the
coordinate in which optimize the number of field
inversion we need to perform such as inverted Ed-
ward coordinate with a curve in Edwards form
[11]. Up to this state, it is the fastest way to im-
plement scalar multiplication.

937

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Table 1. Pdbl, Ptpl, Padd, Pdbl+add, Ptpl+add used in the experiment in Subsection 4.1

Operation [i]/[m] = 4 [i]/[m] = 8

Pdbl [i] + [s] + 2[m] [i] + [s] + 2[m]
Padd [i] + [s] + 2[m] [i] + [s] + 2[m]
Ptpl 2[i] + 2[s] + 3[m] [i] + 4[s] + 7[m]
Pdbl+add 2[i] + 2[s] + 3[m] [i] + 2[s] + 9[m]
Ptpl+add 3[i] + 3[s] + 4[m] 2[i] + 3[s] + 9[m]

Table 2. Comparing the computation cost for scalar point multiplication using DBCs when the elliptic curve is
implemented in the binary field

Method [i]/[m] = 4 [i]/[m] = 8

Binary 1627[m] 2441[m]
NAF [1] 1465[m] 2225[m]
Ternary/Binary [5] 1463[m] 2168[m]
DBC (Greedy) [7] 1427[m] 2139[m]
Optimized DBC (Our Result) 1369[m] 2037[m]

In our experiment, we use the computation
cost Pdbl, Ptpl, Padd as in Table 3 [6], and set
DS = 0,±1. We perform five experiments, for
the positive integer less than 2192, 2256, 2320, and
2384. In each experiment, we randomly select
10, 000 integers, and find the average computa-
tion cost in terms of [m]. We show that results
in Table 4. Our results improve the tree-based
approach proposed by Doche and Habsieger
by 3.95%, 3.88%, 3.90%, 3.90%, 3.90% when bit
numbers are 192, 256, 320, 384 respectively.

We also evaluate the average running time of
our algorithm itself in this experiment. Shown
in Table 5, we compare the average computa-
tion of our method with the existing greedy-type
algorithm using Java in Windows Vista, AMD
Athlon(tm) 64X2 Dual Core Processor 4600+
2.40GHz. The most notable result in the table
is the result for 448-bit inputs. In this case, the
average running time of our algorithm is 30ms,
while the existing algorithm [7] takes 29ms. We
note that the difference between two average run-
ning time is negligible, as the average computa-
tion time of scalar multiplication in Java is shown
to be between 400-650ms [12].

We also compare our results with the other digit

Table 5. The average running time of Algorithms 3-4
compared with the existing algorithm [7] when DS =
{0,±1}

Input Size [7] Our Results
192 Bits 4ms 7ms
256 Bits 6ms 13ms
320 Bits 20ms 21ms
384 Bits 29ms 30ms

sets. In this case, we compare our results with
the work by Bernstein et al. [8]. In the paper,
they use the different way to measure the compu-
tation cost of sclar multiplication. In addition to
the cost of computing rS, they also consider the
cost for precomputations. For example, the cost
to compute±3S,±5S, . . . ,±17S is also included
in the computation cost of any rP computed us-
ing DS = {0,±1,±3, . . . ,±17}. We perform
the experiment on eight different curves and co-
ordinates. In each curve, the computation cost for
point double, point addition, and point triple are
different, and we use the same parameters as de-
fined in [8]. We use

DS = {0,±1,±3, . . . ,±(2h+ 1)}

938

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Table 3. Pdbl, Ptpl, Padd used in the experiment in Subsection 4.2

Curve Shape Pdbl Ptpl Padd

3DIK 2[m] + 7[s] 6[m] + 6[s] 11[m] + 6[s]
Edwards 3[m] + 4[s] 9[m] + 4[s] 10[m] + 1[s]
ExtJQuartic 2[m] + 5[s] 8[m] + 4[s] 7[m] + 4[s]
Hessian 3[m] + 6[s] 8[m] + 6[s] 6[m] + 6[s]
InvEdwards 3[m] + 4[s] 9[m] + 4[s] 9[m] + 1[s]
JacIntersect 2[m] + 5[s] 6[m] + 10[s] 11[m] + 1[s]
Jacobian 1[m] + 8[s] 5[m] + 10[s] 10[m] + 4[s]
Jacobian-3 3[m] + 5[s] 7[m] + 7[s] 10[m] + 4[s]

Table 4. Comparing the computation cost for scalar point multiplication using DBCs when the elliptic curve is
implemented in the prime field

Method 192 bits 256 bits 320 bits 384 bits
NAF [1] 1817.6[m] 2423.5[m] 3029.3[m] 3635.2[m]
Ternary/Binary [5] 1761.2[m] 2353.6[m] 2944.9[m] 3537.2[m]
DB-Chain (Greedy) [7] 1725.5[m] 2302.0[m] 2879.1[m] 3455.2[m]
Tree-Based Approach [9] 1691.3[m] 2255.8[m] 2821.0[m] 3386.0[m]
Our Result 1624.5[m] 2168.2[m] 2710.9[m] 3254.1[m]

when we optimize 0 ≤ h ≤ 20 that give us
the minimal average computation cost. Although,
the computation cost of the scalar multiplication
tends to be lower if we use larger digit set, the
higher precompuation cost makes optimal h lied
between 6 to 8 in most of cases.

Recently, Meloni and Hasan [6] proposed a
new paradigm to compute scalar multiplication
using DBNS. Instead of using DBC, they cope
with the difficulties computing the number system
introducing Yao’s algorithm. Their results sig-
nificantly improves the result using the DBC us-
ing greedy algorithm, especially the curve where
point triple is expensive.

In Tables 6-7, we compare the results in [8]
and [6] with our algorithm. Again, we randomly
choose 10, 000 positive integers less than 2160 in
Table 6, and less than 2256 in Table 7. We signif-
icantly improve the results of [8]. On the other
hand, our results do not improve the result of [6]
in many cases such as Hessian curves. These
cases are the case when point triple is a costly op-
eration, and we need only few point triples in the

optimal chain. In this case, Yao’s algorithm works
effciently. However, our algorithm works better
in the case where point triple is fast compared to
point addition such as 3DIK and Jacobian-3. Our
algorithm works better in the inverted Edward co-
ordinate, which is commonly used as a bench-
mark to compare scalar multiplication algorithms.

Recently, there is a work by Longa and Gebo-
tys [19] on several improvements for DBCs. The
value Pdbl, Ptpl, Padd they used are smaller than
those given in Tables 1 and 3. After implement-
ing their parameters on the number with 160 bits,
we show the results in Table 8. We can reduce
their computation times by 1.03%, 0.40%, and
0.71% in inverted Edwards coordinates, Jacobian-
3, and ExtJQuartic respectively. In this state, we
are finding the experimental result of other greedy
algorithms under these Pdbl, Ptpl, Padd value.

4.3. Results for Multi-Scalar Multiplication

In this section, we compare our experimental
results with the work by Doche et al. [14]. In the

939

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Table 6. Comparing the computation cost for scalar point muliplication using DBCs in larger digit set when the
elliptic curve is implemented in the prime field, and the bit number is 160. The results in this table are different
from the others. Each number is the cost for computing a scalar multiplication with the precomputation time. In
each case, we find the digit set DS that makes the number minimal.

Method 3DIK Edwards ExtJQuartic Hessian
DBC + Greedy Alg. [8] 1502.4[m] 1322.9[m] 1311.0[m] 1565.0[m]
DBNS + Yao’s Alg. [6] 1477.3[m] 1283.3[m] 1226.0[m] 1501.8[m]
Our Algorithm 1438.7[m] 1284.3[m] 1276.5[m] 1514.4[m]

Method InvEdwards JacIntersect Jacobian Jacobian-3
DBC + Greedy Alg. [8] 1290.3[m] 1438.8[m] 1558.4[m] 1504.3[m]
DBNS + Yao’s Alg. [6] 1258.6[m] 1301.2[m] 1534.9[m] 1475.3[m]
Our Algorithm 1257.5[m] 1376.0[m] 1514.5[m] 1458.0[m]

Table 7. Comparing the computation cost for scalar point muliplication using DBCs in larger digit set when the
elliptic curve is implemented in the prime field, and the bit number is 256. The results in this table are different
from the others. Each number is the cost for computing a scalar multiplication with the precomputation time. In
each case, we find the digit set DS that makes the number minimal.

Method 3DIK Edwards ExtJQuartic Hessian
DBC + Greedy Alg. [8] 2393.2[m] 2089.7[m] 2071.2[m] 2470.6[m]
DBNS + Yao’s Alg. [6] 2319.2[m] 2029.8[m] 1991.4[m] 2374.0[m]
Our Algorithm 2287.4[m] 2031.2[m] 2019.4[m] 2407.4[m]

Method InvEdwards JacIntersect Jacobian Jacobian-3
DBC + Greedy Alg. [8] 2041.2[m] 2266.1[m] 2466.2[m] 2379.0[m]
DBNS + Yao’s Alg. [6] 1993.3[m] 2050.0[m] 2416.2[m] 2316.2[m]
Our Algorithm 1989.9[m] 2173.5[m] 2413.2[m] 2319.9[m]

Table 8. Comparing our results with [19] when the bit
number is 160.

Curve Shape [19] Our Results
InvEdwards 1351[m] 1337[m]
Jacobian-3 1460[m] 1454[m]
ExtJQuartic 1268[m] 1259[m]

experiment, we are interested on the multi-scalar
multiplication when d = 2 and DS = {0,±1}.
There are five experiments shown in Table 9.
Again, we randomly select 10000 pairs of positive
integers, which are less than 2192, 2256, 2384, 2448

in each experiment. Our algorithm improves the
tree-based approach by 3.4%, 3.2%, 3.2%, 4.1%,
4.5% when the bit number is 192, 256, 320, 384,
448 respectively.

The computation times of Algorithms 5-6 com-
pared with the existing works is shown in Table
10. Similar to the experiment in the previous sub-
section, we perform these experiments using Java
in Windows Vista, AMD Athlon(tm) 64 X2 Dual
Core Processor 4600+ 2.40GHz. As a result, the
computation time of our algorithm is only less
than a second for 448-bit input. It is shown in
[21] that the elliptic curve digital signature algo-

940

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Table 9. Comparing the computation cost for multi scalar multiplication using DBCs when the elliptic curve is
implemented in the prime field.

Method 192 bits 256 bits 320 bits 384 bits 448 bits
JSF [20] 2044[m] 2722[m] 3401[m] 4104[m] 4818[m]
JBT [14] 2004[m] 2668[m] 3331[m] 4037[m] 4724[m]
Tree-Based [14] 1953[m] 2602[m] 3248[m] 3938[m] 4605[m]
Our Result 1886[m] 2518[m] 3144[m] 3777[m] 4397[m]

Table 10. The average running time of Algorithms 5-6
compared with the existing algorithm [14] when DS =
{0,±1}

Input Size [14] Our Result
192 bits 22ms 145ms
256 bits 36ms 275ms
320 bits 45ms 406ms
384 bits 54ms 603ms
448 bits 72ms 817ms

rithm implementing in Java takes much more time
than our algorithms, e.g. it takes 2653 ms for 512-
bits elliptic curve signature verification. There-
fore, the computation is efficient when we use the
same scalar for many points on elliptic curve. The
results in this paper is also able to use as bench-
marks to show how each algorithm is close to the
optimality.

We also compare our algorithm in the case that
digit set is larger than {0,±1}. In [14], there is
also a result when Ds = {0,±1,±5}. We com-
pare our result with the result in Table 11. In this
case, our algorithm improves the tree-based ap-
proach by 5.7%, 5.7%, 5.3%, 6.3%, 6.4% when
the bit number is 192, 256, 320, 384, 448 respec-
tively.

Moreover, we observe that the hybrid binary-
ternary number system proposed by Adikari et al.
[15] is the DBCs for multi-scalar multiplication
when DS = {0,±1,±2, 3}. Although the con-
version algorithm is comparatively fast, there is
a large gap between the efficiency of their out-
puts and the optimal output. We show in Table
12 that the computation cost of the optimal chains
are better than the hybrid binary-ternary number

system by 10.3− 11.3%.

5. CONCLUSION

In this work, we use the dynamic programming
algorithm to present the optimal DBC. The chain
guarantees the optimal computation cost on the
scalar multiplication. The time complexity of the
algorithm is O(lg2 r) similar to the greedy algo-
rithm. The experimental results show that the op-
timal chains significatly improve the efficiency of
scalar multiplication from the greedy algorithm.

As future works, we want to analyze the min-
imal average number of terms required for each
integer in DBC. In DBNS, it is proved that the
average number of terms required to define inte-
ger r, when 0 ≤ r < 2q is o(q) [5]. However, it
is proved that the average number of terms in the
DBCs provided by greedy algorithm is in Θ(q).
Then, it is interesting to prove if the minimal av-
erage number of terms in the chain is o(q). The
result might introduce us to a sublinear time algo-
rithm for scalar multiplication.

Another future work is to apply the dynamic
programming algorithm to DBNS. As the intro-
duction of Yao’s algorithm with a greedy algo-
rithm makes scalar multiplication significantly
faster, we expect futhre improvement using the al-
gorithm which outputs the optimal DBNS. How-
ever, we recently found many clues suggesting
that the problem might be NP-hard.

References
[1] O. Egecioglu and C. K. Koc, “Exponentiation using

canonical recoding,” Theoretical Computer Science,
vol. 8, no. 1, pp. 19–38, 1994.

941

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

Table 11. Comparing the computation cost for multi scalar multiplication using DBCs when the elliptic curve is
implemented in the prime field, and DS = {0,±1,±5}

Method 192 bits 256 bits 320 bits 384 bits 448 bits
Tree-Based [14] 1795[m] 2390[m] 2984[m] 3624[m] 4234[m]
Our Result 1692[m] 2253[m] 2824[m] 3395[m] 3962[m]

Table 12. Comparing the computation cost for multi scalar multiplication using DBCs when the elliptic curve is
implemented in the prime field, and DS = {0,±1,±2, 3}

Method 192 bits 256 bits 320 bits 384 bits 448 bits
Hybrid Binary-Ternary [15] 1905[m] 2537[m] 3168[m] 3843[m] 4492[m]
Our Result 1698[m] 2266[m] 2842[m] 3413[m] 3986[m]

[2] J. A. Muir and D. R. Stinson, “New minimal weight
representation for left-to-right window methods,” De-
partment of Combinatorics and Optimization, School
of Computer Science, University of Waterloo, 2004.

[3] T. Takagi, D. Reis, S. M. Yen, and B. C. Wu, “Radix-r
non-adjacent form and its application to pairing-based
cryptosystem,” IEICE Trans. Fundamentals, vol. E89-
A, pp. 115–123, January 2006.

[4] V. Dimitrov and T. V. Cooklev, “Two algorithms for
modular exponentiation based on nonstandard arith-
metics,” IEICE Trans. Fundamentals, vol. E78-A,
pp. 82–87, January 1995. special issue on cryptog-
raphy and information security.

[5] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, “An
algorithm for modular exponentiations,” Information
Processing Letters, vol. 66, pp. 155–159, 1998.

[6] N. Meloni and M. A. Hasan, “Elliptic curve scalar
multiplication combining yao’s algorithm and double
bases,” in CHES 2009, pp. 304–316, 2009.

[7] V. Dimitrov, L. Imbert, and P. K. Mishra, “The double-
base number system and its application to elliptic
curve cryptography,” Mathematics of Computation,
vol. 77, pp. 1075–1104, 2008.

[8] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters,
“Optimizing double-base elliptic-curve single-scalar
multiplication,” in In Progress in Cryptology - IN-
DOCRYPT 2007, vol. 4859 of Lecture Notes in Com-
puter Science, pp. 167–182, Springer, 2007.

[9] C. Doche and L. Habsieger, “A tree-based approach
for computing double-base chains,” in ACISP 2008,
pp. 433–446, 2008.

[10] Same Authors as This Paper, “Fast elliptic curve cryp-
tography using minimal weight conversion of d inte-
gers,” in Proceedings of AISC 2012 (J. Pieprzyk and
C. Thomborson, eds.), vol. 125 of CRPIT, pp. 15–26,
ACS, January 2012.

[11] D. Bernstein and T. Lange, “Explicit-formulas
database (http://www.hyperelliptic.org/efd/),” 2008.

[12] J. Grobschadl and D. Page, “E?cient java implemen-
tation of elliptic curve cryptography for j2me-enabled
mobile devices,” cryptology ePrint Archive, vol. 712,
2011.

[13] L. Imbert and F. Philippe, “How to compute shortest
double-base chains?,” in ANTS IX, July 2010.

[14] C. Doche, D. R. Kohel, and F. Sica, “Double-base
number system for multi-scalar multiplications,” in
EUROCRYPT 2009, pp. 502–517, 2009.

[15] J. Adikari, V. Dimitrov, and L. Imbert, “Hybrid
binary-ternary number system for elliptic curve cryp-
tosystems,” IEEE Transactions on Computers, vol. 99,
p. to appear, 2010.

[16] T. ElGamal, “A public key cryptosystem and a sig-
nature scheme based on discrete logarithms,” IEEE
Trans. on Information Theory, vol. IT-31, pp. 469–
472, 1985.

[17] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery,
“Trading inversions for multiplications in elliptic
curve cryptography,” Designs, Codes and Cryptogra-
phy, vol. 39, no. 6, pp. 189–206, 2006.

[18] K. Eisentrager, K. Lauter, and P. L. Montgomery,
“Fast elliptic curve arithmetic and improved Weil pair-
ing evaluation,” in Topics in Cryptology - CT-RSA
2003, vol. 2612 of Lecture Notes in Computer Sci-
ence, pp. 343–354, Springer, 2003.

[19] P. Longa and C. Gebotys, “Fast multibase meth-
ods and other several optimizations for elliptic curve
scalar multiplication,” Proc. of PKC 2009, pp. 443–
462, 2009.

[20] J. A. Solinas, “Low-weight binary representation for
pairs of integers,” Centre for Applied Cryptographic
Research, University of Waterloo, Combinatorics and
Optimization Research Report CORR, 2001.

[21] R. Stadick, “A Java implementation of the elliptic
curve digital signature algorithm using NIST curves
over GF (p),” Master’s thesis, Oregon State Univer-
sity, University Honors College, 2006.

942

International Journal of Digital Information and Wireless Communications (IJDIWC) 2(1): 923-942

The Society of Digital Information and Wireless Communications, 2012(ISSN 2225-658X)

