
An Active Middleware for Secure Automatic Reconfiguration of Applications for

Android Devices

S. Kami Makki

Department of Computer Science, Lamar University, Texas, USA

kami.makki@lamar.edu

Karim Abdelrazek

Department of Computer Science, The City College of New York, New York, USA

kabdelr00@ccny.cuny.edu

Shui Yu

School of Information Technology, Deakin University, Victoria, Australia

syu@deakin.edu.au

Abstract—With the prevalence of smart phones and

the role they play in the lives of consumers, the demand

for high performing mobile computing is apparent.

Although smartphones today are feature-rich, they are

still resource-scarce; they are limited by their memory,

energy, and processing power. These limitations

constrain the ability of these devices to perform

intensive computational tasks without compromising

the consistency of mobile device performance. As such,

the development of a dynamic and intelligent mobile

middleware solution can ameliorate these constraints

through the utilization of surrogate computing

methodologies. In this paper, we present an intelligent

and active middleware solution for secure automatic

reconfiguration of applications for android devices.

This middleware offers efficiency and enhances the

conservation of resources for these devices.

Index Terms - Application offloading; Context

awareness; Feature models; Mobile middleware;

Reconfiguration; Surrogate computing

I. INTRODUCTION

A smartphone is a mobile device, which offers PC-

like functionality. A variety of operating systems

exist for smartphones today; examples of this include

Apple’s iOS, Android, Symbian, and Windows

Mobile. Each of these operating systems allow for

the execution of smartphone applications, which

range from gaming to productivity applications.

These days, smartphones are an integral part of

many people’s lives. As a recent report indicates, the

number of people that have mobile phone is growing

rapidly [1]. Out of the five billion mobile phones

available, approximately one billion smartphones are

in use worldwide. The United States alone has over

91 million smartphone users and it is projected to

grow much more [1].

As users become increasingly dependent on

smartphones for their daily life (e.g. banking, maps,

ticketing, etc.), the need for mobile devices with rich

computing capabilities is apparent. However,

smartphones have several limitations: they have finite

energy resources, contain highly variable network

connections, and are resource-poor compared to

standard desktop computers. With these limitations,

smartphones generally cannot perform

computationally-intensive tasks without

compromising mobile performance. Thus, these

constraints lower the quality of interaction between

mobile devices and their users.

Constraints facing mobile devices can be alleviated

in a variety of ways. Manufacturers of mobile devices

produce smartphones with improved phone

specifications, such as faster processors and bigger

batteries. However, generating high-end hardware

for these devices affects manufacturing and device

This material is based upon the work supported by the National Science

Foundation under Grant No. 0851912.

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

284

costs while limiting the product in other ways, such

as memory size and weight. While this approach

makes some improvements on mobile device

resources, it still leaves the devices with significant

limitations.

Another approach involves offloading

computational tasks to remote servers in order to

conserve mobile resources. This approach is

generally described as “Cyber Foraging”, or

“application offloading”. This approach is a key step

in realizing the pervasive computing vision [21].

Solving the problem of resource constraints on

mobile devices is an important achievement for the

user and for mobile computing. In order to achieve

this, an intelligent and active mobile middleware is

necessary.

The outline of this paper is as follows: In the next

section, we discuss relevant background information

pertaining to surrogate computing, automatic

reconfiguration, remote servers, and mobile

middleware. Section III summarizes and highlights

the key features of our proposed middleware. Section

IV presents the conclusion and future work.

II. RELATED WORK

A. Mobile Applications

A mobile application is a program designed for

mobile devices. There are a plethora of mobile

applications (apps) available today; for instance, the

iPhone’s App Store is home to over 500,000 mobile

applications [2]. Similarly, Android’s Google Play

contains approximately the same amount of mobile

applications [3]. Mobile applications range from

games to navigation apps; each application put

different strains on the resources of a mobile device.

For example, a movie streaming application heavily

consumes networking resources, while a game with

detailed 3D graphics consumes processor resources.

B. Offloading

For many years, researchers have investigated the

issues of conserving mobile resources through the

offloading of computationally intensive tasks.

Rudenko et. al. [4] was among the first to introduce

the idea of remote execution to conserve energy of

mobile devices. The authors in [5, 18, 20, 22]

reintroduced the concept of remote execution in

pervasive environments, coining the term “Cyber

Foraging.” Cyber Foraging revolves around mobile

devices offloading computational tasks to resource-

rich “surrogates” in order to conserve mobile

resources such as memory, and battery life. This

approach has been investigated [6] and shown to be a

viable solution [6, 7, 8] for minimizing the

consumption of resources of mobile devices. Recent

research revolves around the utilization of cloud

resources for offloading [7, 8, 9, 10].

To show how the surrogate computing can be

utilized easily for computation, we have developed an

application which extends the Google Play’s search

functionality. Google Play provides users with access

to hundreds of thousands of applications. However,

it is a challenge for users to find applications that

they may like, since they have been given limited

search options. That is because Google Play only

allows searching for apps by keyword or popular

apps featured, while users may want to search for

apps with different criteria. Our developed

application gives users the ability to set a variety of

preferences (such as app type, popularity, and cost)

in order to tailor search results to their interests.

Figure 1: User Preference Screen

As shown in Figure 1 each preference is given a

value from 1 to 5, with 5 indicating the highest

priority for that particular preference. Once the user

makes a search query for a particular type of app, this

query is offloaded to a private server. The server

sends the query to Google Play for retrieving the

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

285

search results. The server calculates a score for each

result based on the user preferences. Then, it

organizes the results so only the apps relevant to the

user’s interests appear, and finally the server sends

the results to the user. Without using a surrogate,

this process is unacceptably slow, as memory and

processing resources of a mobile device are limited.

Our experiment demonstrates the benefits of

offloading to minimize mobile device resource usage,

highlighting the importance of having automatic

reconfiguration in middleware.

C. Remote Server

In order for tasks or applications to be offloaded to

servers remotely, servers must have the following

features to run effectively:

 Communication Manager - A communication

manager is needed to operate data to and

from mobile devices.

 Virtual Machine Manager- This section of a

remote server manages the creation,

execution, and storage of the virtual machine

within the server.

 Decryption Service – A decryption service is

required to decrypt data exchanged between

severs and mobile device.

Figure 2 illustrates the design of such a remote

server [11]. The server houses multiple virtual

machines, with each one executing different

applications for mobile devices. It is important to

note that hosting multiple virtual machines is only

possible if the server is scalable. The operating

system of the virtual machine is determined by the

operating system of the mobile device. As previously

mentioned, the communication manager coordinates

all communication between the mobile device and

remote server; it also accesses the decryption service

to decrypt incoming information, and encrypt

outgoing data.

D. Middleware

Middleware is the management layer that manages

service, monitors access, plans the communication

between local and remote services and efficiently

executes the operations required for switching

services [12]. As such, it is responsible for the

reconfiguration of applications for purposes of

offloading. There are three main types of

reconfigurations [11]:

Static Reconfiguration – With static

reconfiguration, applications are always offloaded

whenever they are executed on the mobile device.

This process occurs at the time of installation, and

before execution of the application, allowing the user

to change preferences for static reconfiguration of a

specified application.

Dynamic Reconfiguration – Unlike static

reconfiguration, dynamic reconfiguration is a process

of offloading based on the state of the device. This

occurs when there is a noticeable change in

performance. In order to determine when a dynamic

reconfiguration should take place, cost benefit

formulas are used. These formulas take into account

several factors, such as battery level, user

preferences, bandwidth description, and network

strength. The formulas are calculated individually and

compared. If the benefit of offloading is higher than

the cost, the middleware will offload the application

to a remote server.

Contextual Reconfiguration – Contextual

reconfiguration shares similarities with Dynamic

configuration, with the exception of where

applications are offloaded. With contextual

reconfiguration, only nearby servers are used to host

applications. The term originates from the use of the

device’s context, specifically its location. Utilizing

contextual reconfiguration may reduce the latency of

offloading from the mobile device to the remote

server.

Criteria for Good Middleware

In the context of being able to perform efficient

Individual Server – Provides service to Mobile Devices

Decryption

Service
Phone OS

Storage

Virtual Machine

Manager

Communication

Manager

Android

Device

Android

Device

Web OS

Device

iOS

Device

Virtual Machine

Figure 2: Remote Server Design

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

286

automatic reconfiguration of applications, a good

mobile middleware solution must generally meet one

or more of these five criteria:

i. Complete Service – Along with reconfiguration,

middleware must offer other features, such as

fault solution systems and intelligent knowledge-

base.

ii. Application Portability – Middleware

compatibility with applications is essential for

providing efficient automatic reconfiguration.

iii. Offloading Pieces of Application – Small

portions of an application or the application itself

may need to be offloaded if they are

computationally intense.

iv. Triggering of Reconfiguration.

v. Contextual Reconfiguration – Contextual

reconfiguration allows for data to be sent across

shorter distances, allowing for more efficient

offloading.

E. Offloading

Related work in this area has touched upon

different aspects of mobile middleware development

and mechanisms for offloading.

Xiaohu Gu et. at.’s work describes an “adaptive

offloading” mechanism which relies on a distributed

offloading platform and an offloading inference

engine to compute small portions of an application

remotely [13].

Similarly, Gonzalo Huerta-Canepa et. al., worked

on a version of this offloading technique that

revolved around monitoring application behavior and

offloading based on a mathematical model [15].

Mararasu et al.’s work describes a service which

must be created and configured by developers [12].

Byung-Gon Chun et. al., discussed the design and

implementation of the “CloneCloud” system [7, 8],

which enables mobile applications to seamlessly off-

load threads from mobile devices onto device clones

operating in a computational cloud. This is done

through the utilization of static analysis and dynamic

profiling to partition applications in a manner which

optimizes application execution. Implementation of

this system was shown to lead to a 20 times

execution speedup for certain applications [8].

III. MIDDLEWARE DESIGN

We base the design for our system on our earlier

design [11]. Our propose system provides an

intelligent mobile middleware solution offering

context-awareness, an intelligent knowledge-base to

handle errors, and automatic reconfiguration of

applications. This middleware strives to give

developers a way to make their applications

reconfigurable for offloading with little application

re-development. This section summarizes how our

active middleware works, as well as, highlights its

key components.

In addition to offering a solution for all the criteria

listed in Section II (sub-section D), our system also

contains the following features:

 Transparency - Tasks performed by

middleware should be inconspicuous; the user

should be oblivious to anything but the

content being received on the mobile device.

 Modularity - Modularity is necessary in order

to allow for easy modification of the

middleware system.

These features are necessary for a well-developed

middleware solution, and ensure efficient

performance on mobile devices.

A. Application Compatibility

Applications with our system have three

requirements:

 XML Information File - An XML information

file is necessary to tell to our proposed

middleware whether the application is able to

be offloaded and if static reconfiguration is

preferred.

 Separation of Interface and Computation –

Applications need to have an interface which

interacts with the user and a computation

portion which manipulates data.

 Transparent RPC - Transparent Remote

Procedural Calls (RPC) is needed for

transferring data between various portions of

the application. This would utilize a

serialization format to communicate between

the two portions. When this information is

shared with the application, the application

would translate this data into the data used by

the application.

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

287

B. Reconfiguration

The proposed middleware supports dynamic,

static, and contextual reconfiguration:

Dynamic Reconfiguration - Our system utilizes

the cost benefit using the formulas shown below:

Cost of offloading = Network Type + Battery Level +

Bandwidth Restrictions + User Preferences+ Current

Network Strength + Application Currently

Reconfigured (1)

Benefit of offloading = Processor Utilization +

Memory Utilization (2)

Static Reconfiguration - As mentioned in Section

II, with static reconfiguration the application is

always offloaded. However, this type of

reconfiguration is done only at the user’s request, or

if a developer places a set of conditional rules for

which static reconfiguration must occur in order for

the application to run successfully on the mobile

device.

Contextual Reconfiguration - With contextual

reconfiguration, applications are only offloaded to

nearby servers. When the user permits contextual

reconfiguration, the procedure that follows is similar

to that of dynamic reconfiguration (e.g., utilizing the

cost-benefit formulas to determine whether

offloading is necessary); however, transferring of the

application would have to occur much faster. The

middleware would seek out available servers nearby,

and then offload the application once one is found.

The process is only triggered when the users move

further away from their current locations.

To demonstrate the performance of our proposed

middleware a tic-tac-toe game application was

developed in Makki et. al., [14]. In this application,

once the middleware has decided that offloading

computation of a program is beneficial to the mobile

device, the middleware searches for a server. After it

locates a remote sever, the middleware pauses the

selected application and offloads it. Meanwhile, the

server creates a virtual machine for the device and

receives the application. After the application is

received, the server executes the application and the

middleware resumes the interface portion of the

application; these two portions then communicate

over transparent RPC. With this constant

communication, the application has no knowledge

that it has been reconfigured, and continues to run

smoothly.

C. Intelligent Knowledge Base

The middleware’s knowledge-base is a fault

repository, a collection of previously encountered

errors along with their solutions. If the middleware

encounters a new problem, it first attempts to use a

relevant solution. If that fails, the middleware will try

to solve the problem through trial and error [11].

When multiple failures are accumulated, they are

recorded into the fault repository, as well as, their

attempted solutions. The knowledge base consists of

three columns: there is one for storage of problem

description (stored as keywords), one for attempted

fixes, and the third is for problem solutions. Figure 3

illustrates how the knowledge base works.

Figure 3. Intelligent Knowledgebase Operation:

K = number of previous faults, n = number of faults

Figure 4. Feature Model Key/Legend

D. Feature Model

 The feature model as shown in Figure 4 provides

design information about our proposed system,

which allows us to identify all of the commonalities

that would exist between different versions of the

middleware on different devices [11]. The feature

Requires Feature

Applies to

Alternative

Key Legend

Implemented

Optional

Fault, n Solution, n Attempts, n, K

Solution, not fixed,

deduce possible

solution

Apply

Solution

Solution failed. Add fault into knowledge base

Fault, 1 Solution, 1 Attempts, 1, K

Solution

found and

applied.

Fault fixed.

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

288

model also allows the middleware to be easily

visualized, as shown in Figures [5-8].

Figure 5. Architecture Overview

Figure 6. Intelligence Knowledgebase Feature Model

Our system has two main features: automatic

reconfiguration, and user preferences as shown in

Figure 5. It also has optional features such as

Context Database and Intelligence Knowledgebase as

shown in Figure 5. As shown in Figures [6-8], there

are many alternative sub-features, which together

implement the super-feature, or make up some

portions of it. This highlights the modularity of our

propose system, allowing for the creation of a mobile

middleware suited for several mobile devices.

E. Data Serialization Format

As mentioned before, automatic reconfiguration is

a key component of our intelligent and active mobile

middleware solution. Data communication is

extremely important in the process of offloading

application. Therefore, a reliable serialization format

is essential for an effective middleware. Sumaray and

Makki, compared the efficiency of data serialization

formatting such as: XML (eXtensible Markup

Language), JSON (JavaScript Object Notation),

ProtoBuf, and Thrift for a mobile platform [16].

They showed that the faster formatting for data

serialization and deserialization is the Binary

formatting (ProtoBuf and Thrift). However, when

taking into consideration other factors such as human

readability and adaptability, JSON proven to be the

best overall data serialization format [16]. Therefore,

we propose to use JSON as the default serialization

format for our proposed middleware. This will

provide the middleware with an efficient means of

data communication, especially in transparent RPC

(discussed earlier). It will also decrease the size of

data being transferred to remote servers, which is

important since smartphones typically have a limited

capability for transferring large amount of data.

Figure 7. Context Database Feature Model

F. Fidelity Adaptation

Fidelity Adaption is another approach to

conserving a mobile device’s resources. Fidelity

refers to an application’s metric of quality [17] that

can be modified to conserve energy resources. For

example, if a user runs a visually intensive application

on his/her mobile device and observes a low frame

rate (because the device cannot handle the intense

computations), then the user can lower the visual

quality of the application so it can run smoothly.

Therefore, the fidelity adaptation approach is ideal

Context

Database
Sensors

Reasoning Storage Application

Access

Contextual

Reconfiguration

Robust

API
Structure

User

Preferences

Intelligence

Knowledgebase

Policies Reasoning
Error

Knowledgebase

Higher

Processing

Power

User

Preferences
Problems

Attempted Fixes &

Solutions

Problems &

Solutions

Middleware

Automatic

Reconfiguration

User

Preferences

Intelligence

Knowledgebase

Context

Database

Higher

Processing Power Sensor

Application

Setup

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

289

as it provides a method of minimizing resource usage

in the absence of surrogate computers. Furthermore,

it can be combined with “Cyber Foraging” techniques

to optimize mobile device efficiency [18, 19]. For

example, this combination would allow a lower

quality visual application to be offloaded to a

surrogate which leads to a smaller amount of data

being communicated to a remote server. This results

in a lower latency between the server and the mobile

device because smaller data can be parsed quickly.

Figure 8. Automatic Reconfiguration and User

Preferences Feature Model

Adding this feature to our system enhances its

capabilities and it can lead to performance gains on

mobile devices. In order to make it work with the

middleware system, the XML information file

described in sub-section A of section III would need

to have additional information specifying whether the

application quality can be adjusted. If it can, then the

middleware will lower its quality and offload it when

necessary to conserve energy of mobile devices.

IV. CONCLUSION

 In this paper, we have investigated information

pertaining to middleware technology and surrogate

computing [9]. These technologies improve

conservation of resources of mobile devices and

improve their capability. Therefore, we introduced a

new middleware system, which enables automatic

reconfiguration of applications. It is a complete

mobile middleware system containing key features

such as full application offloading, and an intelligent

knowledgebase for fault tolerance. What

distinguishes our propose middleware system from

other existing middleware is the utilization of fidelity

adaptation to optimize mobile device resource

conservation. This feature gives mobile devices the

ability to save energy in the absence of surrogate

computers, and also facilitate further conservation of

resources when combined with application

offloading. All these proposed features make our

system a fast, versatile, and developer-friendly

middleware solution.

ACKNOWLEDGMENT

The authors wish to thank Matthew Williamson, a

Lamar University student, who has assisted in

programming tasks of this project.

V. REFERENCES

[1] Go-Gulf.com, Infographic SMARTPHONE USERS

AROUND THE WORLD – STATISTICS AND

FACTS (prepared on 2nd January 2012),

http://www.go-gulf.com/blog/smartphone.

[2] Apple, Apps for iPhone,

http://www.apple.com/iphone/apps-for-iphone/

[3] Google, Android Apps on Google Play,

https://play.google.com/store/apps?hl=en.

[4] Alexey Rudenko and Peter Reiher. Saving Portable

Computer Battery Power through Remote Process

Execution. In Proceedings of Mobile Computing and

Communications Review, Vol.2, No.1, pp.19-26,

1998.

[5] M. Satyanarayanan. Pervasive Computing: Vision and

Challenges, IEEE Personal Communications, Vol.8,

No.4, pp.10-17, 2001.

[6] K. Kumar and Y. H. Lu. Cloud Computing for

Mobile Users: Can Offloading Computation Save

Middleware

User

Preferences

Application

Setup

Monitoring

Service

Preferences

Storage

User

Interface

Static

Reconfiguration

Service

Engine

Application

States
Remote Server

Lookup

State

Collection

State

Storage

If/Else

Engine

XML No

Structure

Policies

State

Security

Other Data

Encryption

XML

Encryption

Data

Transfer

Engine

Automatic

Reconfiguration

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

290

http://www.apple.com/iphone/apps-for-iphone/
https://play.google.com/store/apps?hl=en

Energy. In Proceedings of Computer, Vol.43, No.4,

pp.51-56, April 2010.

[7] C. Byung-Gon and M. Petros. Augmented

Smartphone Applications Through Clone Cloud

Execution. In Proceedings of 12
th
 workshop on Hot

Topics in Operating Systems (HotOS XII), May

2009, Monte Verita, Switzerland.

[8] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis,

Mayur Naik, and Ashwin Patti. CloneCloud: Elastic

Execution between Mobile Device and Cloud. In

Proceedings of the 6
th
 international conference on

Computer systems (EuroSys '11), pp. 301-314, 2011,

New York, USA, DOI=10.1145/1966445.1966473,

http://doi.acm.org/10.1145/1966445.1966473.

[9] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and

Henri Bal. The Smartphone and the Cloud: Power to

the User. In Proceedings of the MobiCloud 2010.

[10] Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh

Jeong, and Simon Gibbs. Towards an Elastic

Application Model for Augmenting the Computing

Capabilities of Mobile Devices with Cloud

Computing. In MONET 16(3): pp. 270-284, 2011.

[11] Setfan Ashmore and S. Kami Makki. IMISSAR: An

Intelligent, Mobile Middleware Solution for Secure

Automatic Reconfiguration of Applications, Utilizing

a Feature Model Approach. In Proceedings of the 5
th

International Conference on Ubiquitous Information

Management and Communication (ACM SIGKDD-

SIGAPP ICUIMC 2011), pp. 21-23 February, 2011,

Seoul Korea.

[12] Alin F. Murarasu and Thomas Magendanz. Mobile

Middleware Solution for Automatic Reconfiguration

of Applications. In Proceedings of the 6
th
 International

Conference of Information Technology: New

Generations (ITNG 09), pp.1049-1055, 2009, Las

Vegas USA.

[13] Xiaohui Gu, Alan Messer, Ira Greenberg, Dejan

Milojinic, and Klara Nahrstedt. Adaptive Offloading

for Pervasive Computing. In IEEE Pervasive

Computing Magazine, Vol.3, No.3, pp. 66-73, 2004.

[14] S. Kami Makki, Narasimha B. Srirangam, Venkata

S. Aiswarya, and Shui Yu. Utilizing Intelligent

Middleware for Reconfiguration of Applications on

Android. In Proceedings of International Conference

on Convergence and Hybrid Information Technology

(ICHIT’11), pp. 81-89. Springer, Heidelberg,

September 2011, Daejeon, Korea.

[15] Gonzalo Huerta-Cánepa and Dongman Lee. An

Adaptable Application Offloading Scheme based on

Application Behavior. In Proceedings of the workshop

of the 22
nd

 International Conference on Advanced

Information Networking and Applications, pp. 387-

392, March 2008.

[16] Audie Sumaray and S. Kami Makki. A comparison of

data serialization formats for optimal efficiency on a

mobile platform. In Proceedings of the 6th

International Conference on Ubiquitous Information

Management and Communication (ICUIMC 2012).

ACM, DOI=10.1145/2184751.2184810, .New York,

NY, USA, 2012.

[17] Rajesh Krishna Balan. Powerful Change Part 2:

Reducing the Power Demands of Mobile Devices. In

IEEE Pervasive Computing, Vol. 3, No. 2, pp. 71-73,

IEEE Press, 2004.

[18] Jason Flinn and M. Satyanarayanan. Energy-aware

adaptation for mobile applications. SIGOPS

Operating System Rev. Vol. 34, No. 2, pp. 13-14,

April 2000. DOI=10.1145/346152.346170

http://doi.acm.org/10.1145/346152.346170.

[19] Eyal DeLara, Dan S. Wallach, and Willy

Zwaenepoel. Puppeteer: Component-based Adaptation

for Mobile Computing. In Proceedings of USITS, pp.

14-25, 2001.

[20] Eduardo Cuervoy, Aruna Balasubramanianz, Dae-ki

Cho, Alec Wolmanx, Stefan Saroiux, Ranveer

Chandrax, and Paramvir Bahlx. MAUI: Making

SmartPhones Last Longer with Code Offload. In

Proceedings of MobiSys, 2010.

[21] M. D. Kristensen. Scavenger: Transparent

Development of Efficient Cyber Foraging

Applications. In Proceedings of IEEE International

Conference on Pervasive Computing and

Communications (PerCom 2010), pp.217-226, 2010.

[22] Rajesh Balan, Jason Flinn, M. Satyanarayanan,

Shafeeq Sinnamohideen, and Hen-I Yang. The Case

for Cyber Foraging. In Proceedings of the 10
th

workshop on ACM SIGOPS European workshop

(EW 10). New York, NY, USA, pp. 87-92, 2010.

DOI=10.1145/1133373.1133390.

http://doi.acm.org/10.1145/1133373.1133390.

International Journal of Digital Information and Wireless Communications (IJDIWC) 4(3): 284-291
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2225-658X)

291

http://doi.acm.org/10.1145/1966445.1966473
http://doi.acm.org/10.1145/346152.346170

