

Identifying Software Metrics Thresholds for Safety Critical System

Štěpán Cais and Petr Pícha

University of West Bohemia in Pilsen

scais@kiv.zcu.cz, ppicha@kiv.zcu.cz

ABSTRACT

The quality of software is very important for every

kind of software system. Without quality software,

there will be more accidents and system failures. As

the responsibility of the software increases, the

quality becomes more and more important. This is

even more crucial for the case of safety critical

software, the failure of which can endanger human

lives. For system quality analysis, the software

metrics can be used. Although software metrics are

well-known and widely used, there is still a

discussion about identifying their thresholds and

usage. Furthermore, there is a lack of information

about software metrics thresholds, particularly

about thresholds of safety critical software. This

puts evaluators of safety critical systems into a

position where they neither have any data for

comparison, nor do they know suitable methods for

evaluation. This article describes evaluation of

software metrics of one safety critical system and

provides information about measured data and data

collection and evaluation method. Finally, the

determined thresholds are presented for future

comparison.

KEYWORDS

Software metrics, software metrics thresholds,

heavy-tailed data, real-time system analysis

1 STUDY CONTEXT

1.1 Metrics and thresholds

Software metrics are well-known means for

software quality analysis [1]. Using software

metrics one can measure the software quality

from different points of views, search for

potential problems within the software, identify

its parts which should be examined or control

the whole system development. The broad

usage of software metrics is demonstrated by

the high number of existing metrics themselves

as well as tools used for their measuring [2].

However, the usage of metrics themselves is

only part of the software measuring and

evaluating process because once we obtain or

calculate the values of our specific set of

metrics we also need to determine when does

the value represent a positive (or at least

tolerable) characteristic of the measured

software, and when does this value become a

sort of warning sign, i.e. an indication of some

unsatisfying or unwanted aspect of the

software. The boundaries between these two

states or sets of values (or any number of

shades of grey in between them) are commonly

known as thresholds.

We can sort software metrics to categories

according to their usage. One of them is the

program metrics used for measuring inner

characteristics of an inspected system (i.e.

number of lines of code, number of methods

etc.). A subset of these metrics is a collection of

object-oriented metrics the goal of which is to

measure the object-oriented software. There is a

huge amount of object-oriented metrics and

many of them were the subject of research and

examination in the past [3]. Nevertheless, the

problem of their actual usage does not lie only

in the extensive amount of existing object-

oriented metrics and therefore in selecting the

appropriate subset to measure given software.

Even if just a limited number of commonly

known metrics is used, the result of their

application does not have to be unequivocal.

Unfortunately, even though there is a

considerable effort to make the view on

software metrics clear, there still is no widely

ISBN:978-0-9891305-8-5 ©2014 SDIWC 67

mailto:scais@kiv.zcu.cz

used and unified view on threshold values of

software metrics.

This lack of consistent view is especially

obvious in the field of safety-critical software

systems. The recently conducted research in

this area shows that measuring metrics of

different system types brings different threshold

values. The results of measuring can be

influenced by measurement tool [4], [5],

programming language [5], [6], or by the

category of software [7].

1.2 Safety Critical Systems

Software quality is a very important aspect of

software development, which is constantly

being emphasized. One of the areas of the

software development field where the demands

on the quality are the highest is the safety

critical software development. As far as this

type of software is concerned, quality is a

crucial aspect. Any failure in such software can

damage freight or endanger lives of people [8].

A particular case of safety critical software can

be the hard real-time system which enables the

functioning of the train security system or the

aircraft control system.

1.3 Goals of this study

The goal of this paper is to find threshold

values for a given set of software metrics

measuring one particular object-oriented safety

critical system and afterwards evaluate the

system using the found threshold values.

1.4 Studied system

The system this paper concerns itself with is

used in railway industry. It is responsible for

safe functioning of various devices, in which it

serves as a base platform for their own

functionality. In a very simplified sense, it can

be seen as a hard-real time system, which

enables special algorithms to run on their

respective devices. The software is written in

C++. All software development is being done

by experienced team and according to certain

coding standards. The whole process of

development is being constantly validated and

verified. The source code is regularly checked

by automatic tools which evaluate compliance

with coding standards and compute current

values of specified object oriented metrics.

1.4 Research Questions

From the goals of this study mentioned above

the following research questions were derived:

1) How to find metrics thresholds values for

safety critical system?

2) What will be the results of evaluation of our

particular system using these metrics threshold

values?

These questions will be answered in the

conclusion of this paper.

2 STUDY LIMITATIONS

According to [6], there are two ways to

determine the software metrics thresholds: by

the statistical methods or by the widely

accepted threshold values for particular metric.

As for our type of analyzed system these widely

accepted threshold values do not exist, and so

we find them by using statistical methods.

Statistical methods are based on the principle of

derivation of threshold values by collecting data

from available systems. Characteristically, we

measure various metrics over various systems.

Afterwards, we employ statistical methods and

derive threshold values. However, this

approach has several pitfalls, which have to be

considered.

2.1 General limitations and constrictions and

their resolution

Above all, there are differences between

evaluated software projects. They can differ in

programming language used (Java, C, C++

etc.), in the particular software type (game,

ISBN:978-0-9891305-8-5 ©2014 SDIWC 68

office software, real-time system etc.), in size

(100 LOC – 100 MLOC) etc. Due to this fact, it

is necessary to take the programming language,

the project type and its size into consideration.

Another significant finding can be seen in [4]

where it is shown that different software

metrics measuring tools can evaluate the same

projects with different threshold values. This is

caused particularly by ambiguous definition of

software metrics. For example, the computation

of the DIT metric (Depth of Inheritance Tree)

for Java language can be done with or without

including the Object class. As long as different

tools are used, the result of the measurement

can be different, because each tool can

implement different technique of computation.

As shown in [4], the choice of measuring tool

can negatively influence the set of classes

assigned for inspection. While one tool can

identify set A as the set of classes most critical

for inspection, another tool can pick set B. In

the worst case scenario the intersection of these

sets can be empty. If this happens, the staff

responsible for class review can misguidedly

define the set of classes for inspection.

Another issue is the large number of existing

object-oriented software metrics. It is a

common occurrence that for different projects

there are often different sets of metrics used for

evaluation. We can also see different metrics

used for measuring in different studies. This

makes it difficult to collect data for analysis and

evaluation of metrics thresholds, if we want to

compare our measured data with others.

If we sum up previous paragraphs, for proper

usage of statistical methods for evaluating

threshold values of software metrics we need to

have at our disposal only data from similarly

typed and sized software systems coded in the

same programming language, measured by the

same tool, and with the same set of metrics

applied. In case we cannot reach previous

requirements, it is probable that the evaluation

of software metrics on the grounds of statistical

methods is not going to be precise and it could

result in misleading conclusions.

2.2 Specific limitations of measuring safety-

critical software

As described before, the absence of widely

accepted threshold values for the type of

systems similar to the one we try to evaluate

forces us to use the statistical methods for their

determination and therefore we need data from

other sufficiently similar systems for analysis

and comparison. Unfortunately, in the

particular case of safety critical systems we are

in an even more difficult situation. There are

almost no data published from measuring this

kind of software. Safety critical systems are not

usually open-source and it is practically

impossible to get their source code for

measuring. Considering this fact, determination

of threshold values of safety critical systems by

collecting sufficient amount of data and

applying statistical methods is almost

impossible.

In this situation, determination of thresholds for

safety critical system which is a subject of this

study is more than likely to be tricky. It is ill-

advised to compare measured values with data

from other studies, because there are nearly no

results from desirable systems. We also cannot

mine data from accessible sites for our own

measurement, because there is almost no

suitable software for comparison. On the other

hand, we still have source code of the analyzed

system and tools for measuring. Even if we do

not have adequate data for comparison, we can

still evaluate our system and determine

extremes in measured data. We can apply

statistical methods on our data and establish

local abnormalities. On the basis of measured

data we can define a set of classes showing

unusual measured values which can be

afterwards analyzed more rigorously.

3 STUDY DESIGN

In the next few sections we describe and justify

the following steps taken in the course of this

study:

ISBN:978-0-9891305-8-5 ©2014 SDIWC 69

• Particular and appropriate set of metrics

selection.

• The process of data collection, analysis and

evaluation (metric values and threshold

determination) including measuring our

particular system using the threshold values

found.

• Tools selection and usage details.

3.1 Metrics used

For evaluation of our system we used the

following metrics: CBO, DIT, LCOM, NOC,

NOM, RFC, SLOC 1, SLOC 2, and v(g) (the

abbreviations meaning described lower). This

set of metrics was chosen as sufficiently

suitable for evaluation of the system which has

to meet the EN ISO 50128. The exact process

of choosing the appropriate set of metrics was

the subject of an internal procedure within the

owner company of the studied system and will

not be described in this paper. Simple

description of these metrics follows, for more

detailed information see [9].

CBO (Coupling Between Objects) In

Understand C++ API has name

CountClassCoupled. The metric counts the

number of other classes coupled to the analyzed

one. Class X is coupled to class Y if class X

uses a data, type or member from class Y.

DIT (Depth of Inheritance Tree)

Understand C++ API names this metric as

MaxInheritanceTree. This metrics describes the

depth of a class within the inheritance

hierarchy. The value equal the number of nodes

on the way up from the class node to the root of

the inheritance hierarchy; the root has DIT

value of 0.

LCOM (Lack of Cohesion in Methods)

In Understand C++ API has name

PercentLackOfCohesion. It counts percentage

of all inner methods of the class, which use

particular instance variables. The final value is

100% minus the average value of percentage of

all class instance variables.

NOC (Number of Children)

In Understand C++ API has name

CountClassDelivered. The number of

immediate subclasses of a given class.

NOM (Number of Methods)

Understand C++ API names this metric as

CountDeclMethod. It represents number of all

methods of a given class (including inherited

methods).

RFC (Response for Class)

In Understand C++ API has name

CountDeclMethodAll. This metrics has the

same meaning as NOM, but includes also the

inherited methods.

SLOC1 (Source Lines of Code - Function)

The API function has name CountLineCode.

The metric counts the number of lines of code

except for the lines containing comment only.

We use SLOC1 for counting code lines of

functions.

SLOC2 (Source Lines of Code - Class)

We use the same API function as in SLOC1

(CountLineCode), but for measuring lines of

code of classes.

v(g) (Strict Cyclomatic Complexity)

In Understand C++ API has name

CyclomaticStrict. Counts possible paths

through the program functions during

execution.

3.2. Data collection and analysis

The data collection and analysis in this study

has several phases. First, we need to collect the

values of the metrics themselves for the studied

system. After that, some statistics and graphic

representation are most likely to be necessary

for the data to be prepared for further analysis.

Then, the analysis of the results is performed to

categorize the metrics, since further steps of

ISBN:978-0-9891305-8-5 ©2014 SDIWC 70

threshold determination may vary in regard to

their specific characteristics. Finally, we

identify the actual threshold values. The step-

by-step description below refers to the way the

data from every individual metric is processed

in the course of this study.

The metric values measurement through all the

classes of the studied system can be easily

automated by an appropriate software tool (or

tools) and this automation is very desirable as it

minimizes the risk of human error. The

outcome of this automated tool should include

the specific values as well as their graphic

representation, most likely histograms, and

some descriptive statistics.

Histograms can be used as a visual

representation of the data probability

distribution (i.e. normal, exponential, etc.) in a

form of a graph. In this graph particular for our

purposes the x axis values represent possible or

observed values of a particular metric for

individual classes and the y axis values show

the number of classes or functions with the

same results.

The usage of descriptive statistics is one of

several possibilities how to evaluate measured

data and gain some overall view of the dataset.

Figure 1. Histograms of measured metrics, the Y axis

represents frequency of X values.

3.3 Measured descriptive statistics

The descriptive statistics suitable for the

purposes of this study are:

• arithmetic mean - sum of all the values

divided by the number of the values;

• standard deviation - shows how significant

divergence from the mean exists in the dataset;

• modus - the most frequent value in the data

set;

• median - represents the value located in the

middle of the spread of the values;

• kurtosis - gives information about whether

the data distribution has a peak or not;

• skewness - gives information about the

symmetry of the data distribution;

• minimum and maximum – extreme values in

the dataset.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 71

The skewness and kurtosis statistics are

probably the most difficult to imagine. As an

example, normal distribution has the skewness

equal zero. Distribution with a positive

skewness has longer right tail and the mean is

placed off to the right side of the peak value.

On the other hand, distribution with a negative

skewness has longer left tail and the mean is

placed off to the left side. As we can see in

[10], data with skewed distribution can have

maximal values considerably different from the

mean.

The simplified view on the kurtosis can be

“how curvy the final function is”. While the

positive kurtosis indicates peaked data

distribution, the negative kurtosis can be a sign

of a flat data distribution.

3.4 Probability distribution issue

The so far collected and computed data may not

suffice, as there is a different approach to

determination of the threshold values with

regard to the particular probability distribution

that the data from an individual metric show.

The analyses of information in studies [3] and

[10] show that measured data of some software

metrics do not follow normal distribution.

Relatively often we can see that measured data

approach heavy-tailed distribution and are

right-skewed. Normal distribution data should

have the skewness and kurtosis around zero

[11]. If measured data shows skewness, the

distribution does not need to be spread in the

close range around the mean value [10]. In this

type of distribution, the frequency of high

values for random variable is very low whereas

frequency of low values is very high [3]. In

[10], we can find this information about right-

skewed data “This skewness in metrics data

affects the interpretation and usage of these

metrics in evaluating software quality. Such

metrics are not always well characterized by

their descriptive statistics such as mean,

standard deviation, minimum, maximum, and

quartiles“.

As far as we consider this argument, it is

necessary to primarily determine the

characteristic of measured data and continue to

analyze metric values with regard to the results.

Therefore, before determining the threshold

values, we first need to categories the metrics

according to their histograms and descriptive

statistics into two separate groups: the ones

showing heavy-tail probability distribution, and

the ones with the normal distribution.

With the heavy-tail distributed metrics the

approximation and determination of their actual

distribution seems appropriate. As described

before, the presence of heavy-tail distribution

can be observed from the descriptive statistics

and histograms but again some automated

software tool to help us approximate and

determine the actual type of probability

distribution should minimize the human error

factor, make the whole process more

manageable and confirm the observed

conclusions.

3.5 Data categorization

Finally, after the categorization of metrics

through their respective probability distribution,

we should have all the input data necessary for

the actual threshold value determination.

In [6], a range of typical values is used for

metrics evaluation. This range represents

typical values of particular metrics for which its

lower and upper boundaries and extreme values

are defined. For computation of typical values

and upper and lower boundaries the arithmetic

mean and deviation are used. If a measured

value of a metric is 50% higher than the highest

value of the interval between upper and lower

boundary then the value is evaluated as an

extreme value. This approach is suitable in the

case where the data have normal distribution.

Because data with normal distribution are

centralized around their mean values, we can

look at their values as determinative.

In [3], the technique of separating values into

three categories was used for assessing the

thresholds values of heavy-tailed data. The

ISBN:978-0-9891305-8-5 ©2014 SDIWC 72

categories are assigned the names of “good”,

“regular”, and “bad” and each category

represents particular range of values.

The “good” category represents range, which

contains the most frequent values. The values

with low frequency of occurrence, but which

are still considered as not being rare belongs to

the “regular” category. The “bad” category

contains values, the occurrences of which are

rare. This technique is appropriate for our

heavy-tailed data as well.

Applying the above mentioned process on

safety critical system will result in getting the

set of metric values of each class. By selecting

the classes, values of which cross threshold

values, we get set of classes fit for review.

3.6 Tools used

For our analysis, three tools were used. First,

the tool Understand C++ 3.1

(www.scitools.com) was used for measuring all

the metrics values for all the classes of the

studied system. We chose this tool mostly for

these reasons: the Understand C++ can measure

many software metrics and contains sufficiently

deep description about how metrics are counted

and also enables to compute all of measured

metrics of C++ source code.

Second, for simplification and it´s widely

usage, the Microsoft (MS) Excel 2003 was

chosen for computation of the descriptive

statistics and selection of classes for inspection.

Ultimately, the EasyFit tool

(www.mathwave.com) was used for the

analysis to fit the measured data to various

probability distributions. This tool was chosen

because of its simple usage and huge amount of

probability distributions it can evaluate.

3.7 Execution

Here we sum up the actual process of data

collection and analysis in the course of the

study execution.

The data from source code were gathered by

Understand C++. For any measured metric its

own MS Excel file with results was created.

After all metrics were measured, The MS Excel

functions for computing all the descriptive

statistics were used. For gaining better insight

on data representation, we created a histogram

for each measured metric. If descriptive

statistics and histograms evinced heavy-tail

data distribution, the EasyFit tool was used for

data distribution fitting. In the end, MS Excel

was used for selecting classes for review.

4 RESULT PRESENTATION AND

FURTHER ANALYSIS

As we can see in table 1 and table 2, all metrics

except RFC and LCOM have mean >= median

>= mode. This can be seen as a sign of the right

skewness in the data [10].

The peaked characteristic of data shows the

positive kurtosis in all the measured metrics.

Metrics CBO, NOC, NOM, SLOC1, SLOC2,

and v(g) have mean values notably smaller than

maximal value, which also shows the skewness

of data distribution. The kurtosis values for DIT

and LCOM are negative, so we can consider

DIT and LCOM as having a flat distribution.

Table 1. Measured descriptive statistics of CBO, DIT,

LCOM, NOC and NOM.

 CBO DIT LCOM NOC NOM

Arithmetic

mean

6,28 2,41 39,64 0,92 6,42

Median 5 2 41 0 4

Modus 2 1 0 0 3

Standard

deviation

6,16 1,43 31,57 8,22 6,8

Kurtosis 22,62 -0,71 -1,26 932,91 23,99

Skewness 3,14 0,21 0,08 28,62 3,96

Minimum 0 0 0 0 0

Maximum 82 6 100 274 75

ISBN:978-0-9891305-8-5 ©2014 SDIWC 73

Table 2. Measured descriptive statistics of RFC,

SLOC1, SLOC2, v(g).

In the given histograms the right skew of the

values of CBO, NOC, NOM, SLOC1, SLOC2,

and v(g) is noticeable as we can see high

concentration of values in the left side of the

histograms. The visual observation confirms the

results of descriptive statistics, where for the

given set of metrics mean >= median >= mode

and also relatively high values of the skewness

and the kurtosis exist.

Different results can be found in the data from

DIT, LCOM and RFC. The data from DIT do

not show any concentration of values on the

right side of the histogram. The shape of their

histograms and also the results from the

descriptive analysis evince the similarity with

normal distribution (negative skewness and low

values of kurtosis).

The LCOM data have a peak at zero; the rest of

the histogram corresponds with the normal data

distribution. The descriptive statistics suggest

the LCOM data to be flat and non-skewed (the

mean >= median >= mode does not hold here).

We can see high concentration of values around

the mean in the RFC histogram. The results

from the descriptive statistics show that the

RFC data have relatively low values of the

skewness and kurtosis. In the RFC data the

relation mean >= median >= mode is not valid.

For these reasons, we will not analyze the data

from these three metrics (DIT, LCOM and

RFC) in regard to the existence of heavy-tail.

The threshold values for these three metrics

will be established from the mean and the

standard deviation according to the method

used in [6].

4.1 Heavy-tail analysis

The existence of heavy-tail was analyzed for

the data from metrics CBO, NOC, NOM,

SLOC1, SLOC2, and v(g). To determine the

best probability distribution, we considered

results from the EasyFit tool and the visual

representation of the data probability functions.

In figures 2 – 7 we can see the results of fitting

function.

The data from the CBO metric can be

characterized by generalized Pareto

distribution. This data distribution belongs to

heavy-tail probability distributions [12].

Figure 2. CBO with generalized Pareto distribution.

Figure 3. NOC with Weibull distribution.

 RFC SLOC 1 SLOC 2 v(g)

Arithmetic

mean

33,85 14,92 94,74 2,9

Median 33 7 55 1

Modus 39 5 19 1

Standard

deviation

14,91 26,67 120,8 5,47

Kurtosis 3,19 116,13 20,37 94,53

Skewness 0,66 8,56 3,62 8,01

Minimum 0 1 3 1

Maximum 106 582 1361 103

ISBN:978-0-9891305-8-5 ©2014 SDIWC 74

Figure 4. NOM with generalized Pareto distribution.

Figure 5. SLOC1 with lognormal distribution.

Figure 6. SLOC2 with generalized Pareto distribution.

Figure 7. v(g) with exponential distribution.

This distribution also fitted data from NOM and

SLOC2 metrics. The Weibull distribution

characterized very well the data of the NOC

metric. The Weibull distribution also belongs to

heavy-tail probability distributions [3]. The data

from the SLOC1 metrics were well fitted by the

Lognormal distribution, while the data from the

v(g) metrics fitted the Exponential distribution.

Both of these distributions are considered to be

heavy-tailed [13].

From these results we can see that all the data

from the metrics CBO, NOC, NOM, SLOC1,

SLOC2, and v(g) can be approximated by

heavy-tailed distributions. According to [14], if

data are heavy-tailed, their mean is not

representative. Because of this, it is not

convenient to use mean for establishing the

threshold values. As a result, the thresholds

values for these metrics were assessed

according to the method used in [3] by

separating values to three categories.

4.2 Identifying thresholds values for metrics

with heavy-tail data distribution

We used the method form [3] for identifying

thresholds values from our data. We established

three categories for the metrics CBO, NOC,

NOM, SLOC1, SLOC2, and v(g) with the

names “good”, “regular” and “bad”. The values

for these categories were drawn from data and

histogram analysis.

The values of the CBO metric are most

frequently spread in the range 0 – 15. Almost

90% of all values were lower than 10. It is clear

to see from the plots that values between 16 and

25 were presented much less frequently, but

still with better probability then values higher

than 25. For the CBO metric the value ranges

for the categories were designated as: 0 – 15

good, 16 – 25 regular, 25+ bad.

The most frequent value in the NOC metric is

0. From the definition of the NOC metric, this

value represents classes with no children. There

are almost 95% of all classes without children.

Classes with 1 to 5 children occur much less

frequently, but we can still see their presence in

the plots. The probability of the occurrence of

the class with more than 5 children is very low.

For the NOC metric we assigned the three

categories as: 0 good, 1 – 5 regular, 6+ bad.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 75

The NOM metrics has the most values in the

range 0 – 10. Almost 90% of all the values are

positioned in this range. The values in the

interval 10 – 25 are presented with lower

frequency, but are still apparent in the plots.

The values higher than 25 can be considered as

rare. We designed the three categories

accordingly: 0 – 10 good, 11 – 25 regular, 26+

bad.

The values of the SLOC1 metric are most

frequent in the range 0 – 10. We can find

approximately 90% of all the values in this

interval. To the next category we can put the

values in the range 11 – 69. The values higher

than 69 can be find very seldom. We

established the three categories as 0 – 10 good,

11-69 regular, 70+ bad.

The SLOC2 values are most frequently spread

in the interval 1 – 200. The values can be found

in this range with almost 95% probability. The

values 201 – 400 are still evident in the data,

but not so often as data from the previous

category. The values over 400 are rare. The

three categories are therefore: 1 – 200 good,

201 – 400 regular, 401+ bad.

The most frequent value in the data from the

v(g) metric is 1 and probability of this value is

almost 70%. Almost 25% of all the values from

this metrics are in the range 2 – 15. The values

over 15 occur very seldom. For the v(g) metric

we established the three categories as: 1 good, 2

– 15 regular, 16+ bad.

4.3 Identifying thresholds values for metrics

without heavy-tail data distribution

The data from the metrics DIT, LCOM, and

RFC do not evince heavy-tail distribution. To

identify thresholds values for these metric we

used method showed in [6]. For each of these

metrics we used results from the descriptive

statistics – the mean and the standard deviation

– for calculating the threshold values. The first

threshold value corresponds with the mean and

represents the most typical value. The second

threshold value is calculated as a sum of the

mean and the standard deviation. This second

value represents high, but still acceptable set of

values. The third threshold value is calculated

as a multiplication of the second threshold

value by the coefficient 1.5 [6]. The third

threshold value is considered as an extreme and

should not be present in the data.

The typical value (mean) of the DIT metrics is

2, the second threshold value corresponds to 4

and extreme value is 6. The LCOM metric has

the typical value equal to 40, the high – but still

not extreme – value is determined as 72. We

calculated the extreme value of LCOM as 108.

For the RFC the typical value is 34, the high

value is 49 and the extreme value is considered

to be 74.

5 SYSTEM EVALUATION

As we mentioned in the beginning, the results

of static analysis can highlight potential bad

manners in code and can help people interested

in system maintaining to find possible threads

in code. The results of the system measuring

can show classes and pieces of code, which

should be put on a review.

After we found thresholds of our system, we

aimed at evaluating the source code in “the

light” of determined thresholds values. We used

MS Excel files with measured values and MS

Excel functions for identifying classes, which

should be reviewed, because they evince

abnormal values.

We aimed only at the category “bad”, because

classes with the worst evaluation could be the

most harmful for the system. For the CBO

metric, we identified 24 classes, which were in

the category over 25. The NOC metric showed

that 27 classes should be reviewed. Similarly,

the NOM metrics detected 25 classes for

review. Most classes for review showed the

SLOC2 metrics – 35. From the non-heavy

tailed metrics, the DIT identified 15 classes for

review, while RFC identified 24. The metrics

specialized in functions also detected possible

problems – the v(g) metric detected 187

functions while the SLOC1 metric showed 212

functions. All these classes and functions were

ISBN:978-0-9891305-8-5 ©2014 SDIWC 76

reported as possible thread and passed to the

persons responsible for system maintaining.

The calculated extreme value from the LCOM

metric is 108. However, as we can see in the

histogram of LCOM measured values, there is

no class with the LCOM metric higher than

100. This result is influenced by the special

shape of the data from LCOM metric. As we

can see in the histogram of LCOM, the data are

concentrated in the low values, but with higher

values, they start to have characteristic of

normal distributed data. Because of this

behavior, the extreme values were identified as

over the maximum value and there is no class

which would overstep this threshold.

6 CONCLUSION

The goal of this study was to determine the

threshold values for given metrics for safety

critical system. We have been analyzing values

of the CBO, DIT, LCOM, NOC, NOM, RFC,

SLOC1, SLOC2, and v(g) metrics. Data for

these metrics were collected with the use of the

Understand C++ tool.

Our analyzed system does not correspond by its

function and robustness to free and accessible

application. Because of this, we could not

compare our measured data with the data from

other published studies nor with the data

measured from any free-to-download software

from the internet. In addition, the data from

similar software are almost impossible to

gather. For all these reasons we did not use

statistical data from any other previous studies.

Therefore the first research question is

answered by our described approach only

partially for the specific instance of having only

one safety critical system and nothing to

comparing it with.

We analyzed the measured data for the

existence of heavy-tail and according to results

we categorized our data into two groups. The

first group contains metrics with potential

heavy-tail data distribution, the second without

it. With regard to the results from the

descriptive statistics and histograms, we

Table 3. Identified thresholds of measured metrics. The

good, regular and bad are valid for heavy-tailed data.

assigned the CBO, NOC, NOM, SLOC1,

SLOC2, and v(g) metrics to the first group,

leaving the DIT, LCOM, and RFC metrics to be

classified into the second group. For both

groups we establish the thresholds values. For

the first group we identified the threshold

values from the data and the plot characteristics

by using method from [3]. The threshold values

for the second group were determined from the

descriptive statistics with the method used in

[6]. The final results answering our second

research question are shown in the table 3. We

found that for each metrics there are no more

than 2% percent of all classes in need of a

review. This percentage seems to be relatively

small, although the severity of the problems in

identified classes will be the aim of the

following deeper study.

7 DISCUSSION

In this study, we were evaluating special type

of software system, which was written in C++

and does not correspond by its function and

responsibility to standard computer software.

For the threshold evaluation, the modern tools

and techniques were used.

We identified threshold values for our system

and then applied them to uncover possible

unsecure parts of the code. The thresholds

values of metrics detected in average 25 classes

 Heavy

tail

Good /

Typical

value

Regular

/ High

value

Bad /

Extreme

value

CBO yes 0 - 15 16 - 25 25+

DIT no 2 4 6

LCOM no 40 72 108

NOC yes 0 1 - 5 6+

NOM yes 0 - 10 11 - 25 26+

RFC no 34 49 74

SLOC 1 yes 0 - 10 11 - 69 70+

SLOC 2 yes 1 - 200 201 - 400 401+

v(g) yes 1 2 - 15 16+

ISBN:978-0-9891305-8-5 ©2014 SDIWC 77

and 200 functions, which should be reviewed.

We advised these classes to the person

responsible for system maintaining.

The threshold values for this type of system

have not been published yet and thus our results

can be used for comparison for any future

evaluation of analogous software. We evaluated

relatively decent amount of software metrics (9

metrics) and for the metric measuring, we used

software with precisely described computation

of these metrics.

Although we applied modern techniques to

threshold identification, our study still should

be viewed as evaluation of one software system

and our results should not be taken as a dogma.

Our techniques can be applied to another kind

of software for which it is hard to gather data,

but it is necessary to bear in mind, that the

thresholds represent only local data and for

general usage, the broader comparison should

be used. We present our data as a base for

possible future comparison with other studies

and we hope our results can bring more light

into the thresholds of safety critical software

metrics.

As a future endeavor, we would like to study

differences between metrics thresholds

measured in this study and data from a system

with at least some degree of similarity. We

would like to compare our results with

measurement of thresholds of open-source

operational systems (which appear to be the

most similar to our software).

ACKNOWLEGDEMENTS

The work was supported by the UWB grant

SGS-2013-029 Advanced Computer and

Information Systems.

REFERENCES

[1] S. Kaur, S. Singh and H. Kaur, “A Quantitative

Investigation Of Software Metrics Threshold Values
At Acceptable Risk Level,” International Journal of
Engineering Research & Technology, vol. 2, March
2013, www.ijert.org.

[2] T.L. Alves, C. Ypma and J. Visser, “Deriving metric
thresholds from benchmark data,” Software
Maintenance, 2010 IEEE International Conference,
vol. 1, pp.12-18, September 2010.

[3] K.A.M. Ferreira, M.A.S. Bigonha, R.S. Bigonha,
L.F.O. Mendes and H.C. Almeida, “Identifying
thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, pp.244-
257, February 2012.

[4] R. Lincke, J. Lundberg, and W. Löwe “Comparing
software metrics tools,” Proceedings of the 2008
International Symposium on Software Testing and
Analysis, pp.131-142, July 2008.

[5] S. Herbold, J. Grabowski, S. Waack, “Calculation
and optimization of thresholds for sets of software
metrics,” Empirical Software Engineering, vol. 16,
pp.812-841, December 2011.

[6] M. Lanza, R. Marinescu and S. Ducasse, Object-
Oriented Metrics in Practice. Springer-Verlag New
York, Inc., Secaucus, NJ, 2005.

[7] L.B.L. De Souza and M.D.A. Maia, “Do software
categories impact coupling metrics?,” Proceedings of
the 10th Working Conference on Mining Software
Repositories, pp.217-220, May 2013.

[8] N.G. Leveson, Safeware: System Safety and

Computers. ACM, New York, NY, USA, 1995.

[9] www.scitools.com/documentsmetricsList.php, cited

20.1.2014

[10] R. Shatnawi and Q. Althebyan, “An Empirical Study

of the Effect of Power Law Distribution on the
Interpretation of OO Metrics,” ISRN Software
Engineering, vol. 2013, 2013.

[11] T. Tamai and T. Nakatani, “Analysis of software

evolution processes using statistical distribution
Models,“ Proceedings of the International Workshop
on Principles of Software Evolution, pp.120-123,
May 2005.

[12] R.W. Katz, “Do Weather or Climate Variables and

Their Impacts Have Heavy-Tailed Distributions?”
Proceedings of 13th Symposium on Global Change
and Climate Variations (American Meteorological
Society), 2001.

[13] J.C. Gardiner, “Modeling heavy-tailed distributions

in healthcare utilization by parametric and Bayesian
methods,” Proceedings of SAS Global forum 2012,
paper 418, April 2012.

[14] P. Oliviera, H. Borges, M.T. Valente and H.A.X.

Costa, “Metrics-based Detection of Similar
Software,” International Conference on Software
Engineering and Knowledge Engineering, pp.447-
450, 2013.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 78

http://www.scitools.com/documentsmetricsList.php

