
Adaptive Cache Replacement Policy (ACRP): A Dynamic Replacement Policy for

Cache Management

Olakanmi O.O (Ph.D)

 Electrical and Electronic Engineering,
Technology Drive, Offices 6, New Faculty of Engineering Building.

University of Ibadan, Ibadan, Nigeria
Email: olakanmi.oladayo@ui.edu.ng

ABSTRACT
The discovery of memory access time as one of the
major design issues in the processor has increased ef-
fort in the development of different cache replacement
policies to manage what to be the content of caches in
both uniprocessor and multiprocessor. This is to im-
prove the overall performance of the processor. Most
time the potential benefits of these policies are not
instantaneous due to the varying nature of the work-
loads. Therefore, it is difficult to identify which par-
ticular policy to apply during cache’s content re-
placement.
In this paper, an adaptive replacement technique using
the minimum threshold value of the improvement
factor of cache, which was analytically obtained, is
proposed in order to explore the combine merits of
fundamental replacement policies and strikes a mini-
mum balance with their demerits. ACRP approach
uses the threshold values of improvement factor ob-
tained from the analytic modeling to determine when
the current replacement policy’s performance be-
comes or getting worse, the ACRP switches to another
replacement policy from the pool of replacement pol-
icy. Specifically, the ACRP approach solves the prob-
lem associated with wrong usage of replacement pol-
icy and reduces processor cache miss rate caused by
wrong evictions.

Keywords: Cache, replacement policy, cache hier-
archy, processor, adaptive caching

1. INTRODUCTION

Cache replacement policy is a management
scheme used to improve the performance of
cached systems. The major performance limita-
tion of non-cache systems is due to upper limit set
by the main memory access time and cache size,
therefore reducing the overall performance of the
cached system.

Cache memory is not a new concept; it has
been one of the performance enhancement met-
rics in uniprocessor systems since the era of the
earliest uniprocessor systems. Cache is a low ac-

cess time and a low capacity memory which is
used by the processor to temporarily hold those
portions of the main memory which are currently
in use or may be used in nearest future. It is ma-
jorly employed to increase the execution time of
the machine due to its lower access time com-
pared to main memory. However, cache has a low
capacity, therefore, must only be used to store
highly essential data during execution. In order to
make cache to function properly, certain factors
are needed to be considered at the design stage of
the cache which includes: the fetch algorithm, the
placement and replacement algorithms, line size,
cache coherence, the behaviour of separate data
and instruction caches and cache size. When in-
formation is requested by the CPU from main
memory and the cache is full, some information
in the cache must be selected for replacement.
There are many replacement algorithms, such as
FIFO (First in, First Out), LRU (least recently
used), and random etc.

 In the single core, the processor presents the
cache with a series of requests for memory loca-
tions, where each request appears after the last
one has been served. The time to serve each re-
quest depends on whether the memory location is
in the cache (a cache hit occurs) or not (and then a
miss occurs and the location is fetched from the
main memory). If the cache is full, the new
memory location enters the cache, and another
memory location gets evicted.

Many factors affect the optimal performance of
some of these replacement policies. Among these
is the characteristic of workload which varies
among workloads. The performance of replace-
ment policy reduces when the cache is shared
among processing elements, executing different
workloads due to differences in the characteristics
of access to metadata and data. All these can be
sufficed to the application specificity of replace-
ment policy which can be solved using adaptive
replacement scheme. However, selection of adap-
tive criteria and what determines the criteria is
main focus on development of adaptive replace-

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

177

mailto:olakanmi.oladayo@ui.edu.ng

ment schemes. Manual tuning is one of the ways
to do this, however apart from being tedious it is
very prone to errors. Another means is the appli-
cation of machine learning algorithm as proposed
in (Ismail et al. n.d.). In this paper analytical
method is used to obtain the adaptive criteria. An
analytical model of one and two level cache was
done. A simple replacement status flag is used to
call for change of the replacement policy

 The remaining part of this paper is arranged as
follows: section 2 contains reviews of some related
works on cache replacement policies. The meth-
odology of the proposed adaptive cache replace-
ment policy and results of the analytical model are
presented in section 3. Section 4 is the conclusion
and recommendation.

2. RELATED WORKS

Currently, research efforts have been towards
improving some of the conventional cache re-
placement policies. For example, (Moinuddin et al.
2006) highlighted some of the demerits of the
traditional cache replacement policies and pro-
posed a modified replacement policies called a
Memory Level Parallelism (MLP) aware cache
replacement policy. In MLP aware replacement
policy, the algorithm computes the MLP-based
costing for each cache miss and uses the MLP cost
and recency to determine the cache block to be
replaced. It further creates a low-hardware over-
head mechanism called Sampling Based Adaptive
Replacement (SBAR) which is capable of choos-
ing between the proposed MLP-aware and tradi-
tional replacement policy. MLP- aware cache re-
placement policy improves performance by as
much as 23% (Moinuddin et al. 2006).

In the (Keqiu Liy et al. 2010), the problem of
cache replacement for multimedia object caching
by exploring the minimal access cost of caching
any number of versions of a multimedia object was
proposed. An optimal solution for calculating the
minimal access cost of caching any number of
versions of the same multimedia object suggested
and its extensive analysis was done. The perfor-
mance metric was to minimize the total access cost
by considering both transmission and transcoding
costs. Based on this optimal solution, an efficient
cache replacement algorithm for multimedia ob-
ject caching was developed. The simulation results
showed that the proposed algorithm outperforms
comparison algorithms in terms of all the perfor-
mance metrics considered.

CMP Cooperative Caching was proposed in
(Jichuan & Gurindar 2006), a unified framework
to manage a CMP’s aggregate on-chip cache re-
sources. Cooperative caching combines the
strengths of private and shared cache organiza-
tions by forming an aggregate shared cache

through cooperation among private caches
(Jichuan & Gurindar 2006). Locally active data are
attracted to the private caches by their accessing
processors to reduce remote on-chip references,
while globally active data are cooperatively iden-
tified and kept in the aggregate cache to reduce
off-chip accesses. Examples of cooperation in-
clude a cache-to-cache transfers of clean data,
replication-aware data replacement, and global
replacement of inactive data. Cooperative caching
was implemented by either modifying an existing
cache replacement policy and cache coherence
protocol, or by the new implementation of a di-
rectory-based protocol. The experimental results
showed that cooperative caching performed ro-
bustly over a range of system/cache sizes and
memory latencies. For an 8-core CMP with 1MB
L2 cache per core, the best cooperative caching
scheme improves the performance of multi-
threaded commercial workloads by 5-11% with a
shared cache and 4-38% with private caches. For a
4-core CMP running multiprogrammed
SPEC2000 workloads, cooperative caching is on
average of 11% and 6% faster for the shared and
private cache organizations respectively (Jichuan
& Gurindar 2006).

Least Recently Used (LRU) is the replacement
policy which evicts the page for which his last
use was the earliest in time. LRU uses a cache
which is a constant factor bigger than the online
algorithm, its competitive ratio is constant (Bergh
& Summerfield 1976) Not only does LRU have
nice theoretical features, it also works well in
practice. Although it is a little complicated to ex-
actly keep track of the exact time in which every
memory location in the cache was used, heuristics
which approximate LRU's behaviour are used in
most of the standard caches. LRU replacement
policy is a commonly used in the cache manage-
ment; however, its inability to cope with access
patterns with locality mars its performance con-
sistence. Some improvement on LRU, such as
LRU-K and 2Q, attempts to enhance LRU capac-
ity by making use of the additional historical in-
formation about previous block references other
than only the recency information used in LRU
had been suggested in some of the previous re-
search works. However, the added history infor-
mation greatly increases complexity which does
not consistently favours performance improve-
ment. Although, many recently proposed policies,
such as UBM and SEQ, improve replacement
performance by exploiting access regularities in
references, but this only addresses LRU problems
in certain specific and well-defined cases such as
access patterns like sequences and loops. Refer-
ence (Song & Xiaodong 2002) also proposed an-
other form of a replacement algorithm called Low
Inter reference Recency Set (LIRS). LIRS effec-
tively addresses the limits of LRU by using re-

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

178

cency to evaluate Inter-Reference Recency (IRR)
for making a replacement decision. At the same
time, LIRS almost retains the same simple as-
sumption of LRU to predict future access behavior
of blocks. The simulation results showed that
LIRS significantly outperforms LRU, and out-
performs other existing replacement algorithms in
most cases with lower cost.

Another replacement was proposed in (Cristian
et al. 2013). This is called RAM-frugal cache re-
placement policy that approximates the
least-recently-used (LRU) policy. It uses two
in-memory Bloom sub-filters (TBF) for main-
taining the recency information and leverages an
on-flash key–value store to cache objects. TBF
requires only one byte of RAM per cached object,
making it suitable for implementing very large
flash-based caches. The evaluation results showed
that TBF achieves a better cache hit rate and op-
erations per second comparable to those of LRU in
spite of its much smaller memory requirements
(Cristian et al. 2013).

 In (Hassidim 2009) (Smith 1982), it was
shown that the optimal algorithm to choose which
location to evict is Furthest in the Future (FITF)
algorithm, which evicts the memory location
which will be used in the latest possible time. The
more interesting question is the online version of
the problem, in which the algorithm sees the next
request only after serving the last one. In this case,
the common measure of the performance of an
algorithm is its competitive ratio, or the number
of misses it makes divided by the number an op-
timal online algorithm would make, on the worst
case sequence. For this caching problem, attain-
ing a good ratio is impossible, as all deterministic
caching strategies have a competitive ratio which
is at least k, the size of the cache.

ACME (Ismail et al. 2010) is the closest scheme
to the one proposed in this paper. It is an Adaptive
Caching Using Multiple Experts which uses a
machine learning algorithm to dynamically de-
termine the performance of replacement policy by
assigning different weights to all the replacement
policy in the expert pool in accordance to their real
time performances. That is, replacement policy
with highest weight at that moment and for the
current workload has the best performance. And, it
will be the replacement policy until another re-
placement policy with higher weight exists. In as
this scheme improve the performance of the
caching system, however, it introduces overhead
such as delay in weight assignment, and overde-
pendence on the machine learning algorithm. As a
result of this, adaptive scheme using a threshold
value which is compared with improvement factor
of the cached system obtained on a real time basis
is another alternative.

3. DESIGN APPROACH OF ADAPTIVE
CACHE REPLACEMENT POLICY (ACRP)

Motivated by the limits of machine learning
algorithm approach and manual tuning method, an
approach called Adaptive Cache Replacement
Policy is proposed. The ACRP takes advantages of
timing by creating a performance measuring met-
ric which dynamically determines when the re-
placement policy used is no longer contributing to
effective management of the cache. The pre-stage
of ACRP proffers an analytical modeling solution
of two-level cache in a processor which produces
an average improvement factor based on cache
miss and hit rate for each level of cache. The ob-
tained value, threshold improvement factor, serves
as a metering pointer to change the replacement
policy of the multiprocessor system from recency
to time based or vice versa depending on the dif-
ferential value between current cache improve-
ment factor and analytical threshold improvement
factor.

The two common cache hierarchies, one level
cache and two-level cache, are modeled as shown
in the next section. Figure 1 illustrates the working
of 2-level cache. A request is sent by processing
element (PE) to the L1-cache if the request is
found in L1 then a hit otherwise miss will be rec-
orded. As a result of miss in the upper level cache
the request passed to the L2-cache. In a case of
miss being recorded in L2, the request passed to
main memory and the L1 and L2 are updated. In
case L1 and (or) L2 cache are full or getting full
the replacement policy comes in by making a vital
decision on which block(s) to be removed. A
wrong eviction will certainly cause miss rate in no
later time. Different replacement policy considers
different factors for eviction; however, these fac-
tors are associated with different data pattern ex-
hibited by workload. This means a replacement
policy may bias towards a workload with certain
data pattern.

Figure 2 shows the proposed adaptive cache
replacement policy block diagram. It has a pool of
replacement policy containing LRU, LFU, and
LIRS etc. ACRP is divided into two sections
which are Decision unit and Calculated Im-
provement Factor (CIF) generation unit. The CIF
generation unit uses the record of misses and hits
to generate the CIF which will be compared with
the Threshold Improvement Factor (TIF). In a case
the current CIF is lower than the TIF a new re-
placement policy will replace the current re-
placement policy. As a result of this, the new re-
placement policy becomes current policy which
will be used to make eviction decision. It is as-
sumed that the adaptive caching design is using
demotion in a 2-level cache A demotion strategy in
more than a level cache involves downward
movement of evicted objects to the next level

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

179

instead of outright discard of the evicted objects.
(WONG, GANGER & WILKES 2000) as refer-

enced in (Ismail et al. 2010) enumerated the bene-
fits of demotion over exclusive caching.

PE

L1-access

L1 miss; L2-access

L1 Hit

L2 Hit
Main memory access

Write through

L1 & L2 misses; Main memory access

L1- cache

L2- cache

Main

memory

Fig 1: 2- Level Cache schematic showing a different

level of access

 Selected Replacement Policy

 For Update

Stored Analytical Threshold

Improvement Factor

(TIF)

 CIF and TIF Comparison

Decision

Side

CIF

Generation

Eviction Block Selection

Hit and Miss count

Incoming request stream

TIF

CIF

Policies Base

L1 and L2 CACHE

If CIF < TIF

Select new replacement policy

Figure 2: Adaptive Cache Replacement Policy (ACRP)

3.1. Analytical Modelling of 1 and 2-Level
Cache to obtain Thresholds for the ACRP

As shown in Figure 1, a n-level cache was used
where . Each level of the cache offers
different access time. Level 1 offers fastest access
speed, say than level 2 and level 3. Level 2
offers faster access speed , than level 3 which is
 . The memory access hierarchy is then modeled
thus:

L1 cache: This is a fast SRAM of access
time .
L2 cache: L2 cache is a larger but slower SRAM
of access time
Main memory is the largest but slowest of access
time
Assuming that

 Of cached system

 Of non-cached system

3.1.1 One-Level Cache

For ‘R’ main memory accesses, any access that
finally resolved at main memory must have
beenchecked the cache. Making main memory
access time to become () access time.
Therefore, R times main memory accesses gives:

 ()(
) ()

Assuming the multiprocessor is not cached; for
an ‘R’ main memory access the maximum access
time is R where is the access time of the
non-cache main memory. Assuming that IF is the
improvement factor of cached memory over
non-cache memory. Then estimated improvement
factor IF is:

 (()()) ()

 ()⁄ ()

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

180

From eqn. 3, if there is cache hit
 equation.3 becomes:

 ⁄ ()

Equation 4 shows the improvement factor of the
memory hierarchy whenever there is cache hit for
one level cache memory. Equation 3 can be used to
determine the pointer value which marks the point
at which cache is no longer contributing to the
speedup of the system.

3.1.2 Two-Level Cache

For ‘R’ HMPM main memory accesses, any
memory access that finally resolved at level 3 (that
is main memory) must have been checked in level
1 and level 2. Making level 3 cache access to have
() access time. Also, any memory
access at level 2 must have been checked in level 1.
This makes level 2 cache access to have ()
access time. Therefore, R times HMPM main
memory accesses gives:

 ()

()() ()

Assuming the multiprocessor is not cached; for
‘R’ main memory accesses the maximum access
time is R , where is the access time of the
non-cache main memory. Assuming that IF is the
improvement factor of cached memory compare to
that without cache, we can estimate the improve-
ment factor IF as:

 (()
 ()(

)) ()

 ()⁄

 (())⁄ ()

From equation 7, assuming there is cache level 1

hit, the improvement factor becomes:

 ⁄ ()

In addition, if there is cache level 1 miss, but
cache level 2 hit the memory hierarchy will still
reduce access time and the improvement factor is:

 () ()⁄ ()

Equation 7 shows that whenever the Improve-
ment Factor (IF) is less than zero, it implies that
there is cache L1 & L2 misses and the hierarchy
gives worst case access time. Meanwhile, high
cache miss rate depends on the size of the cache
and the efficiency of the replacement policy en-

gaged in the cache management. Size has eco-
nomic implication on the overall cost of the system,
that is, there is an upper limit to the size of cache
otherwise the cost will mar the speedup of the
memory hierarchy. Therefore, an efficient re-
placement policy is the only metric that can reduce
the cache miss rate..

ACRP Algorithm:

1. Set the replacement policy for the cache.

2. Pre load the cache with cacheable memory

3. Reset the replace replacement policy change

 pin.

4. Set the Threshold Improvement factor (TIF)

 to 25%

5. Perform cache access for n number of times

6. Generate the Current Improvement Factor

 (CIF) using equation 3 or 7

7. If CIF < TIF change the current replacement policy to

 new policy by asserting the replacement policy

 change pin otherwise maintain the initial state of the

pin.

8. Jump to 5

3.1.3. Improvement Factor’s Benchmark for
ACRP

The strength of ACRP lies in obtaining an ac-
curate threshold value for the improvement factor.
This can be achieved numerically or analytically.
However, numerical method involves a real time
monitoring of cache and non-cached system, in-
termittently recording and calculating their hit and
miss ratios from where the threshold value could
now be obtained. This method is subjected to ex-
perimental errors and not cost friendly. Analytical
method used equations 3 and 7 to obtain the
benchmark value using various probability values
to obtain the improvement factor for one and two
level cache. This is then used as a pointer to when
to dynamically change the replacement policy of
the cache system. Once the improvement factor
drops below the threshold value the ACRP will
change the replacement policy. Fig 3-5 show the
output of the analytical equation 3 and 7 for the
one and two-level cache respectively, when used
to determine TIF for one level cache

The main strength of ACRP is that it reduces the
conflict misses which could be avoided if the
cache replacement policy had not wrongly evicted
an entry earlier. In this case ACRP will solely
reduce the replacement misses which are due to
the particular wrong choice of the replacement
policy by monitoring when the current replace-
ment policy starts to wrongly evicting block.
ACRP first preloads the cache with part of the
cacheable memory. This will reduce misses which
are associated to compulsory or cold misses. The
ACRP algorithm uses equation 9 to determine the

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

181

threshold improvement factor which is dynami-
cally compared with Current Improvement Factor
(CIF). In case the TIF is greater than the CIF the
ACRP changes the current replacement policy to
another replacement policy from the replacement
policy base as shown in Figure.2 by asserting the
change replacement policy’s pin and then starts
monitoring the performance of the new replace-
ment policy through the CIF. However, if the TIF
is less than CIF then the status quo will be main-
tained for the current replacement policy.

Figure 3: Estimated improvement factor for different probabilities of the L1

cache Hit

Figure 4: Estimated improvement factor for different prob-

abilities of the L2 cache Hit

Figure 5: Estimated improvement Factors for different

probabilities of HMPM L1 and L2 cache hit

4. RESULTS AND DISCUSSIONS
The mathematical models of L1 &L2 cache were
implemented using different probabilities of both
cache level n probabilities. This was done to ob-
tain the threshold improvement factor and its
corresponding cache level hit rate. Figure 3 and 4
illustrate the improvement factors of 1-level and
2-level cache respectively for different cache hit
rates. Figure 5 shows that the minimum threshold
improvement factor (25.2) for a 2-level cache is
reached when the cache hit rate of both L1 and L2
slides to 25%. From this, the current replacement
policy has started wrong eviction of blocks and
any further wrong eviction will affect the speedup
of the system. However, this must be after cold
misses period has passed otherwise the recorded
misses are due to cold miss.
Any occurrence of miss after threshold value im-
plies that the current replacement policy has
started wrong evictions and needs to be re-
placed with another policy .Once the threshold
value is reached, the ACRP changes the replace-
ment policy to another policy in order to prevent
further eviction of wrong blocks. The threshold
value approach in adaptive caching is easy to im-
plement, however, it should be noted that its per-
formance depends solely on the accuracy of the
obtained threshold value. That is the analytical
model must be closed to the true form of the
caching system before one can say the threshold
value is accurate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

L1 cache hit probabilities

Im
p

ro
v
e

m
e

n
t
F

a
c
to

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

L2 cache hit probability

Im
p
ro

v
e
m

e
n
t

R
a
ti
o
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

L1& L2 cache hit probability

Im
p

ro
v
e

m
e

n
t

R
a

ti
o

)

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

182

5. CONCLUSION
The paper presented the mathematical models

of access time and improvement ratio of one and
two level cache memory hierarchies. The results of
the analytical models are used to propose a novel
replacement policy which monitors the efficiency
of the current replacement policy in either one or
two level cache. However, a simulator need to be
developed in order to compare the efficiency of
ACRP with some other existing replacement pol-
icies mentioned in the related works sections.

REFERENCES
1. Belady, L. (1966). A study of replacement

algorithms for virtual-storage computer. IBM

Systems Journal, 78-101.

2. Bergh, H., & Summerfield, A. (1976). CPU Busy

not all productive Utilisation. Share Computer

Measurement and Evaluation, 39, 95-97.

3. Cristian, U., Biplob, D., Stephen, R., & Akshat, A.

(2013). TBF: A Memory-Efficient Replacement

Policy for Flash-based Caches. 29th IEEE

International Conference on Data Engineering.

Brisbane, Australia.

4. Evan, S., Hazim, S., Lixin, Z., & Ram, R. (2005).

Adaptive Mechanisms and Policies for Managing

Cache Hierarchies in Chip Multiprocessors. 32nd

International Symposium on Computer

Architecture (pp. 346-356). IEEE.

5. Hassidim, A. (2009). Cache Replacement Policies

for Multicore Processors.

6. Ismail, A., Ahmed, A., Robert, G., Ethan, M., Scott,

B., & Darrel, L. (2010). ACME: Adaptive Caching

Using Multiple Experts.

7. Jiang, S., & Zhang, X. (n.d.). LIRS: An Efficient

Low Inter-reference Recency Set Replacement

Policy to Improve Buffer Cache Performanc .

8. Jichuan, C., & Gurindar, S. S. (2006). Cooperative

Caching for Chip Multiprocessors. Proceeding of

the 33rd annual International symposium on

Computer Architecture ISA '06. 34(2), pp. 264-276.

ACM New York.

9. Keqiu Liy, z., Takashi, N., Hong, S., Francis, Y. L.,

& Weishi, Z. (n.d.). An Efficient Cache

Replacement Algorithm for Multimedia Object

Caching.

10. Miguel, A. V., Juan, M. S., & Francisco, A. Z.

(n.d.). Simulation of Cache Memory Systems on

Symmetric Multiprocessors with Educational

Purposes.

11. Moinuddin, Q., Daniel, L., Onu, M., & Yale, P.

(2006). A case for MLP-Aware Cache

Replacement. ISCA'06 Proceeding of the 33rd

annual international symposium on Computer

Architecture. 34, pp. Pp 167-178. Austin: IEEE

Computer Society.

12. N, R., Srinivas, V., & Ammasai, G. (2011).

Performance of Cache Memory Subsytems for

Multicore Architectures. International Journal of

Computer Science and Engineering Applications

(IJCSEA), 1(5), 59-71.

13. Smith, A. J. (1982). Cache Memories. Computing

Surveys, 14(3).

14. Song, J., & Xiaodong, Z. (2002). LIRS: An

Efficient Low Interreference Recency Set

Replacement Policy to Improve Buffer Cache

Performance. ACM SIGMETRICS conference on

Measurement and Modeling of Computer Systems.

15. Sujit, D., Priya, R., & Sulabha, A. (2010). Cache

Coherence in Centralized Shared Memory and

Distributed Shared Memory Architectures.

International Journal on Computer Science and

Engineering, 39-44.

16. Wenyu, Q., Keqiu, L., Hong, S., & Yingwe, J.

(2005). The cache Replacement Problem for

Multimedia Object Caching. First International

Conference on Semantics, Knowledge and Grid

SKG '05, (p. 26).

17. WONG, T. M., GANGER, G. R., & WILKES, J.

(2000). My cache or yours? Making storage more

exclusive. CMU-CS-00-157. Carnegie Mellon

University.

AUTHOR PROFILE
O.O Olakanmi received the B.Tech in Computer Engineer-

ing from Ladoke Akintola University of Technology, Og-

bomosho in 2000. Also, he received M.sc. in Computer Sci-

ence and Ph.D. in Electrical and Electronic Engineering

from University of Ibadan. He is major in Parallel Compu-

ting, High Performance Computing & Information Security,

and currently a lecturer in the Department of Electrical &

Electronic Engineering.

International Journal of New Computer Architectures and their Applications (IJNCAA) 4(4): 177-183
The Society of Digital Information and Wireless Communications, 2014 (ISSN: 2220-9085)

183

