
Implementation and Analysis of Fully Homomorphic Encryption
in Wearable Devices

Amonrat Prasitsupparote 1 Yohei Watanabe 2 Junji Shikata 1

1Graduate School of Environment and Information Sciences, Yokohama National University, Japan
2Security Fundamentals Laboratory, Cybersecurity Research Institute,

National Institute of Information and Communications Technology, Japan
amonrat-prasitsupparote-zp@ynu.jp, yohei.watanabe@nict.go.jp, shikata@ynu.ac.jp

ABSTRACT

Currently, wearable devices, which are known as
one of the Internet of things (IoT) devices, have
been widely used for healthcare systems. Most of
the healthcare systems store users’ healthcare data,
which is encrypted by ordinary symmetric-key en-
cryption and/or public-key encryption schemes, in
a (cloud) server. However, the encrypted data needs
to be decrypted for data analysis, and it means that
sensitive information is leaked to the server. One
promising solution is to use fully homomorphic
encryption (FHE), which enables ones to perform
any computation among encrypted data while keep-
ing it encrypted. Although FHE generally requires
high computational and communication costs in the
theoretical sense, several researchers have imple-
mented FHE schemes to measure their practical
efficiency. In this paper, we consider a privacy-
preserving protocol for healthcare systems employ-
ing wearable devices, and implement this proto-
col over Raspberry Pi, which is a popular single-
board computer, to measure the actual efficiency
of FHE over wearable devices. Specifically, we
implemented the protocol by using two FHE li-
braries, HElib and SEAL, on Raspberry Pi and net-
work simulator to measure both computational and
communication costs in wireless body area network
(WBAN). In terms of the communication overhead,
our result shows that the protocol with SEAL is bet-
ter than that with HElib. In particular, the proto-
col with SEAL has almost the same communication
costs as the trivial protocol, which is the same pro-
tocol without encryption. On the other hand, HE-
lib is better than SEAL regarding the running time,
while SEAL can perform more homomorphic op-
erations than HElib for the almost same plaintext-
size. Therefore, HElib is suitable for applications
which require small time complexity, and SEAL is

suitable for applications which require many homo-
morphic operations.

KEYWORDS

Implementation, Healthcare system, Fully homo-
morphic encryption, Wearable devices, WBAN.

1 INTRODUCTION

Recently, the area of Internet of Thing (IoT)
has grown significantly supporting wide range
applications including medical and healthcare
systems, especially wearable devices. In par-
ticular, due to the cheap prices, wearable de-
vices have been widely used in our daily lives.
Among various wearable devices sold in the
market, smartwatches are most popular. Gen-
erally, people tend to use wearable devices by
placing devices around (i.e., inside or outside)
their bodies for monitoring their health condi-
tions. The most popular wearable device ap-
plications use symmetric-key encryption (e.g.,
AES), public-key encryption or both schemes
to encrypt the health data, and store it in a
third party storage such as a cloud. The cloud
needs to decrypt the encrypted data to per-
form a certain operation when a user requests
it. After that the cloud will send back the re-
sult to the user in the encrypted form. In the
case, the third party storage can know every-
thing about the data since the cloud has capa-
bility of decryption. Furthermore, medical sen-
sor devices or wearable devices in healthcare
systems usually exchange the personal health
record (PHR) between patients, caregivers and
physicians through a cloud or a data server.
This will result in information leakage issues
as mentioned above. Therefore, the privacy

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 1

preserving is a critical problem in healthcare
systems.
One solution to solve the privacy preserving
problem in healthcare systems is the usage of
homomorphic encryption (HE), in particular
fully homomorphic encryption (FHE). HE al-
lows the operation over the encrypted data (i.e.,
ciphertext), thereby a third party storage or a
data server does not need to decrypt the ci-
phertext to perform the operation on the data.
On the other hand, HE often requires expensive
computation and much memory storage in gen-
eral, and also produces a large size of cipher-
texts. Due to the resource limitation and mem-
ory constrained in a wearable device, it might
be difficult to apply and implement HE in a
wearable device. Actually, there are several
researchers who applied HE to healthcare sys-
tems. The results were not satisfactory because
of a high computation time and a high commu-
nication cost [1, 2, 3, 4, 5, 6]. Currently, sev-
eral researchers propose an improved homo-
morphic encryption algorithm [7, 8], and they
claimed that it could be used in a real world.
HE can be categorized into three types with re-
spect to the number of allowed operations on
the ciphertext (see detail in Section 2). In this
work, we focus on the fully homomorphic en-
cryption (FHE) which allows arbitrary opera-
tions with unlimited number of times.

1.1 Related Work

The privacy issue in healthcare systems is a
challenging problem that received wide atten-
tion in the past decade. There are several re-
ports trying to solve this issue. Specifically,
Riedle et al. [9] proposed a privacy archi-
tecture in e-Health by integrating many en-
cryption schemes: attribute-based encryption
(ABE), symmetric-key encryption and thresh-
old key sharing. Their architecture conceals
patient data by encryption, and divides into two
layers: the inner layer for authorized users and
the outer layer for unauthorized users. How-
ever, this system is insecure with untrusted data
storage or third party cloud provider.
The works that utilize HE in healthcare sys-
tems are as follows. In 2014, Bos et al. [10]

presented a private predictive analysis on en-
crypted medical data by using homomorphic
encryption based on the NTRU scheme [11].
Their scheme used only one ring element and
did not use modulus switching for decreasing
ciphertext expansion. Their system took sensi-
tive medical data as input and encrypted with
HE scheme, which implemented on a laptop
computer (Intel Core i7-3520M), and then up-
loaded its encrypted data to the cloud (hosted
on Microsoft’s Windows Azure). The cloud
ran a prediction algorithm on the encrypted
data (i.e., without decryption) and returned the
probability of cardiovascular disease for dia-
betes. This system requires the correct param-
eters, for example, the size of the function to
be computed, the size of the inputs, and the
method for encoding real data. It is difficult
to choose the suitable parameters, therefore it
provides a parameter selection algorithm. In
contrast, the inputs of parameter selection al-
gorithm must be defined manually and the sys-
tem performance heavily relied on the param-
eter selection. Therefore, this system is not so
practical. In addition, this work is developed
by Microsoft Cryptography Research Group,
which lead to the Simple Encrypted Arithmetic
Library (SEAL) [12] later.

In [1, 2, 3, 4], Kocabas and colleagues pro-
posed a general architecture for medical cy-
ber physical system (MCPS), which consists of
four layers: data acquisition, data aggregation,
cloud processing, and action. This scheme em-
ploys two schemes of HE: the Paillier scheme
[13] for computing the average heart rate, and
the BGV scheme [14] (used in HElib library
[7]) for the long QT syndrome detection. They
also showed the implementation for the diag-
nosis of the heart problem on a workstation
with dual Xeon E5-2695 Processors and 256
GB RAM. Their result showed that they could
retrieve the average heart rate on the cloud
close with a real time response. However, they
incur high computation time and high commu-
nication cost on the user and the server side.

In 2016, Preuveneers and Joosen [5] imple-
mented fully homomorphic encryption by us-
ing the HElib library on wearable devices

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 2

for analyzing diabetics, and sharing data with
physicians or other caregivers (e.g. parents
of diabetic children). They converted a blood
glucose value and a hypoglycemia thresh-
old into 10-bit binary representations, and se-
quentially encrypted each bit of them, then
stored the encrypted data on the cloud server.
The caregivers can analyze blood glucose, in-
sulin values, and other parameters while keep-
ing the privacy of data. They implemented
their scheme on three platforms: Omate True
smartwatch that operates on a dual-core ARM
Cortex-A7 CPU running at 1 GHz, Samsung
Galaxy S4 smartphone with quad-core ARM
Cortex-A7 CPU running at 1.2 GHz, and a
server system with Intel Core i7-3770 pro-
cessor running at 3.40 GHz. Due to the re-
source limitation and memory constrained in
the wearable device, and computational com-
plexity of this solution, it can send blood glu-
cose data to the cloud server every five minutes
even though ignoring the three least significant
bits, and it is an unacceptable time for moni-
toring blood glucose in wearable device. They
concluded that they demonstrated the practi-
cal feasibility of this solution but it was not so
practical due to the resource limitation.

In 2017, Sun et al. [6] presented an architec-
ture of mobile healthcare systems, which con-
sists of four sections: wearable device, pre-
processing, cloud server, and physician diag-
nosis. This solution was defined as three se-
cure medical computations: the average heart
rate, the long QT syndrome detection, and the
chi-square tests. This work is similar to the
Kocabas’s work [4], however, the difference
lies in the usage of the homomorphic encryp-
tion library. Kocabas’s work employed HElib
library, while Sun’s work employed Dowlin’s
scheme. In fact, both libraries are FHE based
on BGV scheme. Note that Dowlin’s scheme
becomes a part of SEAL project later. They
evaluated their solution on a PC with Intel Core
i5-3470 processor running at 3.20 GHz and
8 GB RAM. Their result shows that it pro-
duces only one ciphertext for the average heart
rate function, and one multiplication opera-
tion for the long QT syndrome detection func-

tion. They also compared the implementation
time of the long QT syndrome detection in Ko-
cabas’s work and their protocol, and this result
showed that their protocol was faster than Ko-
cabas’s scheme. Finally, they concluded that
their scheme was better than the Kocabas’s
scheme. This was done by comparing effi-
ciency of SEAL library (this work) and HE-
lib library (i.e., Kocabas’s work). Furthermore,
they first implemented chi-square tests for ob-
serving the probability of varicose veins are
relevant to overweight.
Costache and Smart [15] extended the work
[16] and showed a comparison result of four
HE schemes, FV, YASHE, BGV and NTRU.
They applied the four schemes to the same API
and the same optimization. They also investi-
gated applying modulus switching to the scale
invariant schemes, and considered the plaintext
modulus, level bound and security parameters.
They presented the results of all schemes in
various parameter sets, while fixing the secu-
rity level of k = 80 bits, a Hamming weight of
h = 64 and a ring constant of cm = 1.3. They
also presented the relation between the large
plaintext-space p ≈ 232, the number of levels
L, and the ciphertext-size, and concluded that
the BGV scheme appears to be more efficient
for large plaintext moduli, while the YASHE
scheme seems more efficient for small plain-
text moduli. Note that the BGV scheme means
HElib library, and the YASHE scheme means
SEAL library.

1.2 Our Contribution

As can be seen in Kocabas’s work [1, 2, 3, 4],
FHE produces large ciphertexts, which lead to
high communication costs on both the user and
server sides in healthcare systems. Our work
has been motivated by this problem. Note
that all related works were done by estimat-
ing only the time complexity, even though the
real implementation in Kocabas’s work shows
significance of the overhead in communication
in FHE. Therefore, estimating the communi-
cation overhead over the wearable-device net-
work is important as well as time complex-
ity. Note that a group of short-range wear-

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 3

able devices on, in, or around human bod-
ies is based on IEEE 802.15.6 standard [17],
which is called the wireless body area net-
work (WBAN). Consequently, the first part of
our work investigates the communication over-
head of healthcare systems using FHE over
WBAN. Furthermore, several researchers pre-
sented the practical FHE library [7, 8], and
they claimed that it could be used in a real
world. [1, 2, 3, 4, 5] showed implementa-
tions of healthcare systems using the HElib li-
brary over a PC and a wearable device, and
[10, 6] implemented a healthcare system us-
ing the SEAL library on a PC. [5] implemented
a healthcare system using the HElib library
over a smartwatch. In addition, Costache and
Smart’s work [15] dealt with implementations
of various FHE schemes for general systems on
PCs. However, there is no research on estimat-
ing the efficiency of HElib and SEAL libraries
on restricted resource devices in a general set-
ting, which is the second part of our work.
Specifically, the contribution of this paper is as
follows:

• We investigate the communication over-
head of a certain privacy-preserving pro-
tocol using FHE for healthcare system
over WBAN. We implement the protocol
by using two FHE libraries, HElib and
SEAL, with a network simulator to mea-
sure communication costs over WBAN.
Our result shows that the protocol with
SEAL is better than that with HElib. In
particular, the former has almost the same
communication costs as the trivial proto-
col, which is the same protocol without
considering privacy (i.e., a protocol with-
out FHE).

• We evaluate efficiency of two FHE li-
braries, HElib and SEAL on a restricted
resource device. We implement them
on a PC supposed to be a cloud server,
and Raspberry Pi supposed to be a wear-
able device such as a smartphone or any
restricted resource device over WBAN.
Our result shows that HElib is better in
terms of running time than SEAL, while

SEAL can perform more homomorphic
operations than HElib for the almost same
plaintext size. Therefore, HElib is suit-
able for applications which require small
time complexity, and SEAL is suitable for
applications which require a lot of homo-
morphic operations.

2 FULLY HOMOMORPHIC ENCRYP-
TION (FHE)

Homomorphic encryption (HE) is a public-
key encryption that enables us to perform
an arithmetic or logical operation on cipher-
texts without decrypting it. Generally, a
HE scheme consists of four polynomial time
algorithms: KeyGen,Enc,Dec, and Eval.
KeyGen is a probabilistic algorithm for gen-
erating a key-pair, a public key pk and a se-
cret key sk. Enc is an algorithm to en-
crypt a plaintext m and to output a ciphertext
c. Dec is an algorithm to decrypt a cipher-
text c and to output the plaintext m. In fact,
KeyGen,Enc,Dec are the same as those in
the traditional public key encryption scheme,
however Eval is a special algorithm included
in a HE scheme. An evaluation algorithm
Eval takes two ciphertexts of two plaintexts
m1 and m2 respectively, and an operation ?
as input, and it outputs an evaluated ciphertext
c̃ := Evalpk(Encpk(m1),Encpk(m2), ?), which
satisfies Decsk(c̃) = m1 ? m2. HE can be cat-
egorized into three types with respect to the
number of allowed operations on the ciphertext
as follows:

• In Partially Homomorphic Encryption
(PHE), Eval can perform only one type of
operation (e.g., either addition or multipli-
cation), though the number of operations
performed is unlimited. For instance, the
Paillier scheme [13] based on composite
residuosity problem [18] allows only ad-
dition, and was used in [4] to calculate the
average heart rate on the cloud.

• In Somewhat Homomorphic Encryption
(SHE), Eval can perform two kinds of op-
erations such as both addition and multi-
plication, though the number of one of the

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 4

two operations is limited. SHE schemes
include BGN [19] based on a subgroup
decision problem [20]. In the BGN
scheme, the number of allowed addition-
operations is unlimited, while the mul-
tiplication operation is allowed only one
time.

• Fully Homomorphic Encryption (FHE)
was proposed by Gentry [21] in 2009
where Eval can perform any operations
(i.e., both addition and multiplication),
and the number of performed operations
is unlimited. It was constructed based on
ideal lattices, and has a massive overhead
in computation and memory. FHE has a
lot of attractive applications, especially in
cloud environments, and therefore a vari-
ety of FHE schemes have been proposed
after Gentry’s work. There are four main
categories in FHE after Gentry’s work:
Ideal lattice-based FHE [21], FHE over
integers [22, 23], FHE from the learning
with errors (LWE) assumption [24, 25,
26], and NTRU-like FHE [11, 27]. In
FHE, whenever a homomorphic operation
is applied, some noise will be added into
the ciphertext and the ciphertext-size in-
creases. When the noise grows over the
limitation, the decryption algorithm can-
not correctly decrypt ciphertexts. To re-
solve this problem, there is a bootstrap-
ping technique to reduce the noise, and
get a fresh ciphertext from the noisy ci-
phertext corresponding to the same plain-
text. After applying bootstrapping, a ho-
momorphic operation can be applied to
the fresh ciphertext as long as the noise
is within the limitation.

Table 1. The property of FHE libraries

Name HElib [7] SEAL [12]
Base Scheme BGV [14] BFV [28]

Language C/C++ C++/.NET
Required GMP [29], No
Libraries NTL [30]

Bootstrapping Yes No

In this paper, we focus on two well-known
FHE libraries: HElib and SEAL, which we

summarize in Table 1. The first is HE-
lib [7], an open source library implemented by
Halevi and Shoup in 2014, which is based on
the Brakerski-Gentry-Vaikuntanathan (BGV)
scheme [14]. Halevi and Shoup also applied
several techniques: a ciphertext packing pro-
posed by Smart and Vercauteren [31], an op-
timization for homomorphic evaluation pro-
posed by Gentry, Halevi, and Smart [32], and a
noise management by bootstrapping [33]. This
library is written in C++ and has several pa-
rameters which effect to the performance and
security level, thus it is difficult to choose the
suitable parameters for non-experts. Moreover,
it requires two prerequisite libraries: GNU
Multiple Precision Arithmetic (GMP) library
[29] and NTL mathematical library [30] (ver-
sion 10.0.0 or higher). However, it is a low-
level implementation, thereby it was applied in
various areas. The current version is 1.3, which
is available at github [34].
The second one, Simple Encrypted Arith-
metic Library (SEAL) [12], was developed
by Cryptography Research Group at Mi-
crosoft Research in 2015. It is based on
the Brakerski/Fan-Vercauteren scheme (BFV)
[28], and it is a SHE scheme since bootstrap-
ping is not yet supported. The goal of this li-
brary is to be easily used by both crypto experts
and non-experts like in bioinformatics. Ac-
cordingly, there are automatic parameter selec-
tion and noise estimator tools for non-experts,
and this library does not require any exter-
nal dependencies. It is written in C++, and
contains .NET wrappers for the public API,
thereby it can be compiled on various plat-
forms. The current version of SEAL is 2.3.1.
Although this version does not provide boot-
strapping, the developer encourages to use pa-
rameter selection and noise estimator tools in-
stead. It needs the Microsoft Research License
Agreement to use and be free for the research
purpose.
3 PRIVACY PRESERVING PROTO-

COL FOR WEARABLE DEVICES IN
HEALTHCARE SYSTEMS

We assume that there are a user (e.g., a pa-
tient), a user’s smartphone, a cloud server, and

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 5

Figure 1. A privacy preserving protocol for wearable devices in healthcare systems.

a caregiver (e.g., a physician). In Fig. 1, the
green arrow means a secure wireless chan-
nel, and other arrows mean insecure chan-
nels, which can be wired or wireless chan-
nels. The red dotted square means a wireless
body area network (WBAN) following IEEE
802.15.6 [17]. A working group of IEEE de-
fines IEEE 802.15.6 that specifies the standard
for low-power and short-range wireless devices
on, in, or around human bodies, called WBAN.
This standard also means a wireless network of
wearable devices in healthcare systems. Cur-
rently, WBAN consists of one or more wire-
less medical sensor devices, and sink nodes
(i.e., gateway nodes). A sink node can be a
smartphone, a PC, or a high performance sen-
sor node, however, it must be connected in a
wireless environment. WBAN in our protocol
consists of wearable devices and a smartphone
as a sink node which communicate through
Wi-Fi. Each wearable device may contain sin-
gle or multiple medical sensors depending on
its aim, however in this paper we assume there
are n sensor nodes SN1, . . . , SNn in total on

a user’s body. A cloud server stores the health
data, and performs operations then sends the
result back to a caregiver. Our protocol con-
sists of the following four phases:

1) Key generation: We omit this phase in
Fig. 1 for simplicity. At the first time of
using a wearable device, a user calls a key
generation algorithm KeyGen to gener-
ate a key-pair (pk, sk) through the wear-
able device’s application on the user’s
sink node (e.g., smartphone). The sink
node broadcasts pk to all devices over
WBAN, and keeps sk. All devices in
WBAN obtain pk, and store it in their
memory. In addition, the sink node
can send sk to a caregiver’s application
through a secure wireless channel. On the
other hand, a caregiver can call KeyGen
on behalf of a user though an application
on his/her PC, tablet or smartphone, and
the application can send sk to the sink
node through a secure wireless channel.

2) Encryption and transmission: When

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 6

each sensor SNi in a wearable device
reads the health data mi, it was encrypted
by the encryption algorithm Enc imme-
diately. We write this operation as ci ←
Encpk(mi). In case that the size of ci is
greater than the maximum packet size,1

we divide the ciphertext ci into k pieces
for some k. We write this operation
as (c

(1)
i , . . . , c

(k)
i) ← Divide(ci,max),

where max is the maximum packet size.
The wearable device stores the divided ci-
phertexts c(j)i in transmission’s buffer, and
transmits c(j)i in each time slot. When the
sink node receives all c(j)i (1 ≤ j ≤ k), it
reconstructs ci from them. We write this
operation as ci ← Agg(c

(1)
i , . . . , c

(k)
i). Af-

ter that, the sink node uploads the cipher-
text ci to the cloud server.

3) Homomorphic operation: A caregiver’s
request is denoted by f(), and we assume
that every f() is expressed by addition
and/or multiplication operations. After
the cloud server receives the request f(),
it runs Eval and outputs the resulting ci-
phertext c̃ to the requester. The noise in
ciphertexts becomes to be large whenever
Eval is applied. When the noise is close
to the limit, the cloud server must perform
bootstrapping to reduce the noise, and get
a fresh ciphertext having the same under-
lying plaintext. After applying bootstrap-
ping, a fresh ciphertext allows us to con-
tinue to perform homomorphic operations
as long as the noise is within the limita-
tion.

4) Decryption: A caregiver’s device de-
crypts the ciphertext c̃ by the decryp-
tion algorithm Dec using a secret key
sk. We write this operation as f(M) ←
Decsk(c̃), where M denotes the health
data stored in the cloud with the encrypted
form. The caregiver finally obtains the re-
sult f(M) for his/her request f() on the
data M .

1We consider the maximum packet size based on
IEEE 802.15.6 [17].

4 ANALYSIS OF COMMUNICATION
OVERHEAD IN WBAN

In [35], it is stated: “The total number of pack-
ets are to be transferred or transmitted from one
node to another, which is known as the com-
munication overhead; It includes the overhead
of routing process, routing table and packet
preparation in a sensor node”. This implies the
communication cost treated in Kocabas’s work
[4]. Kocabas also mentioned that the com-
munication overhead was concern in systems.
Therefore, we implement our protocol with a
network simulator to investigate the communi-
cation overhead in WBAN on a PC with Intel
Core i7 processor running at 4.0 GHz and 32
GB of RAM where it is running on Ubuntu 64-
bit operating system.

4.1 Experimental Setup

Xian et al. [36] presented the comparision of
several major wireless sensor network (WSN)
simulators. The results show that OMNET++
[37] is better than NS2 and OPNET in terms of
execution time and memory usage in simulat-
ing WSN. In addition, OMNET++ was widely
used in this research area. In 2007, Australia’s
Information and Communications Technology
Research Centre of Excellence (NICTA) pub-
lished a simulator for WSN, WBAN, and more
generally for networks of low-power embed-
ded devices, which is called Castalia. It is
based on the OMNET++ platform with real-
istic node behaviours and Baseline MAC for
Body Area Networks (BAN), following IEEE
802.15.6. The WBAN testbed of Castalia
collected data from the real wearable sen-
sors on human bodies in daily life activities
such as walking, running, jogging, and sleep-
ing. It is an open source and available on
github [38]. Our experiment simulates WBAN
through OMNET++ version 4.6 and Castalia
version 3.3.
We simulate WBAN through OMNET++ and
Castalia with parameters in Table 2. Firstly, we
limit the number of sensor nodes from 2 to 16,
and the assigned Medium Access Control pro-
tocol (MAC) is Baseline BAN MAC, which is

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 7

Table 2. Simulation parameters.

Parameters Value
Number of sensor nodes 2− 16
Medium Access Control Baseline BAN MAC

protocol (MAC)
Read data interval 30s

Maximum packet size 2kb
Delayed limit 30s

Packet rate 5s
Simulation time 3600s

important for the node’s behavior. Generally,
medical sensor devices generate many small
packets in a short time interval, thereby we
suppose that each node reads sensitive data ev-
ery 30 seconds. If the node’s buffer is full, it
skips reading sensitive data, and will read it
again in a next period. Moreover, we assume
that the maximum packet size is 2kb, and the
delay limit in transmission is 30 seconds, be-
cause we assume each node reads the data ev-
ery 30 seconds. Each node sends a packet ev-
ery 5 seconds, and limit our simulation time to
3600 seconds.
We implement our protocol with two FHE li-
braries: HElib and SEAL, and compare their
performance with NoEncrypt scheme. The
NoEncrypt scheme is a trivial protocol without
encryption, where all packets are transimtted
in cleartext. One of disadvantages in HElib li-
brary is the parameter selection for non-experts
because it has a lot of parameters and some pa-
rameters have a relationship, however the sev-
eral appropriate parameters are suggested in
[7]. Therefore, this implementation use their
suggested parameters. In contrast, SEAL has
a tool for automatic parameter selection for
non-experts: a user only defines the plaintext-
size (i.e., plaintext modulus in SEAL library)
and runs an automatic parameter selection tool.
Our experiment assigns a security parameter
to be 110-bit for all libraries. It is known
that the multiplication operation causes a large
noise to ciphertexts compared to addition oper-
ation, a user cannot use a multiplication opera-
tion if the plaintext-space is not large enough.
Therefore, our experiment selects the mini-
mum plaintext-size such that a homomorphic

operation for multiplications can be executed
at least one time. Taking into the above condi-
tions, we have selected the following parame-
ters: the plaintext-space of HElib is GF(p) with
p = 1693, that of SEAL is GF(210) (i.e., its size
is |GF (210)| = 1024).
This simulation assigns a sink node SN0,
and SN0 receives a packet from other nodes
SN1, SN2, ..., SNn every 5 seconds, where n
is the number of sensor nodes. We consider
four measurements to evaluate communication
overhead as follows:

1) What is the number of packets per cipher-
text?: This is evaluated as follows. Let
J be the number of ciphertexts by which
SN0 could reconstruct by receiving all
pieces of the ciphertext from some sen-
sor nodes, and we do not count ciphertexts
such that SN0 could not reconstruct them.
Suppose that such J ciphertexts are de-
noted by C(1), C(2), . . . , C(J) and that
j-th ciphertext C(j) (1 ≤ j ≤ J) was
divided into kj packets in transmission.
Then, we calculate the number of packets
per ciphertext by

∑J
j=1 kj/J .

2) What is the number of packets transmitted
from each sensor node?: This is evaluated
as follows. Let K be the amount number
of packets which arrived at SN0 from I
sensor nodes in total minus one because
of fixed one sink node. Note that K in-
cludes a re-transmitted packet. Then, we
calculate the number of packets transmit-
ted from each sensor node by the average
K/I .

3) What is the number of delayed packets
from each sensor node?: We define that
a packet is delayed, if the time differ-
ence between the time when the packet
was created and the time when the packet
arrived at SN0 is more than 30 seconds.
This is reasonable in our simulation, since
we assume each node reads data every 30
seconds.

4) How many times a packet was success-
fully transmitted?: This is investigated at

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 8

the MAC level. SN0 must receive all
packets from other nodes, and aggregates
them to reconstruct a ciphertext ci. How-
ever, in the process of transmission, there
would be packet loss from some node,
and then the node has to re-send such a
packet until SN0 will successfully receive
it. Moreover, if SN0 is in the collision
state, some packets must be re-sent many
times. By taking into account such a sit-
uation, we count a number of times that
the packet was successfully transmitted,
namely a packet was successfully trans-
mitted in the first time (1st-try), a packet
was successfully transmitted in the second
time (2nd-try), ..., and a packet was suc-
cessfully transmitted in the sixth time or
more (6 or more tries).

4.2 Simulation results

Firstly, we investigate the reasonable number
of sensor nodes for our protocol by comparing
that of NoEncrypt scheme. In Fig. 2, the x-
axis means the number of nodes in WBAN and
the y-axis means the number of delayed pack-
ets in average. It can be seen that the number
of delayed packets in our protocol with all li-
braries are almost same as that in NoEncrypt
scheme, when WBAN consists of two nodes.
However, the number of delayed packets in our
protocol with SEAL library is close to that in
NoEncrypt scheme, when WBAN consists of
two to ten nodes. In fact, there is a moderate
difference of the number of delayed packets
between our protocol with SEAL library and
NoEncrypt scheme, when WBAN consists of
eight nodes. Thereby, the reasonable number
of sensor nodes for our protocol is not over
ten nodes. In addition, Castalia recommends
that the number of nodes in WBAN is six.
According to this result and recommendation
by Castalia, we change the number of sensor
nodes in our simulation to six.
Next, we observe the number of packets per
ciphertext and the number of packets transmit-
ted from each sensor node in Table 3. It can
be seen that NoEncrypt method has only one
packet per ciphertext, however our protocol

Figure 2. The number of delayed packets with vary the
number of nodes.

Table 3. The number of packets per ciphertext and the
number of packets transmitted from each sensor node.

Name Packets/ciphertext Packets transmitted
NoEncrypt 1 120.02

HElib 80 9601.78
SEAL 17 2040.02

with HElib has the highest number of packets
per ciphertext, which means HElib library pro-
duces the largest ciphertext-size. In contrast,
the number of packets per ciphertext of our
protocol with SEAL is close to that of NoEn-
crypt scheme. The tendency of the number of
packets per ciphertext is the same as the num-
ber of packets transmitted from each sensor
node. The number of packets transmitted from
each sensor node of our protocol with HElib is
the highest, while that of SEAL is close to that
of NoEncrypt scheme.

Table 4. The number of delayed packets from each sen-
sor node.

Name NoEncrypt HElib SEAL
SN1 0.0 7234.8 0.0
SN2 0.3 172.4 5.1
SN3 0.1 6206.8 1.7
SN4 0.4 7662.6 6.8
SN5 0.3 5761.6 6.0

Average 0.2 5407.6 3.9

Table 4 shows the number of delayed packets
from each sensor node. It can be seen that
the number of delayed packets from each sen-
sor node of our protocol with HElib is enor-
mous more than that of other methods, and that
of SEAL is close to that of NoEncrypt. The

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 9

number of delay packets in SN1 of our pro-
tocol with SEAL and NoEncrypt scheme is 0,
which means SN0 received all packets from
SN1. According to this situation and the re-
sult in Fig. 2, we confirm that the best number
of sensor nodes for our protocol is only two.

Figure 3. A number of times that the packet was suc-
cessfully transmitted by expression with fractions of 1.

In Fig. 3, we depict a number of times that
the packet was successfully transmitted. The
x-axis means the schemes, NoEncrypt and
our protocols with HElib and SEAL libraries.
The y-axis means a number of times that the
packet was successfully transmitted by expres-
sion with fractions of 1. It is clearly seen that
the result of our protocol with SEAL is almost
the same as NoEncrypt scheme. Moreover,
the packets was successfully transmitted in the
first time (1st-try) of NoEncrypt scheme and
our protocol with SEAL approximately 80%,
while that of HElib approximately 70%. This
result corresponds to the result in Table 4 and
Fig. 2.
As a result, it can be seen that our proto-
col with HElib produces much communica-
tion overhead in WBAN. However, our proto-
col with SEAL produces few communication
overhead close to NoEncrypt scheme. There-
fore, we can conclude that our protocol with
SEAL is best in terms of communication cost,
and the best number of sensor nodes for our
protocol is two, however our protocol can effi-
ciently perform if the number of sensor nodes
are not over six.

5 ANALYSIS OF EFFICIENCY FOR
FHE

In this section, we investigate efficiency of HE-
lib and SEAL libraries. As explained in Sec-
tion 3, our protocol has three kinds of com-
ponents, wearable devices (for sensor nodes),
smartphone (for a sink node and a caregiver’s
device), and a cloud server. This experiment
uses a PC with Intel Core i7 processor running
at 4.0 GHz and 32 GB of RAM which is sup-
posed to be a cloud server, and a Raspberry Pi
Model B+ v1.2 with ARM11 at 700 MHz and
512 MB SDRAM which is supposed to be a
wearable device or a smartphone. Nowadays,
smartphones in market have much higher per-
formance than this Raspberry Pi, and we can
expect that implementation results on smart-
phone would be much better than our imple-
mentation results on this Raspberry Pi. In ad-
dition, the hardware of this Raspberry Pi is al-
most the same as those of cheap wearable de-
vices in market, thereby this Raspberry Pi can
be used instead of implementation in wearable
devices.

5.1 Experimental Setup

We export health data from the network sim-
ulator in the previous experiment (see Section
4) and use it as the input in this experiment as
well. The previous experiment used the mini-
mum plaintext-space that can allow us to per-
form homomorphic operations for both addi-
tion and multiplication. However, this experi-
ment observes the running time for computing
homomorphic operations and that for comput-
ing bootstrapping, thus our experiment should
use the same plaintext-size for fair comparison.
Therefore, this experiment uses the plaintext-
sapce is 1024 in SEAL library (the same as the
previous experiment in Section 4.1); and the
plaintext-space of HElib must be a prime num-
ber (or a power of a prime), thereby we use the
size 1021 which is close to 1024.

5.2 Comparison Results

Firstly, we observe the running time (in mil-
liseconds) in each algorithm of HElib and

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 10

Table 5. The running time (Milliseconds)

KeyGen Encryption Decryption Addition Multiplication Bootstrapping

PC HElib 0.760058 0.032094 0.013368 0.000094 0.066178 85.323830
SEAL 1.930100 2.342723 0.177101 0.005329 2.187750 -

Raspberry Pi HElib 79.933075 2.084733 1.258043 0.006370 4.707492 7,846.207000
SEAL 181.319900 229.979548 46.673325 0.920642 480.622600 -

SEAL libraries on PC and Raspberry Pi in Ta-
ble 5. It can be seen that HElib library is faster
than SEAL library on both platforms. The
bootstrapping takes a long time than other al-
gorithms. Note that SEAL library does not pro-
vide a bootstrapping function. We can explic-
itly observe that the running time for perform-
ing a homomorphic operation for multiplica-
tion is much more than that of a homomorphic
operation for addition in each library. Addi-
tionally, Raspberry Pi takes much more time
than PC in every algorithm, however the run-
ning time of HElib on Raspberry Pi is accept-
able for the practical use.

Table 6. The ciphertext-size of HElib library be-
fore/after using bootstrapping (bytes)

PC Raspberry Pi
Before 84,251.4 63,486.8
After 29,138.6 29,156.8

Moreover, we observe the ciphertext-size in
HElib library before/after using bootstrapping
on PC and Raspberry Pi in Table 6. Our re-
sults in Section 4.2 show that the large cipher-
texts lead to a high communication overhead.
The usage of bootstrapping can reduce the
ciphertext-size over 60% on both platforms.

Table 7. The maximum number of allowed homomor-
phic operations

Plaintext-space Addition Multiplication

HElib 1021 26 0
1693 44 1

SEAL 1024 510 1

We also investigate the maximum number up
to which homomorphic operations are allowed
to apply, and the results are summarized in Ta-
ble 7. Under the condition that plaintext-size
in each library is almost the same (i.e., 1021
in HElib, and 1024 in SEAL), SEAL provides

the largest number up to which homomorphic
operations for addition or multiplication are al-
lowed. In particular, HElib cannot allow a ho-
momorphic operation for multiplication for the
selected plaintext-size. Afterwards, we have
increased the size of plaintexts in HElib so
that we can apply a homomorphic operation for
multiplication at least one time, and the result-
ing size of plaintexts in HElib is 1693.
As a result, HElib is better than SEAL in
terms of running time, while our protocol with
SEAL is better than our protocol with HE-
lib in terms of the communication overhead in
WBAN. In addition, SEAL can provide us the
largest number up to which homomorphic op-
erations are applied than HElib when we regard
those as SHE schemes. However, HElib pro-
vides bootstrapping for refreshing the cipher-
texts, and hence we can continue to use ho-
momorphic operations. Furthermore, in HE-
lib, we can observe the running time of boot-
strapping is much more than those of other al-
gorithms, whereas the ciphertext-size of HElib
is reduced over 60% after applying bootstrap-
ping.

6 CONCLUSION

We investigated the communication overhead
in WBAN when using FHE in the privacy
preserving protocol for healthcare. We im-
plemented the protocol by using two FHE li-
braries, HElib and SEAL, on a PC, Raspberry
Pi and network simulator (OMNET++ and
Castalia) to measure both computational and
communication costs in WBAN. In terms of
the communication overhead, our result shows
that the protocol with SEAL is better than that
with HElib. In particular, the protocol with
SEAL has almost the same communication
costs as the trivial protocol, which is the same
protocol without encryption. However, HElib

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 11

is better than SEAL in terms of the running
time, while SEAL can perform more homo-
morphic operations than HElib for the almost
same plaintext-size as SHE schemes. There-
fore, HElib is suitable for applications which
require small time complexity, and SEAL is
suitable for applications which require many
homomorphic operations. It would be interest-
ing to investigate power consumption required
in the protocol by implementation, and it will
be our future work.

REFERENCES

[1] O. Kocabas, T. Soyata, J. Couderc, M. Aktas,
J. Xia, and M. Huang, “Assessment of cloud-
based health monitoring using homomorphic en-
cryption,” in 2013 IEEE 31st International Con-
ference on Computer Design (ICCD), Oct 2013,
pp. 443–446.

[2] v. Kocabaş and T. Soyata, “Medical Data Analyt-
ics in the Cloud Using Homomorphic Encryption,”
Handbook of Research on Cloud Infrastructures
for Big Data Analytics, pp. 471–488, 2014.

[3] O. Kocabas and T. Soyata, “Utilizing Homomor-
phic Encryption to Implement Secure and Private
Medical Cloud Computing,” in 2015 IEEE 8th In-
ternational Conference on Cloud Computing, Jun.
2015, pp. 540–547.

[4] O. Kocabas, T. Soyata, and M. K. Aktas, “Emerg-
ing security mechanisms for medical cyber phys-
ical systems,” vol. 13, no. 3, May 2016, pp. 401–
416.

[5] D. Preuveneers and W. Joosen, “Privacy-enabled
Remote Health Monitoring Applications for Re-
source Constrained Wearable Devices,” in Pro-
ceedings of the 31st Annual ACM Symposium on
Applied Computing, ser. SAC ’16. New York,
NY, USA: ACM, 2016, pp. 119–124.

[6] X. Sun, P. Zhang, M. Sookhak, J. Yu, and W. Xie,
“Utilizing fully homomorphic encryption to imple-
ment secure medical computation in smart cities,”
Personal and Ubiquitous Computing, vol. 21,
no. 5, pp. 831–839, Oct 2017.

[7] S. Halevi and V. Shoup, “Algorithms in helib,” in
Advances in Cryptology – CRYPTO 2014, J. A.
Garay and R. Gennaro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 554–571.

[8] N. Dowlin, R. Gilad-Bachrach, K. Laine,
K. Lauter, M. Naehrig, and J. Wernsing, “Manual
for using homomorphic encryption for bioinfor-
matics,” Proceedings of the IEEE, vol. 105, no. 3,
pp. 552–567, March 2017.

[9] B. Riedl, V. Grascher, S. Fenz, and T. Neubauer,
“Pseudonymization for improving the privacy in e-
health applications,” in Proceedings of the 41st An-
nual Hawaii International Conference on System
Sciences (HICSS 2008), Jan 2008, pp. 255–255.

[10] J. W. Bos, K. Lauter, and M. Naehrig, “Private pre-
dictive analysis on encrypted medical data,” Jour-
nal of Biomedical Informatics, vol. 50, pp. 234–
243, Aug. 2014.

[11] A. López-Alt, E. Tromer, and V. Vaikuntanathan,
“On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption,” in
Proceedings of the Forty-fourth Annual ACM Sym-
posium on Theory of Computing, ser. STOC ’12.
New York, NY, USA: ACM, 2012, pp. 1219–1234.

[12] “Simple Encrypted Arithmetic Library
- SEAL Crypto.” [Online]. Avail-
able: https://www.microsoft.com/en-us/research/
project/simple-encrypted-arithmetic-library/

[13] P. Paillier, “Public-key cryptosystems based on
composite degree residuosity classes,” in Advances
in Cryptology — EUROCRYPT ’99, J. Stern, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 223–238.

[14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan,
“(leveled) fully homomorphic encryption without
bootstrapping,” in Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference,
ser. ITCS ’12. New York, NY, USA: ACM, 2012,
pp. 309–325.

[15] A. Costache and N. P. Smart, “Which ring based
somewhat homomorphic encryption scheme is
best?” in Topics in Cryptology - CT-RSA 2016,
K. Sako, Ed. Cham: Springer International Pub-
lishing, 2016, pp. 325–340.

[16] T. Lepoint and M. Naehrig, “A comparison of the
homomorphic encryption schemes fv and yashe,”
in Progress in Cryptology – AFRICACRYPT 2014,
D. Pointcheval and D. Vergnaud, Eds. Cham:
Springer International Publishing, 2014, pp. 318–
335.

[17] “IEEE 802.15.6-2012 - IEEE Standard for Lo-
cal and metropolitan area networks - Part 15.6:

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 12

https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/

Wireless Body Area Networks.” [Online]. Avail-
able: http://standards.ieee.org/findstds/standard/
802.15.6-2012.html

[18] T. Jager, The Generic Composite Residuosity
Problem. Wiesbaden: Vieweg+Teubner Verlag,
2012, pp. 49–56. [Online]. Available: https:
//doi.org/10.1007/978-3-8348-1990-1 5

[19] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluat-
ing 2-DNF formulas on ciphertexts,” in Theory of
Cryptography, TCC 2005, J. Kilian, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp.
325–341.

[20] K. Gjøsteen, Subgroup membership problems
and public key cryptosystems, 2004. [Online].
Available: https://brage.bibsys.no/xmlui/handle/
11250/249681

[21] C. Gentry, “Fully Homomorphic Encryption Using
Ideal Lattices,” in Proceedings of the Forty-first
Annual ACM Symposium on Theory of Computing,
ser. STOC ’09. New York, NY, USA: ACM, 2009,
pp. 169–178.

[22] J.-S. Coron, A. Mandal, D. Naccache, and M. Ti-
bouchi, “Fully homomorphic encryption over the
integers with shorter public keys,” in Advances
in Cryptology – CRYPTO 2011, P. Rogaway, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 487–504.

[23] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikun-
tanathan, “Fully homomorphic encryption over the
integers,” in Advances in Cryptology – EURO-
CRYPT 2010, H. Gilbert, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 24–43.

[24] Z. Brakerski and V. Vaikuntanathan, “Fully homo-
morphic encryption from ring-lwe and security for
key dependent messages,” in Advances in Cryptol-
ogy – CRYPTO 2011, P. Rogaway, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp.
505–524.

[25] Z. Brakerski, “Fully homomorphic encryp-
tion without modulus switching from classical
GapSVP,” in Advances in Cryptology – CRYPTO
2012, R. Safavi-Naini and R. Canetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 868–886.

[26] Z. Brakerski and V. Vaikuntanathan, “Efficient
fully homomorphic encryption from (standard)
LWE,” SIAM Journal on Computing, vol. 43, no. 2,
pp. 831–871, 2014.

[27] K. Rohloff and D. B. Cousins, “A scalable im-
plementation of fully homomorphic encryption
built on NTRU,” in Financial Cryptography and
Data Security, FC 2014, R. Böhme, M. Brenner,
T. Moore, and M. Smith, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 221–234.

[28] J. Fan and F. Vercauteren, “Somewhat practical
fully homomorphic encryption,” Cryptology ePrint
Archive, Report 2012/144, 2012, https://eprint.
iacr.org/2012/144.

[29] “The GNU MP Bignum Library.” [Online].
Available: https://gmplib.org/

[30] “NTL: A Library for doing Number Theory.”
[Online]. Available: https://www.shoup.net/ntl/

[31] N. P. Smart and F. Vercauteren, “Fully homomor-
phic simd operations,” Designs, Codes and Cryp-
tography, vol. 71, no. 1, pp. 57–81, Apr 2014.

[32] C. Gentry, S. Halevi, and N. P. Smart, “Fully
homomorphic encryption with polylog overhead,”
in Advances in Cryptology – EUROCRYPT 2012,
D. Pointcheval and T. Johansson, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp.
465–482.

[33] S. Halevi and V. Shoup, “Bootstrapping for helib,”
in Advances in Cryptology – EUROCRYPT 2015,
E. Oswald and M. Fischlin, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2015, pp. 641–
670.

[34] S. Halevi, “HElib: An Implementation of
homomorphic encryption.” [Online]. Available:
https://github.com/shaih/HElib

[35] N. Kumar and Y. Singh, “Routing Protocols
in Wireless Sensor Networks,” Handbook
of Research on Advanced Wireless Sensor
Network Applications, Protocols, and Ar-
chitectures, pp. 86–128, 2017. [Online].
Available: https://www.igi-global.com/chapter/
routing-protocols-in-wireless-sensor-networks/
162116

[36] X. Xian, W. Shi, and H. Huang, “Comparison of
OMNET++ and other simulator for WSN simula-
tion,” in 2008 3rd IEEE Conference on Industrial
Electronics and Applications, Jun. 2008, pp. 1439–
1443.

[37] “OMNeT++ Discrete Event Simulator - Home.”
[Online]. Available: https://omnetpp.org/

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 13

http://standards.ieee.org/findstds/standard/802.15.6-2012.html
http://standards.ieee.org/findstds/standard/802.15.6-2012.html
https://doi.org/10.1007/978-3-8348-1990-1_5
https://doi.org/10.1007/978-3-8348-1990-1_5
https://brage.bibsys.no/xmlui/handle/11250/249681
https://brage.bibsys.no/xmlui/handle/11250/249681
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://gmplib.org/
https://www.shoup.net/ntl/
https://github.com/shaih/HElib
https://www.igi-global.com/chapter/routing-protocols-in-wireless-sensor-networks/162116
https://www.igi-global.com/chapter/routing-protocols-in-wireless-sensor-networks/162116
https://www.igi-global.com/chapter/routing-protocols-in-wireless-sensor-networks/162116
https://omnetpp.org/

[38] T. Boulis, “Castalia: An OMNeT-based simulator
for low-power wireless networks such as Wireless
Sensor Networks and Body Area Networks.”
[Online]. Available: https://github.com/boulis/
Castalia

Proceedings of 4TH INTERNATIONAL CONFERENCE ON INFORMATION SECURITY AND DIGITAL FORENSICS ISDF2018, Greece, 2018

ISBN: 978-1-941968-54-3 ©2018 SDIWC 14

https://github.com/boulis/Castalia
https://github.com/boulis/Castalia

	Introduction
	Related Work
	Our Contribution

	Fully Homomorphic Encryption (FHE)
	Privacy preserving protocol for wearable devices in healthcare systems
	Analysis of communication overhead in WBAN
	Experimental Setup
	Simulation results

	Analysis of Efficiency for FHE
	Experimental Setup
	Comparison Results

	Conclusion

