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ABSTRACT 

 
The quality of software is very important for every 

kind of software system. Without quality software, 

there will be more accidents and system failures. As 

the responsibility of the software increases, the 

quality becomes more and more important. This is 

even more crucial for the case of safety critical 

software, the failure of which can endanger human 

lives. For system quality analysis, the software 

metrics can be used. Although software metrics are 

well-known and widely used, there is still a 

discussion about identifying their thresholds and 

usage.  Furthermore, there is a lack of information 

about software metrics thresholds, particularly 

about thresholds of safety critical software. This 

puts evaluators of safety critical systems into a 

position where they neither have any data for 

comparison, nor do they know suitable methods for 

evaluation. This article describes evaluation of 

software metrics of one safety critical system and 

provides information about measured data and data 

collection and evaluation method. Finally, the 

determined thresholds are presented for future 

comparison. 
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1 STUDY CONTEXT 

 

1.1 Metrics and thresholds 
 

Software metrics are well-known means for 

software quality analysis [1]. Using software 

metrics one can measure the software quality 

from different points of views, search for 

potential problems within the software, identify 

its parts which should be examined or control 

the whole system development. The broad 

usage of software metrics is demonstrated by 

the high number of existing metrics themselves 

as well as tools used for their measuring [2]. 

However, the usage of metrics themselves is 

only part of the software measuring and 

evaluating process because once we obtain or 

calculate the values of our specific set of 

metrics we also need to determine when does 

the value represent a positive (or at least 

tolerable) characteristic of the measured 

software, and when does this value become a 

sort of warning sign, i.e. an indication of some 

unsatisfying or unwanted aspect of the 

software. The boundaries between these two 

states or sets of values (or any number of 

shades of grey in between them) are commonly 

known as thresholds. 

We can sort software metrics to categories 

according to their usage. One of them is the 

program metrics used for measuring inner 

characteristics of an inspected system (i.e. 

number of lines of code, number of methods 

etc.). A subset of these metrics is a collection of 

object-oriented metrics the goal of which is to 

measure the object-oriented software. There is a 

huge amount of object-oriented metrics and 

many of them were the subject of research and 

examination in the past [3]. Nevertheless, the 

problem of their actual usage does not lie only 

in the extensive amount of existing object-

oriented metrics and therefore in selecting the 

appropriate subset to measure given software. 

Even if just a limited number of commonly 

known metrics is used, the result of their 

application does not have to be unequivocal. 

Unfortunately, even though there is a 

considerable effort to make the view on 

software metrics clear, there still is no widely 
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used and unified view on threshold values of 

software metrics. 

This lack of consistent view is especially 

obvious in the field of safety-critical software 

systems. The recently conducted research in 

this area shows that measuring metrics of 

different system types brings different threshold 

values.  The results of measuring can be 

influenced by measurement tool [4], [5], 

programming language [5], [6], or by the 

category of software [7]. 

 

1.2 Safety Critical Systems 
 

Software quality is a very important aspect of 

software development, which is constantly 

being emphasized. One of the areas of the 

software development field where the demands 

on the quality are the highest is the safety 

critical software development. As far as this 

type of software is concerned, quality is a 

crucial aspect. Any failure in such software can 

damage freight or endanger lives of people [8]. 

A particular case of safety critical software can 

be the hard real-time system which enables the 

functioning of the train security system or the 

aircraft control system.  

 

1.3 Goals of this study 
 

The goal of this paper is to find threshold 

values for a given set of software metrics 

measuring one particular object-oriented safety 

critical system and afterwards evaluate the 

system using the found threshold values. 

 

1.4 Studied system  

 

The system this paper concerns itself with is 

used in railway industry. It is responsible for 

safe functioning of various devices, in which it 

serves as a base platform for their own 

functionality. In a very simplified sense, it can 

be seen as a hard-real time system, which 

enables special algorithms to run on their 

respective devices. The software is written in 

C++. All software development is being done 

by experienced team and according to certain 

coding standards. The whole process of 

development is being constantly validated and 

verified. The source code is regularly checked 

by automatic tools which evaluate compliance 

with coding standards and compute current 

values of specified object oriented metrics. 

 

1.4 Research Questions 

 

From the goals of this study mentioned above 

the following research questions were derived: 

 

1) How to find metrics thresholds values for 

safety critical system? 

2) What will be the results of evaluation of our 

particular system using these metrics threshold 

values? 

 

These questions will be answered in the 

conclusion of this paper. 

  

2 STUDY LIMITATIONS 

 

According to [6], there are two ways to 

determine the software metrics thresholds: by 

the statistical methods or by the widely 

accepted threshold values for particular metric. 

As for our type of analyzed system these widely 

accepted threshold values do not exist, and so 

we find them by using statistical methods. 

Statistical methods are based on the principle of 

derivation of threshold values by collecting data 

from available systems. Characteristically, we 

measure various metrics over various systems. 

Afterwards, we employ statistical methods and 

derive threshold values. However, this 

approach has several pitfalls, which have to be 

considered. 

 

2.1 General limitations and constrictions and 

their resolution 

 

Above all, there are differences between 

evaluated software projects. They can differ in 

programming language used (Java, C, C++ 

etc.), in the particular software type (game, 
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office software, real-time system etc.), in size 

(100 LOC – 100 MLOC) etc. Due to this fact, it 

is necessary to take the programming language, 

the project type and its size into consideration. 

Another significant finding can be seen in [4] 

where it is shown that different software 

metrics measuring tools can evaluate the same 

projects with different threshold values. This is 

caused particularly by ambiguous definition of 

software metrics. For example, the computation 

of the DIT metric (Depth of Inheritance Tree) 

for Java language can be done with or without 

including the Object class. As long as different 

tools are used, the result of the measurement 

can be different, because each tool can 

implement different technique of computation. 

As shown in [4], the choice of measuring tool 

can negatively influence the set of classes 

assigned for inspection. While one tool can 

identify set A as the set of classes most critical 

for inspection, another tool can pick set B. In 

the worst case scenario the intersection of these 

sets can be empty. If this happens, the staff 

responsible for class review can misguidedly 

define the set of classes for inspection. 

Another issue is the large number of existing 

object-oriented software metrics. It is a 

common occurrence that for different projects 

there are often different sets of metrics used for 

evaluation. We can also see different metrics 

used for measuring in different studies. This 

makes it difficult to collect data for analysis and 

evaluation of metrics thresholds, if we want to 

compare our measured data with others. 

If we sum up previous paragraphs, for proper 

usage of statistical methods for evaluating 

threshold values of software metrics we need to 

have at our disposal only data from similarly 

typed and sized software systems coded in the 

same programming language, measured by the 

same tool, and with the same set of metrics 

applied. In case we cannot reach previous 

requirements, it is probable that the evaluation 

of software metrics on the grounds of statistical 

methods is not going to be precise and it could 

result in misleading conclusions.  

 

2.2 Specific limitations of measuring safety-

critical software 

 

As described before, the absence of widely 

accepted threshold values for the type of 

systems similar to the one we try to evaluate 

forces us to use the statistical methods for their 

determination and therefore we need data from 

other sufficiently similar systems for analysis 

and comparison. Unfortunately, in the 

particular case of safety critical systems we are 

in an even more difficult situation. There are 

almost no data published from measuring this 

kind of software. Safety critical systems are not 

usually open-source and it is practically 

impossible to get their source code for 

measuring. Considering this fact, determination 

of threshold values of safety critical systems by 

collecting sufficient amount of data and 

applying statistical methods is almost 

impossible. 

In this situation, determination of thresholds for 

safety critical system which is a subject of this 

study is more than likely to be tricky. It is ill-

advised to compare measured values with data 

from other studies, because there are nearly no 

results from desirable systems. We also cannot 

mine data from accessible sites for our own 

measurement, because there is almost no 

suitable software for comparison. On the other 

hand, we still have source code of the analyzed 

system and tools for measuring. Even if we do 

not have adequate data for comparison, we can 

still evaluate our system and determine 

extremes in measured data. We can apply 

statistical methods on our data and establish 

local abnormalities. On the basis of measured 

data we can define a set of classes showing 

unusual measured values which can be 

afterwards analyzed more rigorously. 

 

3 STUDY DESIGN 

 

In the next few sections we describe and justify 

the following steps taken in the course of this 

study: 
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• Particular and appropriate set of metrics 

selection. 

• The process of data collection, analysis and 

evaluation (metric values and threshold 

determination) including measuring our 

particular system using the threshold values 

found. 

• Tools selection and usage details. 

 

3.1 Metrics used 

 

For evaluation of our system we used the 

following metrics: CBO, DIT, LCOM, NOC, 

NOM, RFC, SLOC 1, SLOC 2, and v(g) (the 

abbreviations meaning described lower). This 

set of metrics was chosen as sufficiently 

suitable for evaluation of the system which has 

to meet the EN ISO 50128. The exact process 

of choosing the appropriate set of metrics was 

the subject of an internal procedure within the 

owner company of the studied system and will 

not be described in this paper. Simple 

description of these metrics follows, for more 

detailed information see [9]. 

 

CBO (Coupling Between Objects) In 

Understand C++ API has name 

CountClassCoupled. The metric counts the 

number of other classes coupled to the analyzed 

one. Class X is coupled to class Y if class X 

uses a data, type or member from class Y. 

 

DIT (Depth of Inheritance Tree) 

Understand C++ API names this metric as 

MaxInheritanceTree. This metrics describes the 

depth of a class within the inheritance 

hierarchy. The value equal the number of nodes 

on the way up from the class node to the root of 

the inheritance hierarchy; the root has DIT 

value of 0. 

 

LCOM (Lack of Cohesion in Methods) 

In Understand C++ API has name 

PercentLackOfCohesion. It counts percentage 

of all inner methods of the class, which use 

particular instance variables. The final value is 

100% minus the average value of percentage of 

all class instance variables. 

 

NOC (Number of Children) 

In Understand C++ API has name 

CountClassDelivered. The number of 

immediate subclasses of a given class. 

NOM (Number of Methods) 

Understand C++ API names this metric as 

CountDeclMethod. It represents number of all 

methods of a given class (including inherited 

methods). 

 

RFC (Response for Class) 

In Understand C++ API has name 

CountDeclMethodAll. This metrics has the 

same meaning as NOM, but includes also the 

inherited methods. 

 

SLOC1 (Source Lines of Code - Function) 

The API function has name CountLineCode. 

The metric counts the number of lines of code 

except for the lines containing comment only. 

We use SLOC1 for counting code lines of 

functions.  

 

SLOC2 (Source Lines of Code - Class) 

We use the same API function as in SLOC1 

(CountLineCode), but for measuring lines of 

code of classes. 

 

v(g) (Strict Cyclomatic Complexity) 

In Understand C++ API has name 

CyclomaticStrict. Counts possible paths 

through the program functions during 

execution. 

 

3.2. Data collection and analysis 

 

The data collection and analysis in this study 

has several phases. First, we need to collect the 

values of the metrics themselves for the studied 

system. After that, some statistics and graphic 

representation are most likely to be necessary 

for the data to be prepared for further analysis. 

Then, the analysis of the results is performed to 

categorize the metrics, since further steps of 
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threshold determination may vary in regard to 

their specific characteristics. Finally, we 

identify the actual threshold values. The step-

by-step description below refers to the way the 

data from every individual metric is processed 

in the course of this study. 

The metric values measurement through all the 

classes of the studied system can be easily 

automated by an appropriate software tool (or 

tools) and this automation is very desirable as it 

minimizes the risk of human error. The 

outcome of this automated tool should include 

the specific values as well as their graphic 

representation, most likely histograms, and 

some descriptive statistics. 

Histograms can be used as a visual 

representation of the data probability 

distribution (i.e. normal, exponential, etc.) in a 

form of a graph. In this graph particular for our 

purposes the x axis values represent possible or 

observed values of a particular metric for 

individual classes and the y axis values show 

the number of classes or functions with the 

same results. 

The usage of descriptive statistics is one of 

several possibilities how to evaluate measured 

data and gain some overall view of the dataset. 

 

 
 

 
 

 
 

 
 

 
Figure 1.  Histograms of measured metrics, the Y axis 

represents frequency of X values. 

 

3.3 Measured descriptive statistics 

 

The descriptive statistics suitable for the 

purposes of this study are:   

• arithmetic mean - sum of all the values 

divided by the number of the values; 

• standard deviation - shows how significant 

divergence from the mean exists in the dataset; 

• modus - the most frequent value in the data 

set; 

• median - represents the value located in the 

middle of the spread of the values; 

• kurtosis - gives information about whether 

the data distribution has a peak or not; 

• skewness - gives information about the 

symmetry of the data distribution; 

• minimum and maximum – extreme values in 

the dataset. 
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The skewness and kurtosis statistics are 

probably the most difficult to imagine. As an 

example, normal distribution has the skewness 

equal zero. Distribution with a positive 

skewness has longer right tail and the mean is 

placed off to the right side of the peak value. 

On the other hand, distribution with a negative 

skewness has longer left tail and the mean is 

placed off to the left side. As we can see in 

[10], data with skewed distribution can have 

maximal values considerably different from the 

mean. 

The simplified view on the kurtosis can be 

“how curvy the final function is”. While the 

positive kurtosis indicates peaked data 

distribution, the negative kurtosis can be a sign 

of a flat data distribution. 

 

3.4 Probability distribution issue 

 

The so far collected and computed data may not 

suffice, as there is a different approach to 

determination of the threshold values with 

regard to the particular probability distribution 

that the data from an individual metric show. 

The analyses of information in studies [3] and 

[10] show that measured data of some software 

metrics do not follow normal distribution. 

Relatively often we can see that measured data 

approach heavy-tailed distribution and are 

right-skewed. Normal distribution data should 

have the skewness and kurtosis around zero 

[11]. If measured data shows skewness, the 

distribution does not need to be spread in the 

close range around the mean value [10]. In this 

type of distribution, the frequency of high 

values for random variable is very low whereas 

frequency of low values is very high [3]. In 

[10], we can find this information about right-

skewed data “This skewness in metrics data 

affects the interpretation and usage of these 

metrics in evaluating software quality. Such 

metrics are not always well characterized by 

their descriptive statistics such as mean, 

standard deviation, minimum, maximum, and 

quartiles“. 

As far as we consider this argument, it is 

necessary to primarily determine the 

characteristic of measured data and continue to 

analyze metric values with regard to the results. 

Therefore, before determining the threshold 

values, we first need to categories the metrics 

according to their histograms and descriptive 

statistics into two separate groups: the ones 

showing heavy-tail probability distribution, and 

the ones with the normal distribution. 

With the heavy-tail distributed metrics the 

approximation and determination of their actual 

distribution seems appropriate. As described 

before, the presence of heavy-tail distribution 

can be observed from the descriptive statistics 

and histograms but again some automated 

software tool to help us approximate and 

determine the actual type of probability 

distribution should minimize the human error 

factor, make the whole process more 

manageable and confirm the observed 

conclusions. 

 

3.5 Data categorization 

 

Finally, after the categorization of metrics 

through their respective probability distribution, 

we should have all the input data necessary for 

the actual threshold value determination. 

In [6], a range of typical values is used for 

metrics evaluation. This range represents 

typical values of particular metrics for which its 

lower and upper boundaries and extreme values 

are defined. For computation of typical values 

and upper and lower boundaries the arithmetic 

mean and deviation are used. If a measured 

value of a metric is 50% higher than the highest 

value of the interval between upper and lower 

boundary then the value is evaluated as an 

extreme value. This approach is suitable in the 

case where the data have normal distribution. 

Because data with normal distribution are 

centralized around their mean values, we can 

look at their values as determinative. 

In [3], the technique of separating values into 

three categories was used for assessing the 

thresholds values of heavy-tailed data.  The 
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categories are assigned the names of “good”, 

“regular”, and “bad” and each category 

represents particular range of values. 

The “good” category represents range, which 

contains the most frequent values. The values 

with low frequency of occurrence, but which 

are still considered as not being rare belongs to 

the “regular” category.  The “bad” category 

contains values, the occurrences of which are 

rare. This technique is appropriate for our 

heavy-tailed data as well. 

Applying the above mentioned process on 

safety critical system will result in getting the 

set of metric values of each class. By selecting 

the classes, values of which cross threshold 

values, we get set of classes fit for review. 

 

3.6 Tools used 

 

For our analysis, three tools were used. First, 

the tool Understand C++ 3.1 

(www.scitools.com) was used for measuring all 

the metrics values for all the classes of the 

studied system. We chose this tool mostly for 

these reasons: the Understand C++ can measure 

many software metrics and contains sufficiently 

deep description about how metrics are counted 

and also enables to compute all of measured 

metrics of C++ source code.  

Second, for simplification and it´s widely 

usage, the Microsoft (MS) Excel 2003 was 

chosen for computation of the descriptive 

statistics and selection of classes for inspection. 

Ultimately, the EasyFit tool 

(www.mathwave.com) was used for the 

analysis to fit the measured data to various 

probability distributions. This tool was chosen 

because of its simple usage and huge amount of 

probability distributions it can evaluate. 

 

3.7 Execution 

 

Here we sum up the actual process of data 

collection and analysis in the course of the 

study execution. 

The data from source code were gathered by 

Understand C++. For any measured metric its 

own MS Excel file with results was created. 

After all metrics were measured, The MS Excel 

functions for computing all the descriptive 

statistics were used. For gaining better insight 

on data representation, we created a histogram 

for each measured metric. If descriptive 

statistics and histograms evinced heavy-tail 

data distribution, the EasyFit tool was used for 

data distribution fitting. In the end, MS Excel 

was used for selecting classes for review. 

 

4 RESULT PRESENTATION AND 

FURTHER ANALYSIS 

 

As we can see in table 1 and table 2, all metrics 

except RFC and LCOM have mean >= median 

>= mode. This can be seen as a sign of the right 

skewness in the data [10].  

The peaked characteristic of data shows the 

positive kurtosis in all the measured metrics. 

Metrics CBO, NOC, NOM, SLOC1, SLOC2, 

and v(g) have mean values notably smaller than 

maximal value, which also shows the skewness 

of data distribution. The kurtosis values for DIT 

and LCOM are negative, so we can consider 

DIT and LCOM as having a flat distribution.  

Table 1.  Measured descriptive statistics of CBO, DIT, 

LCOM, NOC and NOM. 

 
 

 

 

 

 

  CBO DIT LCOM NOC NOM 

Arithmetic 

mean 

6,28 2,41 39,64 0,92 6,42 

Median 5 2 41 0 4 

Modus 2 1 0 0 3 

Standard 

deviation 

6,16 1,43 31,57 8,22 6,8 

Kurtosis 22,62 -0,71 -1,26 932,91 23,99 

Skewness 3,14 0,21 0,08 28,62 3,96 

Minimum 0 0 0 0 0 

Maximum 82 6 100 274 75 
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Table 2.  Measured descriptive statistics of RFC, 

SLOC1, SLOC2, v(g). 

 

 
 

In the given histograms the right skew of the 

values of CBO, NOC, NOM, SLOC1, SLOC2, 

and v(g) is noticeable as we can see high 

concentration of values in the left side of the 

histograms. The visual observation confirms the 

results of descriptive statistics, where for the 

given set of metrics mean >= median >= mode 

and also relatively high values of the skewness 

and the kurtosis exist.  

Different results can be found in the data from 

DIT, LCOM and RFC. The data from DIT do 

not show any concentration of values on the 

right side of the histogram. The shape of their 

histograms and also the results from the 

descriptive analysis evince the similarity with 

normal distribution (negative skewness and low 

values of kurtosis). 

The LCOM data have a peak at zero; the rest of 

the histogram corresponds with the normal data 

distribution. The descriptive statistics suggest 

the LCOM data to be flat and non-skewed (the 

mean >= median >= mode does not hold here). 

We can see high concentration of values around 

the mean in the RFC histogram. The results 

from the descriptive statistics show that the 

RFC data have relatively low values of the 

skewness and kurtosis. In the RFC data the 

relation mean >= median >= mode is not valid. 

For these reasons, we will not analyze the data 

from these three metrics (DIT, LCOM and 

RFC) in regard to the existence of heavy-tail. 

The threshold values for these three metrics 

will be established from the mean and the 

standard deviation according to the method 

used in [6]. 

 

4.1 Heavy-tail analysis 

 

The existence of heavy-tail was analyzed for 

the data from metrics CBO, NOC, NOM, 

SLOC1, SLOC2, and v(g). To determine the 

best probability distribution, we considered 

results from the EasyFit tool and the visual 

representation of the data probability functions.  

In figures 2 – 7 we can see the results of fitting 

function. 

The data from the CBO metric can be 

characterized by generalized Pareto 

distribution. This data distribution belongs to 

heavy-tail probability distributions [12]. 

 

 
Figure 2.  CBO with generalized Pareto distribution. 

 

 
Figure 3.  NOC with Weibull distribution. 

 

 

 

 RFC SLOC 1 SLOC 2 v(g) 

Arithmetic 

mean 

33,85 14,92 94,74 2,9 

Median 33 7 55 1 

Modus 39 5 19 1 

Standard 

deviation 

14,91 26,67 120,8 5,47 

Kurtosis 3,19 116,13 20,37 94,53 

Skewness 0,66 8,56 3,62 8,01 

Minimum 0 1 3 1 

Maximum 106 582 1361 103 
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Figure 4.  NOM with generalized Pareto distribution. 

 

 
Figure 5.  SLOC1 with lognormal distribution. 

 

 
Figure 6.  SLOC2 with generalized Pareto distribution. 

 

 
Figure 7.  v(g) with exponential distribution. 

 

This distribution also fitted data from NOM and 

SLOC2 metrics. The Weibull distribution 

characterized very well the data of the NOC 

metric. The Weibull distribution also belongs to 

heavy-tail probability distributions [3]. The data 

from the SLOC1 metrics were well fitted by the 

Lognormal distribution, while the data from the 

v(g) metrics fitted the Exponential distribution. 

Both of these distributions are considered to be 

heavy-tailed [13]. 

From these results we can see that all the data 

from the metrics CBO, NOC, NOM, SLOC1, 

SLOC2, and v(g) can be approximated by 

heavy-tailed distributions. According to [14], if 

data are heavy-tailed, their mean is not 

representative. Because of this, it is not 

convenient to use mean for establishing the 

threshold values. As a result, the thresholds 

values for these metrics were assessed 

according to the method used in [3] by 

separating values to three categories. 

 

4.2 Identifying thresholds values for metrics 

with heavy-tail data distribution    

 

We used the method form [3] for identifying 

thresholds values from our data. We established 

three categories for the metrics CBO, NOC, 

NOM, SLOC1, SLOC2, and v(g) with the 

names “good”, “regular” and “bad”. The values 

for these categories were drawn from data and 

histogram analysis.  

The values of the CBO metric are most 

frequently spread in the range 0 – 15. Almost 

90% of all values were lower than 10. It is clear 

to see from the plots that values between 16 and 

25 were presented much less frequently, but 

still with better probability then values higher 

than 25. For the CBO metric the value ranges 

for the categories were designated as: 0 – 15 

good, 16 – 25 regular, 25+ bad.  

The most frequent value in the NOC metric is 

0. From the definition of the NOC metric, this 

value represents classes with no children. There 

are almost 95% of all classes without children. 

Classes with 1 to 5 children occur much less 

frequently, but we can still see their presence in 

the plots.  The probability of the occurrence of 

the class with more than 5 children is very low. 

For the NOC metric we assigned the three 

categories as: 0 good, 1 – 5 regular, 6+ bad. 
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The NOM metrics has the most values in the 

range 0 – 10. Almost 90% of all the values are 

positioned in this range. The values in the 

interval 10 – 25 are presented with lower 

frequency, but are still apparent in the plots. 

The values higher than 25 can be considered as 

rare. We designed the three categories 

accordingly: 0 – 10 good, 11 – 25 regular, 26+ 

bad. 

The values of the SLOC1 metric are most 

frequent in the range 0 – 10. We can find 

approximately 90% of all the values in this 

interval. To the next category we can put the 

values in the range 11 – 69. The values higher 

than 69 can be find very seldom. We 

established the three categories as 0 – 10 good, 

11-69 regular, 70+ bad. 

The SLOC2 values are most frequently spread 

in the interval 1 – 200. The values can be found 

in this range with almost 95% probability. The 

values 201 – 400 are still evident in the data, 

but not so often as data from the previous 

category.  The values over 400 are rare. The 

three categories are therefore: 1 – 200 good, 

201 – 400 regular, 401+ bad. 

The most frequent value in the data from the 

v(g) metric is 1 and probability of this value is 

almost 70%. Almost 25% of all the values from 

this metrics are in the range 2 – 15. The values 

over 15 occur very seldom. For the v(g) metric 

we established the three categories as: 1 good, 2 

– 15 regular, 16+ bad. 

 

4.3 Identifying thresholds values for metrics 

without heavy-tail data distribution    

 

The data from the metrics DIT, LCOM, and 

RFC do not evince heavy-tail distribution. To 

identify thresholds values for these metric we 

used method showed in [6]. For each of these 

metrics we used results from the descriptive 

statistics – the mean and the standard deviation 

– for calculating the threshold values. The first 

threshold value corresponds with the mean and 

represents the most typical value. The second 

threshold value is calculated as a sum of the 

mean and the standard deviation. This second 

value represents high, but still acceptable set of 

values. The third threshold value is calculated 

as a multiplication of the second threshold 

value by the coefficient 1.5 [6]. The third 

threshold value is considered as an extreme and 

should not be present in the data.  

The typical value (mean) of the DIT metrics is 

2, the second threshold value corresponds to 4 

and extreme value is 6. The LCOM metric has 

the typical value equal to 40, the high – but still 

not extreme – value is determined as 72. We 

calculated the extreme value of LCOM as 108. 

For the RFC the typical value is 34, the high 

value is 49 and the extreme value is considered 

to be 74. 

 

5 SYSTEM EVALUATION 

 

As we mentioned in the beginning, the results 

of static analysis can highlight potential bad 

manners in code and can help people interested 

in system maintaining to find possible threads 

in code. The results of the system measuring 

can show classes and pieces of code, which 

should be put on a review. 

After we found thresholds of our system, we 

aimed at evaluating the source code in “the 

light” of determined thresholds values. We used 

MS Excel files with measured values and MS 

Excel functions for identifying classes, which 

should be reviewed, because they evince 

abnormal values.  

We aimed only at the category “bad”, because 

classes with the worst evaluation could be the 

most harmful for the system. For the CBO 

metric, we identified 24 classes, which were in 

the category over 25. The NOC metric showed 

that 27 classes should be reviewed. Similarly, 

the NOM metrics detected 25 classes for 

review. Most classes for review showed the 

SLOC2 metrics – 35. From the non-heavy 

tailed metrics, the DIT identified 15 classes for 

review, while RFC identified 24. The metrics 

specialized in functions also detected possible 

problems – the v(g) metric detected 187 

functions while the SLOC1 metric showed 212 

functions. All these classes and functions were 

ISBN:978-0-9891305-8-5 ©2014 SDIWC 76



 

 

reported as possible thread and passed to the 

persons responsible for system maintaining.   

The calculated extreme value from the LCOM 

metric is 108. However, as we can see in the 

histogram of LCOM measured values, there is 

no class with the LCOM metric higher than 

100. This result is influenced by the special 

shape of the data from LCOM metric. As we 

can see in the histogram of LCOM, the data are 

concentrated in the low values, but with higher 

values, they start to have characteristic of 

normal distributed data. Because of this 

behavior, the extreme values were identified as 

over the maximum value and there is no class 

which would overstep this threshold. 

 

6 CONCLUSION 

 

The goal of this study was to determine the 

threshold values for given metrics for safety 

critical system. We have been analyzing values 

of the CBO, DIT, LCOM, NOC, NOM, RFC, 

SLOC1, SLOC2, and v(g) metrics. Data for 

these metrics were collected with the use of the 

Understand C++ tool.  

Our analyzed system does not correspond by its 

function and robustness to free and accessible 

application.  Because of this, we could not 

compare our measured data with the data from 

other published studies nor with the data 

measured from any free-to-download software 

from the internet. In addition, the data from 

similar software are almost impossible to 

gather. For all these reasons we did not use 

statistical data from any other previous studies. 

Therefore the first research question is 

answered by our described approach only 

partially for the specific instance of having only 

one safety critical system and nothing to 

comparing it with. 

We analyzed the measured data for the 

existence of heavy-tail and according to results 

we categorized our data into two groups. The 

first group contains metrics with potential 

heavy-tail data distribution, the second without 

it. With regard to the results from the 

descriptive statistics and histograms, we 

Table 3.  Identified thresholds of measured metrics. The 

good, regular and bad are valid for heavy-tailed data. 

 

assigned the CBO, NOC, NOM, SLOC1, 

SLOC2, and v(g) metrics to the first group, 

leaving the DIT, LCOM, and RFC metrics to be 

classified into the second group. For both 

groups we establish the thresholds values. For 

the first group we identified the threshold 

values from the data and the plot characteristics 

by using method from [3]. The threshold values 

for the second group were determined from the 

descriptive statistics with the method used in 

[6]. The final results answering our second 

research question are shown in the table 3. We 

found that for each metrics there are no more 

than 2% percent of all classes in need of a 

review. This percentage seems to be relatively 

small, although the severity of the problems in 

identified classes will be the aim of the 

following deeper study. 

 

7 DISCUSSION 

 

In this study, we were evaluating special type 

of software system, which was written in C++ 

and does not correspond by its function and 

responsibility to standard computer software. 

For the threshold evaluation, the modern tools 

and techniques were used. 

We identified threshold values for our system 

and then applied them to uncover possible 

unsecure parts of the code. The thresholds 

values of metrics detected in average 25 classes 

  Heavy 

tail 

Good / 

Typical 

value 

Regular 

/ High 

value 

Bad / 

Extreme 

value 

CBO yes 0 - 15 16 - 25 25+ 

DIT no 2 4 6 

LCOM no 40 72 108 

NOC yes 0 1 - 5 6+ 

NOM yes 0 - 10 11 - 25 26+ 

RFC no 34 49 74 

SLOC 1 yes 0 - 10 11 - 69 70+ 

SLOC 2 yes 1 - 200 201 - 400 401+ 

v(g) yes 1 2 - 15 16+ 
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and 200 functions, which should be reviewed. 

We advised these classes to the person 

responsible for system maintaining.   

The threshold values for this type of system 

have not been published yet and thus our results 

can be used for comparison for any future 

evaluation of analogous software. We evaluated 

relatively decent amount of software metrics (9 

metrics) and for the metric measuring, we used 

software with precisely described computation 

of these metrics. 

Although we applied modern techniques to 

threshold identification, our study still should 

be viewed as evaluation of one software system 

and our results should not be taken as a dogma. 

Our techniques can be applied to another kind 

of software for which it is hard to gather data, 

but it is necessary to bear in mind, that the 

thresholds represent only local data and for 

general usage, the broader comparison should 

be used. We present our data as a base for 

possible future comparison with other studies 

and we hope our results can bring more light 

into the thresholds of safety critical software 

metrics.  

As a future endeavor, we would like to study 

differences between metrics thresholds 

measured in this study and data from a system 

with at least some degree of similarity. We 

would like to compare our results with 

measurement of thresholds of open-source 

operational systems (which appear to be the 

most similar to our software). 
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