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ABSTRACT 

As the practical implementation of many encryption 
algorithms is controlled by third parties, end users 
cannot be certain that the generated keys have not 
been compromised at source. By allowing users to 
generate their own keys, this concern can be 
overcome. In the work described in this paper, the 
encryption key is a generated function produced by 
an evolutionary search operation executed by 
Eureqa in modelling pseudo-random input data 
obtained from a suitable source. This paper 
describes the results of initial experiments to 
generate suitable keys representing random number 
sequences of a range of lengths. 
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1 INTRODUCTION 

Kerckhoffs' principle formulated in the 19th century 
states that a ‘cryptosystem should be secure even if 
everything about the system, except the key, is 
public knowledge’; rephrased more recently by 
Shannon as ‘the enemy knows the system’ [1]. Such 
statements are not entirely true in modern 
encryption systems, as users rely on an algorithm 
whose implementation is formulated by a third 
party, often a commercial entity, government 
institution or military establishment. A concern for 
end users is that it cannot be guaranteed that a key is 
not retained by that third party or communicated to 
an authority [2][3]. Only by allowing the end user 
control over key generation can they have peace of 
mind that an intruder has not compromised the 
process. The perception that knowledge of the key 
generation method is a potential source of security 
breeches has led a number of users with specific 
security requirements to implement their own 
proprietary encryption algorithm or software so that 
this can also be hidden from potential intruders [4].  

Another challenge faced by encryption users is that, 
due to the complexity of encryption algorithms, 
many end users have little choice but to employ 
third party algorithms or service providers to 
generate keys [5], who then distribute them and 
devise an appropriate method for their storage [6]. 
The key management process performed by third 
parties is an important security consideration, 
particularly when a number of different users are 
serviced by a single provider and a secondary form 
of authentication controlled by the provider is 
needed to access individual areas [7][8]. 

This paper describes new results based on an 
approach initially developed by Blackledge et al. 
[9], in which the key is an equation that is 
automatically generated so as to model a random 
number sequence to a suitable accuracy. By this 
method, users will be able to retain control of the 
key generation algorithm and so have greater 
confidence that the key is not accessible by third 
parties. The principal drawback of the approach is 
currently the time taken to generate a new key and 
the contribution of this paper is the investigation of 
different random sequence lengths in order to 
establish tradeoffs between calculation time and 
confidence in security.  

The paper is organized as follows. Related work 
that has investigated the generation of bespoke keys 
is discussed in Section 2. Section 3 introduces the 
methodology used in this paper to generate keys, 
Section 4 describes the experimental results and 
Section 5 presents the conclusions. 

2 RELATED WORK 

A number of authors have reported work that 
generates encryption keys using processes that can 
be controlled by an end user.   

Eureqa [10] uses an evolutionary computing 
approach to iteratively develop nonlinear functions 
to describe complex input signals usually connected 
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with experimental data. Blackledge et al. [9] used 
Eureqa to implement an encryption key generation 
algorithm that models a 250 sample pseudo random 
number (PRN) sequence [11]. A single proof of 
concept result was given in which 23 hours were 
needed to generate a key, namely an equation that 
models a random number sequence. The paper 
concluded that the technique may present a 
technical solution to the ‘democratisation of the 
cipher bureau.’ 
 
Considering the above mentioned works, the present 
study will extend the initial investigations 
conducted by Blackledge et al. (2013). The reasons 
for using Blackledge as related work for this paper 
to develop an encryption method whose operation is 
both known and controlled by users rather than by 
third parties.  
 
3 METHODOLOGY 
 
The current work aims to develop further the 
approach of Blackledge et al. [9] in allowing the 
user to generate their own keys that are Eureqa 
models of a PRN sequence [9]. The approach 
follows the steps shown in Figure 1 to produce the 
encryption key. 
 

 
Figure 1  Method of generating encryption keys using 

Eureqa 
 

3.1 Pseudo random number (PRN) generation 
 
As the key itself will be an equation that models a 
sequence of random numbers to a suitable accuracy, 
an appropriate method is needed to generate and test 
random numbers to ensure they have the necessary 
characteristics of independence, unpredictability, 
and ‘complexity’ to provide strength to 
cryptographic algorithm [9]. A chi-square test can 
be used to assess whether the random sequence 
produced is likely to have come from a specified 
distribution [3]. 
 
Blackledge et al. established rules to be followed to 
obtain suitable PRNs for encryption purposes [12]. 
PRNs require a  ‘seed’ to initiate the generation of 
the first number and subsequent values are 
generated iteratively [13].  The linear congruential 
generator (LCG) [14] is one of the oldest PRN 
algorithms and is commonly used in encryption [15] 
[16]. It is a simple method and the short period 
between sequence repetitions is generally regarded 
as a weakness [14]. This method produces integer 
random numbers stream in the range [0, m-1] where 
in practical implementations m is normally the word 
length of the computer system. The LCG uses the 
following iterative equation to generate the random 
values 𝑥!  [12]. 

 
xi+1=(axi + c)modm  (1) 

where i = 0,1, 2,..,n−1,  n  is the length of cycle, 
x0  is the seed, a  is an integer multiplier and c  is 
an integer additive constant. These generators are 
characterized by simplicity in implementation and 
short calculation time [17] [18].  

3.2 Key generation using Eureqa 

Hod Lipson of the Computational Synthesis 
Laboratory at Cornell University first released 
Eureqa in 2009 [19]. Eureqa is able to perform 
‘symbolic regression’, namely to execute iterative 
search operations to determine an underlying 
equation that models input data. The main goal of 
the tool was to reduce the time and effort needed to 
generate such equations using trial and error [20]. 
An early success for Eureqa was in determining the 
basic laws of motion of a double pendulum in a few 
hours by analyzing data that described its 
movements [20].  
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In this paper, Eureqa is used to determine a 
mathematical equation to model PRNs and to act as 
the encryption key. The results investigate the 
ability of Eureqa to model PRN sequences of 
different lengths in order to establish trade-offs 
between execution time and encryption security. 
 
4. EXPERIMENTAL RESULTS  
 
All of the calculations in this section were carried 
out on an Intel i7 computer running a 64-bit 
Windows operating system. During the 
experiments, Eureqa performed an evolutionary 
search to determine an equation to model the values 
in a sequence of PRNs. To ensure that all the integer 
points are being accurately modelled, each must be 
fitted at an error of no more than 0.5. The 
assumption here is that the resolution and accuracy 
of the computer calculations is sufficient in both the 
sending and receiving systems that the same 
rounding to the nearest integer will occur in each. 
A typical example of a non-linear equation 
generated by Eureqa to represent an encryption key 
is shown below. It is important to note that a 
different equation will be generated by Eureqa each 
time it is executed even though it may be attempting 
to model an identical sequence of data values. 
 
y=530.3+500.8*cos(4.33-0.047*x-0.386*os(-21*x)) 

 -0.071*x-2.466*cos(-21*x)*cos(4.33-0.0465*x- 

0.386*cos(-21*x))-22.62*sin(533.3*cos(x))*cos 

(cos(4.332-0.0465*x-0.386*cos(21* x)))     (2) 
 
The next section shows the results of several 
experiments to determine the calculation time, 
generate an acceptable key and to meet the 
maximum error requirement. 
 
Example 1 The following LCG was used to generate 
a PRN sequence of 200 three-digit values and with 
an initial value of x0 =131  

xi+1=(13xi + 0)mod997,  
      i=0,1,2,..,199                (3)             

 
Table 1 shows a series of experiments conducted 
using the PRN sequence described in equation 4. It 
can be seen that only the first experiment was 
successful in that it was able to model all the values 

in the sequence (the Eureqa model exhibited a 
maximum error of less than 0.5). However, over 36 
hours of calculation time were needed to produce 
this result, a time too long for most practical uses. It 
can be seen that none of the other five tests 
produced a successful model and all of these 
experiments were halted after a suitable period time 
had passed and no further convergence was 
apparent. It can be seen that using this method there 
is no guarantee that a key will be successfully 
produced or that the key will be generated in a 
reasonable time. Note that in Table 1, the values 
shown for key length are the number of characters 
in the corresponding Eureqa equations. 
 
Table 1  Calculation time needed to obtain key values for 

a sequence of 200 PRNs 

 
A second experiment was carried out in which the 
length of the sequence was reduced to 10 values and 
the results of these experiments are shown in Table 
2. 

 
Table 2  Calculation time needed to obtain key values for 

a sequence of 10 PRNs 

 
In this case, three of the seven experiments were 
successful in converging to a suitable Eureqa 
model, while the calculation time has been 
considerably reduced. The calculation time may 
now be sufficiently small for some practical uses. 
To prevent the pursuit of unfruitful avenues of 

Experi-
ment 

calculation 
time 

maximum 
error 

usab
le? 

key length 
(bytes) 

1 36h:20min 0.48 yes 487 
2 32h:34min  0.65 no 487 
3 57h:57min  8.44 no 222 
4 53h:39min  0.57 no 216 
5 59h:40min 56.77 no 270 
6 74h:03min 0.51 no 495 

Experi-
ment 

calculation 
time 

maximum 
error 

usabl
e? 

key length 
(bytes) 

1 34min 0.57 no 208 
2 18min 0.67 no 111 
3 13min 0.53 no 159 
4 21min 0.50 yes 130 
5 12min 0.29 yes 120 
6 19min 5.03 no 132 
7 17min 0.34 yes 125 
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investigation, it would perhaps be prudent to 
establish an upper bound on the acceptable 
calculation time; a period after which the 
computations would be abandoned and the process 
restarted. 

 
Example 2 The following LCG was used to generate 
a PRN sequence of 200 six-digit values and with an 
initial value of x0 =131   

xi+1=(1597xi + 51749)mod233944,  
i = 0,1, 2,..,199  (4) 

 
This LCG was described by Press et al. (cited in 
[21]) with the specific intention of being capable of 
generating long cycles of random values. In the 
current implementation, Eureqa generated models 
from a sequence of 20 PRNs and the results are 
shown in Table 3.  
 

Table 3  Calculation time for a sequence of 200 values 
obtained from a LCG 

 
It can be seen that the maximum error was very 
large and little convergence was observed even 
though the calculations were allowed to proceed for 
an extended period of time. The allowed values in 
the sequences produced by the PRN in equation 4 
range from 0 to 244943. It became apparent in the 
experiments that the Eureqa model calculation time 
performance generally worsened as the PRN range 
was increased. In many applications, only an ASCII 
range of 0 to 127 is needed and so the PRNs can 
normally be rescaled to this range. Table 4 shows 
the modeling results when the allowed range of the 
values generated in equation 4 was reduced to the 7-
bit ASCII range. 
 
Table 4  Calculation time for an LCG sequence of values 

in the ASCII range  

 
Although only one of the experiments produced an 

acceptable maximum error, restricting the PRN 
range has significantly reduced both the maximum 
error and the calculation time. 
 
5. CONCLUSION  
 
This paper has presented a number of initial results 
that have been obtained to investigate the viability 
of an approach that allows users to control the 
generation of encryption keys. Initial investigations 
are reasonably promising in that Eureqa is able to 
model random data sequences, although 
improvements in reliability and a reduction in 
calculation time will be required for practical usage. 
Clearly there are trade-offs to be made, since a 
reduction in the length of the sequence may lead to 
a less secure individual key, yet will allow a 
replacement key to be generated more rapidly and 
so improve security. Future work will look to 
investigate enhancements aimed at reducing the 
calculation time while making the key generation 
process more reliable.  
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