

Improvement of Load Balancing Method in a Distributed Web System

Using DNS

Kota MORIGAKI and Keizo SAISHO

Kagawa University

2217-20 Hayashi-cho, Takamatsu 761-0396, Japan

s16g473@stu.kagawa-u.ac.jp, sai@eng.kagawa-u.ac.jp

ABSTRACT

Progress of virtualization technology in recent

years made it easy to build virtual servers on cloud.

They can be used as cache server for load balancing.

However, expected responsiveness cannot be

gained with insufficient cache servers against load.

In contrast, costs will increase by surplus cache

servers against load. Therefore, we have been

developing a distributed web system that adjust the

number of cache servers according to load of them

to reduce running cost. In this study, a load

balancing method using DNS round-robin is now

developed. However, load imbalance occurs

among the servers with this method and

responsiveness decreases because it is difficult to

distribute the load uniformly using DNS round-

robin. Therefore, we implement a function to

suspend the allocation of requests to the overloaded

server. This paper describes improvement of load

balancing method and evaluation of it. From results

of experiments, we confirm that improved function

is possible to prevent lowering responsiveness with

lower TTL value.

KEYWORDS

DNS Round-Robin, Distributed Web System,

Load Balancing, Suspend Allocation, Auto-scaling,

Cache Server

1 INTRODUCTION

In recent years, the Internet users increase and

much service is performed using Web.

Therefore, load of Web servers is growing

more and more. If the load is over the limit of

server’s capacity, it returns the response with

large delay, and it goes down in the worst case.

Load balancing techniques are often used to

avoid overload of servers. There is a Web

system that distributes requests to multiple

servers such as cache servers or mirror servers

for load balancing. Progress of virtualization

technology made it easy to build virtual servers

on cloud. They can be used as cache server.

Responsiveness, however, does not improve

with insufficient cache servers against load. In

contrast, costs will increase with surplus cache

servers against load. Therefore, we developed

a distributed web system using Load Balancer

that dynamically adjust the number of cache

servers according to load of them to reduce

running cost[1]. In this study, we develop a

method to distribute load to cache servers

using DNS round-robin. However, load

imbalance occurs among the servers with this

method and responsiveness decreases because

it is difficult to distribute the load uniformly

using DNS round-robin. Therefore, we

implement a function to suspend the allocation

of requests to the overloaded server.

2 RELATED WORKS

A cloud auto-scaling mechanism aiming at

providing necessary resources at low cost has

been studied[2][3]. In [2], auto-scaling

mechanism based on workload information

and performance desire is implemented in

Windows Azure platform. The result of the

experiment shows that cost can be reduced by

choosing an instance type of appropriate

performance for the workload. This research

covers a variety of applications, but our system

targets only web application and aims at cross-

use multiple cloud services.

In [3], an auto-scaling algorithm based on the

number of active sessions of the web server is

described. A load balancer is used for load

balancing. Although we also use the number of

active sessions as the load value, we use DNS

for load balancing.

ISBN: 978-1-941968-42-0 ©2017 SDIWC 69

Proceedings of the Third International Conference on Electronics and Software Science (ICESS2017), Takamatsu, Japan, 2017

In [4], dynamic load balancing method using

dynamic DNS update and round-robin

mechanism is proposed. In this method, a

server is dynamically added to or removed

from the DNS list. The scheduling algorithm

considers usage rates of server's CPU, memory,

and network. The result of the experiment

shows that both the response time and the

average file transfer rate of the proposed

system are faster than those of a pure round-

robin DNS. It is similar to our load balancing

method, but ours uses the number of active

sessions as the load value.

3 DISTRIBUTED WEB SYSTEM USING

DNS

Figure 1 shows our distributed Web system

using DNS which consists of management

server, authoritative name server, origin server

and cache servers on cloud. The origin server

services original contents and cache servers

service the cache of them. The managing

server manages the number of cache servers

and DNS zone of the authoritative name server.

For load balancing, this system uses DNS

round-robin method which sends the list of IP

addresses in a different order to a new client

each time. Most clients use the first IP address

they receive to connect server. Therefore,

requests from clients are sent to each server.

By managing the DNS zone of the

authoritative name server, it is possible to

control the start and stop of allocating request

to each server.

The management server has the following

functions.

 Load monitoring function

The load monitoring functions monitors

load of the origin server and cache servers.

This function periodically measures the

current and the maximum number of Web

server processes and calculates ratio of the

current number against the maximum

number (Operating Ratio), and calculates

average of Operating Ratio of working

servers (Average Operating Ratio,

AVGOR). This system uses AVGOR as

load value.

 Cache server management function

The cache server management function

boots up and shuts down cache servers.

This function decides the number of

required cache servers based on AVGOR

obtained by the load monitoring function.

When AVGOR is greater than threshold of

scale-out (Thhigh), it boots up a new cache

server. When AVGOR is less than

threshold of scale-in (Thlow), it shuts down

a latest booted cache server.

 DNS management function

The DNS management function manages

the DNS zone of authoritative name server.

According to the booting up and shutting

down cache server, IP address of it is added

to or removed from the DNS zone

dynamically. When the load monitoring

function cannot monitor load of a server, it

also removes the server. Therefore, it is

possible to cope with server failure such as

system down.

Figure 1. Distributed Web System using DNS

4 LOAD BALANCING USING DNS

ROUND-ROBIN

We experimented with the distributed Web

system described in the previous section. The

result showed, load imbalance among the

servers using the DNS round-robin method.

Origin Server

Cache Servers

on Cloud

Load Monitoring

Function

Cache Server Management Function

DNS Management

Function

Management Server

Name Server

LoadNotify Change

Load Monitoring

Boot up / Shutdown

Update Zone

Clients

Distributed Accesses

DNS Resolution

ISBN: 978-1-941968-42-0 ©2017 SDIWC 70

Proceedings of the Third International Conference on Electronics and Software Science (ICESS2017), Takamatsu, Japan, 2017

4.1 Experiment Environment

Figure 2 shows the experiment environment.

All servers and clients are built as virtual

machine on hypervisors which specifications

are shown in Table 1. The management server

and DNS servers are built on hypervisor1, the

origin server and nine cache servers are built

on hypervisor2 and hypervisor3, and twelve

clients are built on hypervisor4. Mirror server

is used instead of cache server because cache

mechanism is now developing. Apache2.4[5]

is used as a Web server software. DokuWiki[6]

runs on all servers. Each client accesses the

web server using Siege[7]. Siege is the stress

test tool. The number of simultaneous accesses

is set to 100. Therefore, the maximum number

of simultaneous accesses is 1,200 (100×12).

TTL value for DNS is set to 60 seconds. Thhigh

and Thlow are set to 0.6 and 0.1, respectively.

4.2 Experiment Procedure

The scenario of the experiment is shown in

below. To examine the load and the response

time of each server, the number of

simultaneous accesses to web servers is

stepwise changed.

I. Start with no accesses.

II. Add 1 client every 30 seconds.

III. After all clients are added, keep all

clients accessing for 500 seconds.

IV. Remove 1 client every 30 seconds.

V. End when no accesses.

4.3 Experiment Result

Figure 3 shows Operating Raito of each server.

Figure 4 shows the response time and the

Operation Raito of the origin server.

In Figure 3, several servers are overloaded for

a long time, and some servers remain low load.

This phenomenon happens clearly around 500

seconds.

In Figure 4, purple line and blue line show

average response time and maximum response

time for one second, respectively, green line

shows Operation Ratio. Maximum response

time varies very much. Requests from clients

are distributed to each server by using the

round-robin method. However, this method

cannot consider the load of each server and it

causes load imbalance among the servers and

response time lengthens.

5 SUSPENDING FUNCTION

We think that the problem described in the

previous section can be coped with by

suspending the allocation of requests to the

overloaded server. We implement a function

that excludes overloaded servers from DNS

answer. We call this function suspending

function. The function uses the PipeBackend

of PowerDNS[8] that is DNS software. It can

call external program that resolves DNS

queries dynamically through PipeBackend

module. We implement the program that

resolves DNS queries based on the

Hypervisor1

Management Server

2 CPU,1GB Mem

Authoritative

Name Server

1 CPU,512MB Mem

Caching Name Server 1

1 CPU,512MB Mem

Caching Name Server 12

1 CPU,512MB Mem

Root Name Server

1 CPU, 512MB Mem

･
･
･

Hypervisor4

･
･
･

Client 1

1 CPU, 512MB Mem

Client 12

1 CPU, 512MB Mem

Hypervisor2

･
･
･

Origin Server

1 CPU, 1GB Mem

Cache Server 1

1 CPU, 1GB Mem

Cache Server 4

1 CPU, 1GB Mem

Hypervisor3

･
･
･

Cache Server 5

1 CPU, 1GB Mem

Cache Server 9

1 CPU, 1GB Mem

Figure 2. Experiment environment

Table 1. Spec of each hypervisor

 CPU Memory

Hypervisor1 Intel Xeon E5-2620 32GB

Hypervisor2 Intel Xeon E5-2620 32GB

Hypervisor3 Intel Xeon E5-2620 32GB

Hypervisor4 Intel Core i7-4790K 32GB

ISBN: 978-1-941968-42-0 ©2017 SDIWC 71

Proceedings of the Third International Conference on Electronics and Software Science (ICESS2017), Takamatsu, Japan, 2017

configuration file shown in Figure 5. The file

contains a hostname, IP address, status value

of each server and TTL value. The status value

is updated every second based on Operation

Ratio of each server obtained by the

management server and sent to the

authoritative name server. The status value is

set to 0 while the corresponding server stay in

overloaded. otherwise, the status value is set to

1. The IP address is included in DNS answer if

the corresponding status value is 1. In contrast,

the IP address is excluded from DNS answer if

the corresponding status value is 0. For

example, IP address 192.168.11.21 and

192.168.11.22 is included in DNS answer with

configuration shown in Figure 5.

6 EVALUATION

In this section, we evaluate the function

described in the previous section. The

experiment environment and the experiment

procedure are the same as in Section 4. When

the Operation Ratio of the server is the

threshold value and over, the function decides

that the server is overloaded and set the status

value in configuration file to 0. Otherwise, the

value is set to 1. In this experiment, the

threshold value is set to 0.6 (case A), 0.8 (case

B) or 1 (case C). Experiment without the

suspending function is represented as case D.

We performed experiments ten times in all

cases. In order to investigate influence of the

function to suspend allocation of requests to

overloaded servers, the experiment results

while number of simultaneous accesses is

maximum are examined.

The average of the results is shown Table 2.

The cost is sum of uptime of all servers. The

average response time in case D is the best in

all cases. The number of requests per cost in

case D is also the best.

Table 2. Experiment result of each case (TTL 60)

Table 3 shows the percentage of access with

response time longer than or equal to 3,9,15,30

and 60 seconds. The blue and red letters

indicate the lowest and highest percentage,

respectively. Percentages of access with

response time longer than equal to 3 and 60

seconds severally in case D are the highest. In

contrast, other percentages in case D are the

lowest.

Table 3. Percentage of long responded access

(TTL 60)

The results show the function is ineffective. In

DNS, the TTL value specifies the expiration

date of the DNS cache. It takes long time to

reflect the updated DNS zone with large TTL.

Case Threshold value Cost
Total

response time

Total

number of requests

Average

response time

number of

requests per cost

A 0.6 3454 445152 312404 1.42 90.45

B 0.8 3316 447405 309476 1.45 93.32

C 1 3279 454476 292067 1.56 89.08

D Without function 3258 431490 304978 1.41 93.60

Case Threshold value 3 9 15 30 60

A 0.6 15.103 2.453 1.269 0.468 0.031

B 0.8 14.760 2.910 1.569 0.609 0.027

C 1 17.070 3.068 1.692 0.656 0.030

D Without function 18.671 1.403 0.650 0.262 0.074

0
6
12
18
24
30
36
42
48
54
60
66
72

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
R

es
p

o
n
se

 T
im

e[
s]

O
p

er
at

io
n
 R

at
e

Time[s]
Operation Rate Average Response Time Maximum Response Time

Figure 4. Operation Ratio and response time of

origin server

Figure 3. Operation Ratio of each server

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

O
p
er

at
io

n
 R

at
e

Time[s]
Origin Server Cache Server1 Cache Server2 Cache Server3 Cache Server4
Cache Server5 Cache Server6 Cache Server7 Cache Server8

example.com:

 A:

 IP:

 192.168.11.21: 1

 192.168.11.22: 1

 192.168.11.23: 0

 192.168.11.24: 0

 192.168.11.25: 0

 192.168.11.26: 0

 TTL: 60

Figure 5. A Sample configuration file

ISBN: 978-1-941968-42-0 ©2017 SDIWC 72

Proceedings of the Third International Conference on Electronics and Software Science (ICESS2017), Takamatsu, Japan, 2017

Therefore, the suspending function takes no

effect on response time. So, the same

experiments except TTL value set to 30

seconds is performed.

The average of results is shown Table 4. The

average response time in case C is the best in

all cases. The number of requests per cost in

case C is also the best.

Table 4. Experiment result of each case (TTL 30)

Table 5 shows the Percentage of long

responded access. All percentages of access in

case A are the lowest in all cases. The

percentage of access with response time longer

than equal to 3 seconds in case D is the worst

in all cases and more than twice as high as that

in case A.

Figure 6 and Figure 7 show the response time

and the Operation Raito of the origin server in

case A and case D, respectively. Line colors

are same as in Figure 4. In Figure 6, the

maximum response time is about half of the

maximum response time in Figure 7. These

results show the effectiveness of the

suspending function with small TTL.

Table 5. Percentage of long responded access

 (TTL 30)

7 CONCLUSION

We implemented the suspending function to

exclude overloaded servers from DNS answer

and evaluated it. By the experiment, it is

confirmed that the function is possible to

improve responsiveness with lower TTL value.

However, the function reduces responsiveness

with higher TTL value.

The followings are future works.

・Practical Scenarios of Experiment

・Examination of TTL value

・Experiment using cloud environment

REFERENCES

[1] A. Horiuchi, and K. Saisho. “Prototyping and

Evaluation of Virtual Cache Server Management
Function for Distributed Web System,” The 2015
International Conference on Computational
Science and Computational Intelligence (CSCI'15),
pp.324-329, 2015.

[2] M. Mao, J. Li, and M. Humphrey. “Cloud auto-

scaling with deadline and budget constraints,” 11th
ACM/IEEE International Conference on Grid
Computing (Grid 2010), 2010.

[3] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal.
“Dynamic Scaling of Web Applications in a
Virtualized Cloud Computing Environment,” 2009
IEEE International Conference on e-Business
Engineering, pp.281-286, 2009.

[4] JB. Moon, and MH. Kim, “Dynamic Load
Balancing Method Based on DNS for Distributed
Web Systems,” International Conference on
Electronic Commerce and Web Technologies, pp.
238-247, 2005.

[5] Apache, https://httpd.apache.org/

[6] DokuWiki, https://www.dokuwiki.org/dokuwiki#

[7] Siege, https://www.joedog.org/siege-home/

[8] PowerDNS, https://www.powerdns.com/

Case Threshold value Cost
Total

response time

Total

number of requests

Average

response time

number of

requests per cost

A 0.6 3745 417580 368184 1.13 98.33

B 0.8 3712 419933 364384 1.15 98.16

C 1 3627 416003 371359 1.12 102.40

D Without function 3407 433705 320231 1.35 93.99

Case Threshold value 3 9 15 30 60

A 0.6 8.567 0.817 0.400 0.103 0.0000

B 0.8 9.160 0.936 0.461 0.118 0.0000

C 1 10.268 1.009 0.442 0.122 0.0004

D Without function 19.164 1.011 0.425 0.147 0.0360

Figure 6. Operation Ratio and response time of

origin server in case A (TTL 30)

0
6
12
18
24
30
36
42
48
54
60
66
72

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

R
es

p
o
n
se

 T
im

e[
s]

O
p
er

at
io

n
 R

at
e

Time[s]
Operation Rate Average Response Time Maximum Response Time

0
6
12
18
24
30
36
42
48
54
60
66
72

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

R
es

p
o

n
se

 T
im

e[
s]

O
p

er
at

io
n
 R

at
e

Time[s]
Operation Rate Average Response Time Maximum Response Time

Figure 7. Operation Ratio and response time of

origin server in case D (TTL 30)

ISBN: 978-1-941968-42-0 ©2017 SDIWC 73

Proceedings of the Third International Conference on Electronics and Software Science (ICESS2017), Takamatsu, Japan, 2017

