
User Controlled Encryption Using Automated Key Generation
1Halima Abdel Halim Shnishah, 2David Mulvaney

1,2(School of Electronic, Electrical and Systems Engineering, Loughborough University LE11 3TU, UK)
 H.Shnishah@lboro.ac.uk, d.j.mulvaney@lboro.ac.uk

ABSTRACT

As the practical implementation of many encryption
algorithms is controlled by third parties, end users
cannot be certain that the generated keys have not
been compromised at source. By allowing users to
generate their own keys, this concern can be
overcome. In the work described in this paper, the
encryption key is a generated function produced by
an evolutionary search operation executed by
Eureqa in modelling pseudo-random input data
obtained from a suitable source. This paper
describes the results of initial experiments to
generate suitable keys representing random number
sequences of a range of lengths.

KEYWORDS

encryption algorithms, automated key
generation.

1 INTRODUCTION

Kerckhoffs' principle formulated in the 19th century
states that a ‘cryptosystem should be secure even if
everything about the system, except the key, is
public knowledge’; rephrased more recently by
Shannon as ‘the enemy knows the system’ [1]. Such
statements are not entirely true in modern
encryption systems, as users rely on an algorithm
whose implementation is formulated by a third
party, often a commercial entity, government
institution or military establishment. A concern for
end users is that it cannot be guaranteed that a key is
not retained by that third party or communicated to
an authority [2][3]. Only by allowing the end user
control over key generation can they have peace of
mind that an intruder has not compromised the
process. The perception that knowledge of the key
generation method is a potential source of security
breeches has led a number of users with specific
security requirements to implement their own
proprietary encryption algorithm or software so that
this can also be hidden from potential intruders [4].

Another challenge faced by encryption users is that,
due to the complexity of encryption algorithms,
many end users have little choice but to employ
third party algorithms or service providers to
generate keys [5], who then distribute them and
devise an appropriate method for their storage [6].
The key management process performed by third
parties is an important security consideration,
particularly when a number of different users are
serviced by a single provider and a secondary form
of authentication controlled by the provider is
needed to access individual areas [7][8].

This paper describes new results based on an
approach initially developed by Blackledge et al.
[9], in which the key is an equation that is
automatically generated so as to model a random
number sequence to a suitable accuracy. By this
method, users will be able to retain control of the
key generation algorithm and so have greater
confidence that the key is not accessible by third
parties. The principal drawback of the approach is
currently the time taken to generate a new key and
the contribution of this paper is the investigation of
different random sequence lengths in order to
establish tradeoffs between calculation time and
confidence in security.

The paper is organized as follows. Related work
that has investigated the generation of bespoke keys
is discussed in Section 2. Section 3 introduces the
methodology used in this paper to generate keys,
Section 4 describes the experimental results and
Section 5 presents the conclusions.

2 RELATED WORK

A number of authors have reported work that
generates encryption keys using processes that can
be controlled by an end user.

Eureqa [10] uses an evolutionary computing
approach to iteratively develop nonlinear functions
to describe complex input signals usually connected

Proceedings of the International Conference on Electrical and Electronic Engineering Telecommunication Engineering, and Mechatronics, Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 53

with experimental data. Blackledge et al. [9] used
Eureqa to implement an encryption key generation
algorithm that models a 250 sample pseudo random
number (PRN) sequence [11]. A single proof of
concept result was given in which 23 hours were
needed to generate a key, namely an equation that
models a random number sequence. The paper
concluded that the technique may present a
technical solution to the ‘democratisation of the
cipher bureau.’

Considering the above mentioned works, the present
study will extend the initial investigations
conducted by Blackledge et al. (2013). The reasons
for using Blackledge as related work for this paper
to develop an encryption method whose operation is
both known and controlled by users rather than by
third parties.

3 METHODOLOGY

The current work aims to develop further the
approach of Blackledge et al. [9] in allowing the
user to generate their own keys that are Eureqa
models of a PRN sequence [9]. The approach
follows the steps shown in Figure 1 to produce the
encryption key.

Figure 1 Method of generating encryption keys using

Eureqa

3.1 Pseudo random number (PRN) generation

As the key itself will be an equation that models a
sequence of random numbers to a suitable accuracy,
an appropriate method is needed to generate and test
random numbers to ensure they have the necessary
characteristics of independence, unpredictability,
and ‘complexity’ to provide strength to
cryptographic algorithm [9]. A chi-square test can
be used to assess whether the random sequence
produced is likely to have come from a specified
distribution [3].

Blackledge et al. established rules to be followed to
obtain suitable PRNs for encryption purposes [12].
PRNs require a ‘seed’ to initiate the generation of
the first number and subsequent values are
generated iteratively [13]. The linear congruential
generator (LCG) [14] is one of the oldest PRN
algorithms and is commonly used in encryption [15]
[16]. It is a simple method and the short period
between sequence repetitions is generally regarded
as a weakness [14]. This method produces integer
random numbers stream in the range [0, m-1] where
in practical implementations m is normally the word
length of the computer system. The LCG uses the
following iterative equation to generate the random
values 𝑥! [12].

xi+1=(axi + c)modm (1)

where i = 0,1, 2,..,n−1, n is the length of cycle,
x0 is the seed, a is an integer multiplier and c is
an integer additive constant. These generators are
characterized by simplicity in implementation and
short calculation time [17] [18].

3.2 Key generation using Eureqa

Hod Lipson of the Computational Synthesis
Laboratory at Cornell University first released
Eureqa in 2009 [19]. Eureqa is able to perform
‘symbolic regression’, namely to execute iterative
search operations to determine an underlying
equation that models input data. The main goal of
the tool was to reduce the time and effort needed to
generate such equations using trial and error [20].
An early success for Eureqa was in determining the
basic laws of motion of a double pendulum in a few
hours by analyzing data that described its
movements [20].

Proceedings of the International Conference on Electrical and Electronic Engineering Telecommunication Engineering, and Mechatronics, Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 54

In this paper, Eureqa is used to determine a
mathematical equation to model PRNs and to act as
the encryption key. The results investigate the
ability of Eureqa to model PRN sequences of
different lengths in order to establish trade-offs
between execution time and encryption security.

4. EXPERIMENTAL RESULTS

All of the calculations in this section were carried
out on an Intel i7 computer running a 64-bit
Windows operating system. During the
experiments, Eureqa performed an evolutionary
search to determine an equation to model the values
in a sequence of PRNs. To ensure that all the integer
points are being accurately modelled, each must be
fitted at an error of no more than 0.5. The
assumption here is that the resolution and accuracy
of the computer calculations is sufficient in both the
sending and receiving systems that the same
rounding to the nearest integer will occur in each.
A typical example of a non-linear equation
generated by Eureqa to represent an encryption key
is shown below. It is important to note that a
different equation will be generated by Eureqa each
time it is executed even though it may be attempting
to model an identical sequence of data values.

y=530.3+500.8*cos(4.33-0.047*x-0.386*os(-21*x))

 -0.071*x-2.466*cos(-21*x)*cos(4.33-0.0465*x-

0.386*cos(-21*x))-22.62*sin(533.3*cos(x))*cos

(cos(4.332-0.0465*x-0.386*cos(21* x))) (2)

The next section shows the results of several
experiments to determine the calculation time,
generate an acceptable key and to meet the
maximum error requirement.

Example 1 The following LCG was used to generate
a PRN sequence of 200 three-digit values and with
an initial value of x0 =131

xi+1=(13xi + 0)mod997,
 i=0,1,2,..,199 (3)

Table 1 shows a series of experiments conducted
using the PRN sequence described in equation 4. It
can be seen that only the first experiment was
successful in that it was able to model all the values

in the sequence (the Eureqa model exhibited a
maximum error of less than 0.5). However, over 36
hours of calculation time were needed to produce
this result, a time too long for most practical uses. It
can be seen that none of the other five tests
produced a successful model and all of these
experiments were halted after a suitable period time
had passed and no further convergence was
apparent. It can be seen that using this method there
is no guarantee that a key will be successfully
produced or that the key will be generated in a
reasonable time. Note that in Table 1, the values
shown for key length are the number of characters
in the corresponding Eureqa equations.

Table 1 Calculation time needed to obtain key values for

a sequence of 200 PRNs

A second experiment was carried out in which the
length of the sequence was reduced to 10 values and
the results of these experiments are shown in Table
2.

Table 2 Calculation time needed to obtain key values for

a sequence of 10 PRNs

In this case, three of the seven experiments were
successful in converging to a suitable Eureqa
model, while the calculation time has been
considerably reduced. The calculation time may
now be sufficiently small for some practical uses.
To prevent the pursuit of unfruitful avenues of

Experi-
ment

calculation
time

maximum
error

usab
le?

key length
(bytes)

1 36h:20min 0.48 yes 487
2 32h:34min 0.65 no 487
3 57h:57min 8.44 no 222
4 53h:39min 0.57 no 216
5 59h:40min 56.77 no 270
6 74h:03min 0.51 no 495

Experi-
ment

calculation
time

maximum
error

usabl
e?

key length
(bytes)

1 34min 0.57 no 208
2 18min 0.67 no 111
3 13min 0.53 no 159
4 21min 0.50 yes 130
5 12min 0.29 yes 120
6 19min 5.03 no 132
7 17min 0.34 yes 125

Proceedings of the International Conference on Electrical and Electronic Engineering Telecommunication Engineering, and Mechatronics, Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 55

investigation, it would perhaps be prudent to
establish an upper bound on the acceptable
calculation time; a period after which the
computations would be abandoned and the process
restarted.

Example 2 The following LCG was used to generate
a PRN sequence of 200 six-digit values and with an
initial value of x0 =131

xi+1=(1597xi + 51749)mod233944,
i = 0,1, 2,..,199 (4)

This LCG was described by Press et al. (cited in
[21]) with the specific intention of being capable of
generating long cycles of random values. In the
current implementation, Eureqa generated models
from a sequence of 20 PRNs and the results are
shown in Table 3.

Table 3 Calculation time for a sequence of 200 values
obtained from a LCG

It can be seen that the maximum error was very
large and little convergence was observed even
though the calculations were allowed to proceed for
an extended period of time. The allowed values in
the sequences produced by the PRN in equation 4
range from 0 to 244943. It became apparent in the
experiments that the Eureqa model calculation time
performance generally worsened as the PRN range
was increased. In many applications, only an ASCII
range of 0 to 127 is needed and so the PRNs can
normally be rescaled to this range. Table 4 shows
the modeling results when the allowed range of the
values generated in equation 4 was reduced to the 7-
bit ASCII range.

Table 4 Calculation time for an LCG sequence of values

in the ASCII range

Although only one of the experiments produced an

acceptable maximum error, restricting the PRN
range has significantly reduced both the maximum
error and the calculation time.

5. CONCLUSION

This paper has presented a number of initial results
that have been obtained to investigate the viability
of an approach that allows users to control the
generation of encryption keys. Initial investigations
are reasonably promising in that Eureqa is able to
model random data sequences, although
improvements in reliability and a reduction in
calculation time will be required for practical usage.
Clearly there are trade-offs to be made, since a
reduction in the length of the sequence may lead to
a less secure individual key, yet will allow a
replacement key to be generated more rapidly and
so improve security. Future work will look to
investigate enhancements aimed at reducing the
calculation time while making the key generation
process more reliable.

REFERENCES

[1]	 C.	 Shannon,	 “Communication	 Theory	 of	
Secrecy,”	 Bell	 System	 Technical	 Journal.	
[Online].	 Available:	
https://archive.org/stream/bstj28-‐4-‐
656#page/n5/mode/2up.	 [Accessed:	 12-‐Aug-‐
2015].	

[2]	 J.	 M.	 Blackledge,	 D.	 A.	 Dubovitskiy,	 and	 M.	 Iet,	
“A	 Covert	 Encryption	 Method	 for	 Applications	
in	 Electronic	 Data	 Interchange,”	 ISAST	 J.	
Electron.	 Signal	 Process.,	 vol.	 4,	 no.	 1,	 pp.	 107	 –
128,	 2009.	

[3]	 B.	 Schneier,	 “Security	 pitfalls	 in	 cryptography,”	
Schneier	 on	 Security,	 1998.	 .	

[4]	 H.	 Handschuh,	 B.	 Preneel,	 and	 K.	 U.	 Leuven,	
“Minding	 Your	 MAC	 Algorithms ?,”	 Inf.	 Secur.	
Bull.,	 vol.	 9,	 no.	 July,	 pp.	 213–220,	 2004.	

[5]	 T.	 Lalith,	 “Key	 Management	 Techniques	 for	
Controlling	 the	 Distribution	 and	 Update	 of	
Cryptographic	 keys,”	 IJACSA	 Int.	 J.	 Adv.	 Comput.	
Sci.	 Appl.,	 vol.	 1,	 no.	 6,	 pp.	 163–166,	 2010.	

[6]	 E.	 Dawson,	 A.	 Clark,	 and	 M.	 Looi,	 “Key	
management	 in	 a	 non-‐trusted	 distributed	

Experi-
ment

calculation
time

maximum
error usable?

1 12h:25min 1893.7 no
2 70h:12min 1751.6 no

experime
nt

calculation
time

maximum
error

usable
?

key length
(bytes)

1 36h:20min 0.48 yes 487
2 32h:34min 0.65 no 487
3 35h:50min 0.51 no 489

Proceedings of the International Conference on Electrical and Electronic Engineering Telecommunication Engineering, and Mechatronics, Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 56

environment,”	 Futur.	 Gener.	 Comput.	 Syst.,	 vol.	
16,	 no.	 4,	 pp.	 319–329,	 2000.	

[7]	 L.	 Harn	 and	 H.	 Y.	 Lin,	 “Key	 management	 for	
decentralized	 computer	 network	 services,”	
IEEE	 Trans.	 Commun.,	 vol.	 41,	 no.	 12,	 pp.	
1777–1779,	 1993.	

[8]	 K.	 Prabha	 and	 S.	 Nalini,	 “A	 secure	 data	
forwarding	 in	 cloud	 storage,”	 2013	 Int.	 Conf.	
Opt.	 Imaging	 Sens.	 Secur.	 ICOSS	 2013,	 2013.	

[9]	 S.	 Bezobrazov,	 J.	 Blackledge,	 P.	 Tobin,	 and	 F.	
Zamora,	 “Cryptography	 using	 evolutionary	
computing,”	 24th	 IET	 Irish	 Signals	 Syst.	 Conf.	
(ISSC	 2013),	 pp.	 21–21,	 2013.	

[10]	 DaSilva,	 “Eureqa!	 Signs	 of	 the	 Singularity?,”	
Humanity+,	 2011.	 [Online].	 Available:	
http://hplusmagazine.com/2011/03/25/eure
qa-‐signs-‐of-‐the-‐singularity/.	 [Accessed:	 12-‐
Aug-‐2015].	

[11]	 “True	 Random	 Number	 Service,”	
RANDOM.ORG:,	 2013.	 [Online].	 Available:	
https://www.random.org.	

[12]	 J.	 Blackledge,	 Cryptography	 Using	
Steganography :	 New	 Algorithms	 and	
Applications	 Cryptography	 and	
Steganography :	 Warsaw:	 Centre	 for	 Advanced	
Studies,	 Warsaw	 University	 of	 Technology,	
2011.	

[13]	 P.	 Kohlbrenner	 and	 K.	 Gaj,	 “An	 embedded	 true	
random	 number	 generator	 for	 FPGAs,”	
Proceeding	 2004	 ACM/SIGDA	 12th	 Int.	 Symp.	 F.	
Program.	 gate	 arrays	 -‐	 FPGA	 ’04,	 p.	 71,	 2004.	

[14]	 F.	 James,	 “A	 review	 of	 pseudorandom	 number	
generators,”	 Comput.	 Phys.	 Commun.,	 vol.	 60,	
no.	 3,	 pp.	 329–344,	 Oct.	 1990.	

[15]	 E.	 E.	 Schultz,	 R.	 W.	 Proctor,	 M.-‐C.	 Lien,	 and	 G.	
Salvendy,	 “Usability	 and	 Security	 An	 Appraisal	
of	 Usability	 Issues	 in	 Information	 Security	
Methods,”	 Comput.	 Secur.,	 vol.	 20,	 no.	 7,	 pp.	
620–634,	 Oct.	 2001.	

[16]	 J.	 Gait,	 “A	 New	 Nonlinear	 Pseudorandom	
Number	 Generator,”	 IEEE	 Trans.	 Softw.	 Eng.,	
vol.	 SE-‐3,	 no.	 5,	 1977.	

[17]	 J.	 Eichenauer-‐Herrmann,	 “On	 the	
autocorrelation	 structure	 of	 inversive	
congruential	 pseudorandom	 number	
sequences,”	 Stat.	 Pap.,	 vol.	 33,	 no.	 1,	 pp.	 261–
268,	 1992.	

[18]	 D.	 Knuth,	 The	 art	 of	 computer	 programming,.	
Addison-‐Wesley,	 1981.	

[19]	 L.	 Edwards,	 “ureqa,	 the	 robot	 scientist	 (w/	
Video),”	 phys.org.	 [Online].	 Available:	
http://phys.org/news/2009-‐12-‐eureqa-‐
robot-‐scientist-‐video.html.	 [Accessed:	 09-‐Aug-‐
2015].	

[20]	 D.	 Salisbury,	 “Robot	 biologist	 solves	 complex	
problem	 from	 scratch,”	 2011.	 [Online].	
Available:	
http://news.vanderbilt.edu/2011/10/robot-‐
biologist/.	 [Accessed:	 09-‐Aug-‐2015].	

[21]	 R.	 Seyde,	 Tools	 for	 Computational	 Finance,	 4th	
ed.	 Business	 Media:	 springer	 Science,	 2009.	 	

Proceedings of the International Conference on Electrical and Electronic Engineering Telecommunication Engineering, and Mechatronics, Kuala Lumpur, Malaysia, 2015

ISBN: 978-1-941968-18-5 ©2015 SDIWC 57

