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ABSTRACT 
The discovery of memory access time as one of the 
major design issues in the processor has increased ef-
fort in the development of different cache replacement 
policies to manage what to be the content of caches in 
both uniprocessor and multiprocessor. This is to im-
prove the overall performance of the processor. Most 
time the potential benefits of these policies are not 
instantaneous due to the varying nature of the work-
loads. Therefore, it is difficult to identify which par-
ticular policy to apply during cache’s content re-
placement. 
In this paper, an adaptive replacement technique using 
the minimum threshold value of the improvement 
factor of cache, which was analytically obtained, is 
proposed in order to explore the combine merits of 
fundamental replacement policies and strikes a mini-
mum balance with their demerits. ACRP approach 
uses the threshold values of improvement factor ob-
tained from the analytic modeling to determine when 
the current replacement policy’s performance be-
comes or getting worse, the ACRP switches to another 
replacement policy from the pool of replacement pol-
icy. Specifically, the ACRP approach solves the prob-
lem associated with wrong usage of replacement pol-
icy and reduces processor cache miss rate caused by 
wrong evictions. 

Keywords: Cache, replacement policy, cache hier-
archy, processor, adaptive caching  

 

1. INTRODUCTION 

Cache replacement policy is a management 
scheme used to improve the performance of 
cached systems. The major performance limita-
tion of non-cache systems is due to upper limit set 
by the main memory access time and cache size, 
therefore reducing the overall performance of the 
cached system.  

Cache memory is not a new concept; it has 
been one of the performance enhancement met-
rics in uniprocessor systems since the era of the 
earliest uniprocessor systems. Cache is a low ac-

cess time and a low capacity memory which is 
used by the processor to temporarily hold those 
portions of the main memory which are currently 
in use or may be used in nearest future. It is ma-
jorly employed to increase the execution time of 
the machine due to its lower access time com-
pared to main memory. However, cache has a low 
capacity, therefore, must only be used to store 
highly essential data during execution. In order to 
make cache to function properly, certain factors 
are needed to be considered at the design stage of 
the cache which includes: the fetch algorithm, the 
placement and replacement algorithms, line size, 
cache coherence, the behaviour of separate data 
and instruction caches and cache size. When in-
formation is requested by the CPU from main 
memory and the cache is full, some information 
in the cache must be selected for replacement. 
There are many replacement algorithms, such as 
FIFO (First in, First Out), LRU (least recently 
used), and random etc. 

 In the single core, the processor presents the 
cache with a series of requests for memory loca-
tions, where each request appears after the last 
one has been served. The time to serve each re-
quest depends on whether the memory location is 
in the cache (a cache hit occurs) or not (and then a 
miss occurs and the location is fetched from the 
main memory). If the cache is full, the new 
memory location enters the cache, and another 
memory location gets evicted.  

Many factors affect the optimal performance of 
some of these replacement policies. Among these 
is the characteristic of workload which varies 
among workloads. The performance of replace-
ment policy reduces when the cache is shared 
among processing elements, executing different 
workloads due to differences in the characteristics 
of access to metadata and data. All these can be 
sufficed to the application specificity of replace-
ment policy which can be solved using adaptive 
replacement scheme. However, selection of adap-
tive criteria and what determines the criteria is 
main focus on development of adaptive replace-
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ment schemes. Manual tuning is one of the ways 
to do this, however apart from being tedious it is 
very prone to errors. Another means is the appli-
cation of machine learning algorithm as proposed 
in (Ismail et al. n.d.). In this paper analytical 
method is used to obtain the adaptive criteria. An 
analytical model of one and two level cache was 
done. A simple replacement status flag is used to 
call for change of the replacement policy  

 The remaining part of this paper is arranged as 
follows: section 2 contains reviews of some related 
works on cache replacement policies. The meth-
odology of the proposed adaptive cache replace-
ment policy and results of the analytical model are 
presented in section 3. Section 4 is the conclusion 
and recommendation. 

 

 

2. RELATED WORKS 

Currently, research efforts have been towards 
improving some of the conventional cache re-
placement policies. For example, (Moinuddin et al. 
2006) highlighted some of the demerits of the 
traditional cache replacement policies and pro-
posed a modified replacement policies called a 
Memory Level Parallelism (MLP) aware cache 
replacement policy. In MLP aware replacement 
policy, the algorithm computes the MLP-based 
costing for each cache miss and uses the MLP cost 
and recency to determine the cache block to be 
replaced. It further creates a low-hardware over-
head mechanism called Sampling Based Adaptive 
Replacement (SBAR) which is capable of choos-
ing between the proposed MLP-aware and tradi-
tional replacement policy. MLP- aware cache re-
placement policy improves performance by as 
much as 23% (Moinuddin et al. 2006). 

In the (Keqiu Liy et al. 2010), the problem of 
cache replacement for multimedia object caching 
by exploring the minimal access cost of caching 
any number of versions of a multimedia object was 
proposed. An optimal solution for calculating the 
minimal access cost of caching any number of 
versions of the same multimedia object suggested 
and its extensive analysis was done. The perfor-
mance metric was to minimize the total access cost 
by considering both transmission and transcoding 
costs. Based on this optimal solution, an efficient 
cache replacement algorithm for multimedia ob-
ject caching was developed. The simulation results 
showed that the proposed algorithm outperforms 
comparison algorithms in terms of all the perfor-
mance metrics considered. 

CMP Cooperative Caching was proposed in 
(Jichuan & Gurindar 2006), a unified framework 
to manage a CMP’s aggregate on-chip cache re-
sources. Cooperative caching combines the 
strengths of private and shared cache organiza-
tions by forming an aggregate shared cache 

through cooperation among private caches 
(Jichuan & Gurindar 2006). Locally active data are 
attracted to the private caches by their accessing 
processors to reduce remote on-chip references, 
while globally active data are cooperatively iden-
tified and kept in the aggregate cache to reduce 
off-chip accesses. Examples of cooperation in-
clude a cache-to-cache transfers of clean data, 
replication-aware data replacement, and global 
replacement of inactive data. Cooperative caching 
was implemented by either modifying an existing 
cache replacement policy and cache coherence 
protocol, or by the new implementation of a di-
rectory-based protocol. The experimental results 
showed that cooperative caching performed ro-
bustly over a range of system/cache sizes and 
memory latencies. For an 8-core CMP with 1MB 
L2 cache per core, the best cooperative caching 
scheme improves the performance of multi-
threaded commercial workloads by 5-11% with a 
shared cache and 4-38% with private caches. For a 
4-core CMP running multiprogrammed 
SPEC2000 workloads, cooperative caching is on 
average of 11% and 6% faster for the shared and 
private cache organizations respectively (Jichuan 
& Gurindar 2006). 

Least Recently Used (LRU) is the replacement 
policy which evicts the page for which his last 
use was the earliest in time. LRU uses a cache 
which is a constant factor bigger than the online 
algorithm, its competitive ratio is constant (Bergh 
& Summerfield 1976) Not only does LRU have 
nice theoretical features, it also works well in 
practice. Although it is a little complicated to ex-
actly keep track of the exact time in which every 
memory location in the cache was used, heuristics 
which approximate LRU's behaviour are used in 
most of the standard caches. LRU replacement 
policy is a commonly used in the cache manage-
ment; however, its inability to cope with access 
patterns with locality mars its performance con-
sistence. Some improvement on LRU, such as 
LRU-K and 2Q, attempts to enhance LRU capac-
ity by making use of the additional historical in-
formation about previous block references other 
than only the recency information used in LRU 
had been suggested in some of the previous re-
search works. However, the added history infor-
mation greatly increases complexity which does 
not consistently favours performance improve-
ment. Although, many recently proposed policies, 
such as UBM and SEQ, improve replacement 
performance by exploiting access regularities in 
references, but this only addresses LRU problems 
in certain specific and well-defined cases such as 
access patterns like sequences and loops. Refer-
ence (Song & Xiaodong 2002) also proposed an-
other form of a replacement algorithm called Low 
Inter reference Recency Set (LIRS). LIRS effec-
tively addresses the limits of LRU by using re-
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cency to evaluate Inter-Reference Recency (IRR) 
for making a replacement decision. At the same 
time, LIRS almost retains the same simple as-
sumption of LRU to predict future access behavior 
of blocks. The simulation results showed that 
LIRS significantly outperforms LRU, and out-
performs other existing replacement algorithms in 
most cases with lower cost. 

Another replacement was proposed in (Cristian 
et al. 2013). This is called RAM-frugal cache re-
placement policy that approximates the 
least-recently-used (LRU) policy. It uses two 
in-memory Bloom sub-filters (TBF) for main-
taining the recency information and leverages an 
on-flash key–value store to cache objects. TBF 
requires only one byte of RAM per cached object, 
making it suitable for implementing very large 
flash-based caches. The evaluation results showed 
that TBF achieves a better cache hit rate and op-
erations per second comparable to those of LRU in 
spite of its much smaller memory requirements 
(Cristian et al. 2013). 

 In (Hassidim 2009) (Smith 1982), it was 
shown that the optimal algorithm to choose which 
location to evict is Furthest in the Future (FITF) 
algorithm, which evicts the memory location 
which will be used in the latest possible time. The 
more interesting question is the online version of 
the problem, in which the algorithm sees the next 
request only after serving the last one. In this case, 
the common measure of the performance of an 
algorithm is its competitive ratio, or the number 
of misses it makes divided by the number an op-
timal online algorithm would make, on the worst 
case sequence. For this caching problem, attain-
ing a good ratio is impossible, as all deterministic 
caching strategies have a competitive ratio which 
is at least k, the size of the cache.  

ACME (Ismail et al. 2010) is the closest scheme 
to the one proposed in this paper. It is an Adaptive 
Caching Using Multiple Experts which uses a 
machine learning algorithm to dynamically de-
termine the performance of replacement policy by 
assigning different weights to all the replacement 
policy in the expert pool in accordance to their real 
time performances. That is, replacement policy 
with highest weight at that moment and for the 
current workload has the best performance. And, it 
will be the replacement policy until another re-
placement policy with higher weight exists. In as 
this scheme improve the performance of the 
caching system, however, it introduces overhead 
such as delay in weight assignment, and overde-
pendence on the machine learning algorithm. As a 
result of this, adaptive scheme using a threshold 
value which is compared with improvement factor 
of the cached system obtained on a real time basis 
is another alternative.  

  

3. DESIGN APPROACH OF ADAPTIVE 
CACHE REPLACEMENT POLICY (ACRP)  

Motivated by the limits of machine learning 
algorithm approach and manual tuning method, an 
approach called Adaptive Cache Replacement 
Policy is proposed. The ACRP takes advantages of 
timing by creating a performance measuring met-
ric which dynamically determines when the re-
placement policy used is no longer contributing to 
effective management of the cache. The pre-stage 
of ACRP proffers an analytical modeling solution 
of two-level cache in a processor which produces 
an average improvement factor based on cache 
miss and hit rate for each level of cache. The ob-
tained value, threshold improvement factor, serves 
as a metering pointer to change the replacement 
policy of the multiprocessor system from recency 
to time based or vice versa depending on the dif-
ferential value between current cache improve-
ment factor and analytical threshold improvement 
factor. 

The two common cache hierarchies, one level 
cache and two-level cache, are modeled as shown 
in the next section. Figure 1 illustrates the working 
of 2-level cache. A request is sent by processing 
element (PE) to the L1-cache if the request is 
found in L1 then a hit otherwise miss will be rec-
orded. As a result of miss in the upper level cache 
the request passed to the L2-cache. In a case of 
miss being recorded in L2, the request passed to 
main memory and the L1 and L2 are updated. In 
case L1 and (or) L2 cache are full or getting full 
the replacement policy comes in by making a vital 
decision on which block(s) to be removed. A 
wrong eviction will certainly cause miss rate in no 
later time. Different replacement policy considers 
different factors for eviction; however, these fac-
tors are associated with different data pattern ex-
hibited by workload. This means a replacement 
policy may bias towards a workload with certain 
data pattern. 

Figure 2 shows the proposed adaptive cache 
replacement policy block diagram. It has a pool of 
replacement policy containing LRU, LFU, and 
LIRS etc. ACRP is divided into two sections 
which are Decision unit and Calculated Im-
provement Factor (CIF) generation unit. The CIF 
generation unit uses the record of misses and hits 
to generate the CIF which will be compared with 
the Threshold Improvement Factor (TIF). In a case 
the current CIF is lower than the TIF a new re-
placement policy will replace the current re-
placement policy. As a result of this, the new re-
placement policy becomes current policy which 
will be used to make eviction decision. It is as-
sumed that the adaptive caching design is using 
demotion in a 2-level cache A demotion strategy in 
more than a level cache involves downward 
movement of evicted objects to the next level 
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instead of outright discard of the evicted objects. 
(WONG, GANGER & WILKES 2000) as refer-

enced in (Ismail et al. 2010) enumerated the bene-
fits of demotion over exclusive caching.
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Figure 2: Adaptive Cache Replacement Policy (ACRP) 

 

3.1. Analytical Modelling of 1 and 2-Level 
Cache to obtain Thresholds for the ACRP 

As shown in Figure 1, a n-level cache was used 
where      . Each level of the cache offers 
different access time. Level 1 offers fastest access 
speed, say     than level 2 and level 3.  Level 2 
offers faster access speed     , than level 3 which is  
    . The memory access hierarchy is then modeled 
thus: 

L1 cache: This is a fast SRAM of access 
time       . 
L2 cache: L2 cache is a larger but slower SRAM 
of access time     
Main memory is the largest but slowest of access 
time       
Assuming that 
                                      

                       

                             Of cached system 

                          Of non-cached system 

3.1.1 One-Level Cache 

For ‘R’ main memory accesses, any access that 
finally resolved at main memory must have 
beenchecked the cache. Making main memory 
access time to become (       ) access time. 
Therefore, R times main memory accesses gives: 

                              (   )(   
    )                        ( )   

 

Assuming the multiprocessor is not cached; for 
an ‘R’ main memory access the maximum access 
time is R     where      is the access time of the 
non-cache main memory. Assuming that IF is the 
improvement factor of cached memory over 
non-cache memory. Then estimated improvement 
factor IF is: 

 

 

     (     (   )(       ))         ( ) 

 

     (             )⁄               ( ) 
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From eqn. 3, if there is cache hit          
  equation.3 becomes: 
 

       ⁄                       ( ) 

 

Equation 4 shows the improvement factor of the 
memory hierarchy whenever there is cache hit for 
one level cache memory. Equation 3 can be used to 
determine the pointer value which marks the point 
at which cache is no longer contributing to the 
speedup of the system. 

 

3.1.2 Two-Level Cache 

For ‘R’ HMPM main memory accesses, any 
memory access that finally resolved at level 3 (that 
is main memory) must have been checked in level 
1 and level 2. Making level 3 cache access to have 
(           ) access time. Also, any memory 
access at level 2 must have been checked in level 1. 
This makes level 2 cache access to have (      ) 
access time. Therefore, R times HMPM main 
memory accesses gives: 

 
                                 (      )  

(      )(           )             ( )   

 

Assuming the multiprocessor is not cached; for 
‘R’ main memory accesses the maximum access 
time is R , where   is the access time of the 
non-cache main memory. Assuming that IF is the 
improvement factor of cached memory compare to 
that without cache, we can estimate the improve-
ment factor IF as: 

 

     (        (      )
  (      )(      

     ))                 ( ) 

 

     (                             )⁄  

 

     (             (        )        )⁄     ( ) 

 
From equation 7, assuming there is cache level 1 

hit, the improvement factor becomes: 
 

          ⁄                              ( )  

 

In addition, if there is cache level 1 miss, but 
cache level 2 hit the memory hierarchy will still 
reduce access time and the improvement factor is: 

 

       (      )   (    )⁄              ( ) 

 

Equation 7 shows that whenever the Improve-
ment Factor (IF) is less than zero, it implies that 
there is cache L1 & L2 misses and the hierarchy 
gives worst case access time. Meanwhile, high 
cache miss rate depends on the size of the cache 
and the efficiency of the replacement policy en-

gaged in the cache management. Size has eco-
nomic implication on the overall cost of the system, 
that is, there is an upper limit to the size of cache 
otherwise the cost will mar the speedup of the 
memory hierarchy. Therefore, an efficient re-
placement policy is the only metric that can reduce 
the cache miss rate..  

 

ACRP Algorithm: 

1. Set the replacement policy for the cache. 

2. Pre load the cache with cacheable memory 

3. Reset the replace replacement policy change   

 pin. 

4. Set the Threshold Improvement factor (TIF)   

 to 25% 

5. Perform cache access for n number of times 

6. Generate the Current Improvement Factor   

 (CIF) using equation 3 or 7 

7. If CIF < TIF change the current replacement policy to 

 new policy by asserting the replacement policy 

 change  pin otherwise maintain the initial state of the  

pin. 

8. Jump to 5 

 

3.1.3. Improvement Factor’s Benchmark for 
ACRP 

The strength of ACRP lies in obtaining an ac-
curate threshold value for the improvement factor. 
This can be achieved numerically or analytically. 
However, numerical method involves a real time 
monitoring of cache and non-cached system, in-
termittently recording and calculating their hit and 
miss ratios from where the threshold value could 
now be obtained. This method is subjected to ex-
perimental errors and not cost friendly. Analytical 
method used equations 3 and 7 to obtain the 
benchmark value using various probability values 
to obtain the improvement factor for one and two 
level cache. This is then used as a pointer to when 
to dynamically change the replacement policy of 
the cache system. Once the improvement factor 
drops below the threshold value the ACRP will 
change the replacement policy. Fig 3-5 show the 
output of the analytical equation 3 and 7 for the 
one and two-level cache respectively, when used 
to determine TIF for one level cache  

The main strength of ACRP is that it reduces the 
conflict misses which could be avoided if the 
cache replacement policy had not wrongly evicted 
an entry earlier. In this case ACRP will solely 
reduce the replacement misses which are due to 
the particular wrong choice of the replacement 
policy by monitoring when the current replace-
ment policy starts to wrongly evicting block. 
ACRP first preloads the cache with part of the 
cacheable memory. This will reduce misses which 
are associated to compulsory or cold misses. The 
ACRP algorithm uses equation 9 to determine the 
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threshold improvement factor which is dynami-
cally compared with Current Improvement Factor 
(CIF). In case the TIF is greater than the CIF the 
ACRP changes the current replacement policy to 
another replacement policy from the replacement 
policy base as shown in Figure.2 by asserting the 
change replacement policy’s pin and then starts 
monitoring the performance of the new replace-
ment policy through the CIF. However, if the TIF 
is less than CIF then the status quo will be main-
tained for the current replacement policy. 

 

Figure 3: Estimated improvement factor for different probabilities of the L1 

cache Hit 

 

 

Figure 4: Estimated improvement factor for different prob-

abilities of the L2 cache Hit 

 

 

Figure 5: Estimated improvement Factors for different 

probabilities of HMPM L1 and L2 cache hit 

 

 

4. RESULTS AND DISCUSSIONS 
The mathematical models of L1 &L2 cache were 
implemented using different probabilities of both 
cache level n probabilities. This was done to ob-
tain the threshold improvement factor and its 
corresponding cache level hit rate. Figure 3 and 4 
illustrate the improvement factors of 1-level and 
2-level cache respectively for different cache hit 
rates. Figure 5 shows that the minimum threshold 
improvement factor (25.2) for a 2-level cache is 
reached when the cache hit rate of both L1 and L2 
slides to 25%. From this, the current replacement 
policy has started wrong eviction of blocks and 
any further wrong eviction will affect the speedup 
of the system. However, this must be after cold 
misses period has passed otherwise the recorded 
misses are due to cold miss.  
Any occurrence of miss after threshold value im-
plies that the current replacement policy has 
started  wrong evictions and needs to be re-
placed with another policy .Once the threshold 
value is reached, the ACRP changes the replace-
ment policy to another policy in order to prevent 
further eviction of wrong blocks. The threshold 
value approach in adaptive caching is easy to im-
plement, however, it should be noted that its per-
formance depends solely on the accuracy of the 
obtained threshold value. That is the analytical 
model must be closed to the true form of the 
caching system before one can say the threshold 
value is accurate. 
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5. CONCLUSION 
The paper presented the mathematical models 

of access time and improvement ratio of one and 
two level cache memory hierarchies. The results of 
the analytical models are used to propose a novel 
replacement policy which monitors the efficiency 
of the current replacement policy in either one or 
two level cache. However, a simulator need to be 
developed in order to compare the efficiency of 
ACRP with some other existing replacement pol-
icies mentioned in the related works sections. 
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