

Extracting IDS Rules from Honeypot Data: A Decision Tree Approach

Pedro Henrique Matheus da Costa Ferreira, Leandro Nunes de Castro

Natural Computing Laboratory, Graduate Program in Electrical Engineering

Mackenzie Presbyterian University, Brazil

Email: phmatheus@msn.com, lnunes@makenzie.br

ABSTRACT

This work uses data collected by honeypots to

create rules and signatures for intrusion detec-

tion systems. The rules are extracted from deci-

sion trees constructed based on the data of a real

honeypot installed on an internet connection

without any filter. The results of the experiments

showed that the extraction of rules for an intru-

sion detection system is possible using data min-

ing techniques, in particular the decision tree

algorithm. The technique proposed allows the

analyst to summarize the data into a tree, where

he/she can identify problems and extract rules to

help reducing or even mitigate the security prob-

lems pointed out by the honeypot.

 KEYWORDS

Honeypot, Intrusion Detection System,

Datamining, Decision Tree, Dionaea.

1 INTRODUCTION AND MOTIVATION

Over the past ten years there has been an expo-

nential increase of devices connected to the

Internet [1], which promoted the emergence of

a new and fertile ground for cyber criminals.

They see in the system failures, the lack of

technical training for network administrators

and lack of vision of the companies that infor-

mation security is a vital area for the health of

business [2] the perfect opportunity to take ad-

vantage exploiting these flaws.

One of the main difficulties of a network ad-

ministrator is to keep the network safe from

external attacks. According to [3] the attacks

reported by companies in the last two years are

divided as follows: 43% are of malicious code

injection attacks through SQL, other 19.95%

are attacks targeted only at companies or ser-

vices provided by companies (APT); Botnet’s

represent 18.81% and, finally, the denial of

service attacks (DoS) reached 18.24%.

Still according to this study, organizations face

an average of 66 weekly cyber attacks that

cause some sort of damage to business. Organi-

zations in Germany and the United States expe-

rience the highest average weekly attacks, 82

and 79, respectively. Brazil and Hong Kong

have the lowest average frequency, totaling 47

and 54 attacks per week, respectively.

This type of scenario brought to light some

studies, such as [4], which proposed the first

intrusion detection system and the work of [5],

which launched the first honeypot. The work in

[6] proposed the creation of virtual honeypots.

These works seek to create tools to assist the

protection of computing assets by detecting

intruders or creating traps to monitor malicious

activities.

This work proposes the application of a data

mining technique based on the C4.5 decision

tree algorithm to a dataset obtained from at-

tacks targeting a Dionaea honeypot. After the

application of the technique it was possible to

generate rules for the IDS. The method also

reduced the volume of data to be analyzed al-

lowing the network administrator to have an

analytical overview of the information cap-

tured.

This paper is organized as follows. Section 2

provides a brief review of honeypots and Dio-

naea. Section 3 presents a case study for the

Paris dataset, including database details, pre-

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 97

mailto:phmatheus@msn.com
mailto:lnunes@makenzie.br

processing, the application of the decision tree

and the extraction of classification rules from

the tree. The article concludes in Section 5 with

general discussions about the proposal and fu-

ture works.

2 HONEYPOTS AND THE DIONAEA

The first intrusion detection Model was de-

signed by [4] to analyze real-time data in order

to detect security breaches, invasions and other

forms of abuse of computer access. His model

was based on the assumption that security

breaches could be identified through the system

audit logs, making detection of anomalies in

usage patterns. Another design feature was the

fact that it is independent of a system vulnera-

bility or type of invasion. This model provided

a general-purpose framework for intrusion de-

tection systems.

Based on the assumptions used by Denning [4]

to audit logs the first honeypots were proposed.

The honeypot is a computer security system

dedicated to being probed, attacked or com-

promised [7]. The first available honeypot was

created in 1998 by Cohen in [5] and was de-

signed to simulate a system with vulnerabilities.

In the early 2000s the WORMS began to prolif-

erate, requiring the collection of these artifacts

for examination and the creation of vaccines for

antivirus systems. Having identified this need,

in [5] it was proposed to create virtual honey-

pots in which a single device can run multiple

honeypots. This work has promoted the crea-

tion of the Honeyd project [7], which emulates

in a single physical machine several different

operating systems and multiple hosts on a net-

work. In an attack the Honeyd tries to, passive-

ly, identify the remote host, collecting network

traffic and TCP/IP stack information. This sys-

tem has the capability to emulate all the TCP/IP

stack enabling sophisticated network analysis

tools such as nmap, to be deceived.

After the Provos [6] proposal, it began to

emerge several honeypots to emulate complex

operating systems, its network services and

specific services independent of an operating

system. With this new wave it became neces-

sary to classify the types of honeypot and,

therefore, it was proposed to classify them into

three categories: low, medium and high interac-

tion.

2.1 Low Interaction Honeypots

Characterized by emulated computer systems

through computer programs that contain the

minimum operation standards of the service to

be monitored [7]. This type of Honeypot rec-

ords the attack and their respective shellcode,

offering little information about the attack to

determine the cause or the mechanisms used in

the attack. The information collected allows the

administrator to identify whether your network

is being targeted by attacks and scans.

2.2 Medium Interaction Honeypots

These types of honeypots are in between the

high and the low interactivity ones. Its main

feature is to provide the virtualization of the

application layer where the operating system

environment and the communication protocols

are emulated in order to provide sufficient an-

swers to deceive the attacker and get the PAY-

LOAD [8].

One of the challenges of this system is its com-

plexity of development and the remote possibil-

ity of the attacker to gain access to the host sys-

tem, affecting all the equipment and the net-

work in which the system is. This paper will

address only the medium interaction honeypots,

specifically Dionaea.

2.3 High Interaction Honeypots

Characterized by real systems with known and

purposely not corrected failures. These are ex-

pected to be attacked and compromised [9]. In

the high-interaction honeypot it is possible for

the attacker to compromise and gain control of

the system to install software artifacts and

complete the malicious activity.

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 98

2.4 Dionaea

The Dionaea [10] was the honeypot chosen for

this work due to its storage and data organiza-

tion characteristics and its capability of captur-

ing malicious artifacts. The collected data can

be used to compare the techniques used in this

work with works from the literature and the

malicious artifacts captured will be used, along

with data collected, in the feature extraction

process.

The Dionaea is a honeypot of medium interac-

tivity aimed at replacing its precursor, the Ne-

pentes [7]. The great contributions that Dionaea

brought to Nepentes were the separation of the

core of the system developed in C ++, the in-

clusion of support for Python [11] as scripting

language, the use of the libemu library to shell-

codes detection and the native support for IPv6

[12] and TLS [13].

The Python programming language is used to

develop the vulnerabilities and supported mod-

ules, together with the storage and transmission

functions of the information collected. This

inclusion brought some indirect benefits to the

honeypot, as the possibility of including other

types of services not initially planned, for in-

stance, the vulnerabilities in Microsoft SQL

Server database [14] and Session Initiation Pro-

tocol [15], which is used for controlling multi-

media communications sessions, among others.

Dionaea was one of the first honeypots to add

support for IPv6 protocol, allowing the analysis

of the vulnerabilities that are being exploited in

this new communication protocol that will re-

place IPv4.

3 CASE STUDY: THE PARIS DATASET

Companies are reluctant to release databases

with their honeypots data because they contain

sensitive information about the structure of

their network and the attacks they are facing. In

addition to revealing the addresses of their

honeypots, it also reveals its configuration. For

this reason the creators of Dionaea released a

set of data so that the researchers could study

the data collected without the need to install a

honeypot. Thus, the data set chosen for the ex-

periments reported here is the Paris data set

[16].

3.1 Dataset Structure

The information collected by the Honeypot is

stored in a SQLite database. SQLite provides a

software library that implements an autono-

mous transactional database service, without

the need of servers or setup, as it does not re-

quire separate servers or processes. The library

reads and writes information directly into the

disk [17].

The entity relationship model and the Honeypot

database can be viewed in Figure 1 and is di-

vided into five areas:

 A central table where there are the primary

information of the attack (connections ta-

ble). This table stores information such as

the IP address of the attacker, the IP address

of the Honeypot, local and remote ports,

time of the attack, connection types, proto-

col types, etc .;

 On the left there are three other tables that

are used to store the information of the at-

tacks against the Microsoft SQL Server ser-

vice (MSSQL) (tables mssql_commands,

mssql_fingerprints and logins). The infor-

mation stored in these tables consist of

commands sent to the honeypot to compro-

mise the service, users and passwords in

brute force attacks, and information about

the attackers, such as version connection li-

brary, customer signatures, etc .;

 To the right there are four tables that refer

to Honeypot firewall logs (p0fs), the resolu-

tion of attackers names (resolves) and ser-

vices emulated by Honeypot (emu_profiles

and emu_services). The latter contains the

information about the codes used to cir-

cumvent the security of the application and

send commands so that the Honeypot per-

forms actions aimed at compromising their

security and integrity;

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 99

Figure 1: The honeypot database diagram.

 At the bottom there are two sets of interre-

lated tables. The first one refers to the col-

lection of malicious artifacts, which stores

information about where are these files and

their MD5 hash (table downloads). This ta-

ble is linked to two other VirusTotal and vi-

rustotalscans tables, which are used to store

the information obtained by the VirusTotal

tool. The second set relates to the offers ta-

ble that stores the information concerning

the provision of malicious artifacts to the

Honeypot. Often it is not possible to obtain

the malicious artifact because where it was

stored is no longer infected or it is off at the

offer time;

 At the top there are the set of tables that

refer to the Distributed Computing Envi-

ronment (DCE) and Remote Procedure

Calls (RPC) of the communication protocol

of the systems based on the Service Mes-

sage Block (SMB) (dcerpcservices tables,

dcerpcrequests, dcerpcserviceops,

dcerpcbinds).

The database has a total of seventy eight attrib-

utes divided into sixteen tables, and only forty-

two useful attributes, because sixteen of them

are connection attributes and relationships be-

tween the tables, and sixteen others are sequen-

tial indices of the attributes contained in the

object table. The forty-two possible attributes to

be analyzed are divided into two groups, thirty-

seven nominal attributes and nine numeric

ones.

The database is divided into five sets that store

different information about the attacks that tar-

get specific services. This paper addresses three

of the five sets of information that are defined

by tables: connections; dcerpcbinds;

dcerpcserviceops; dcerpcservices; downloads;

and Offers.

The set of tables was chosen because it repre-

sents attacks on devices with the Microsoft

Windows operating system. This type of attack

is more than 90% of the attacks recorded by the

Honeypot, as will be seen below.

3.2 Descriptive Statistics

The Paris database has the following character-

istics (Table 1):

 Number of attacks: 7,822,148 recorded in

the connections table. After joining with ta-

bles dcerpcbinds, dcerpcservices,

dcerpcserviceops, downloads, and offers the

number of objects sum up to 19,755,323.

This is due to the attacks that use a single

connection to explore more than one vul-

nerability, allowing a record in the connec-

tions table to have more than one record in

the other tables.

 Collection Period: between 30/11/2009 and

07/12/2009 day.

 Number of attributes: 15, 2 numeric attrib-

utes, one attribute of type Date, 1 attribute

of type Hour, and 11 nominal attributes.

 Additional information: the attributes are

not standardized and those who have ob-

jects with missing values were filled with

the word EMPTY.

Data were integrated eliminating index and

interconnection attributes between the tables.

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 100

This dataset will be used to obtain the rules of

the intrusion detection system (IDS).

A descriptive analysis of the resulting data set

was performed, identifying that 93.99% of the

attacks were directed towards the SMDB ser-

vice on port 445 (see Table 2). This analysis

showed, for example, that the attribute

dcerpcbind_uuid presented 95 different classes,

being the class 4b324fc8-1670-01d3-1278-

5a47bf6ee188 the most frequent one with a

percentage of 60.71%. The second most fre-

quent class was the EMPTY one, with a fre-

quency of 27.93%; the other classes had a fre-

quency equal to or less than 0.37%. This class

is the DCERPC interface used to connect to the

honeypot and it is extremely important to the

creation of the IDS rules.

Table 1: Attribute characteristics and descriptions.

Nº Attribute Type Description

1 Connection Integer Table Connections Index

2 Connection_Transport Nominal Transport Kind (TCP, UDP, TLS)

3 Connection_Protocol Nominal Connection Protocol

4 Local_Port Integer Honeypot local port (de 0 a 65535)

5 Remote_Host Nominal Attacker IP Address

6 DceRpcBind_UUID Nominal RPC Bind Interface

7 DceRpcBind_TransferSyntax Nominal RPC Bind Interface Transfer Syntax

8 DceRpcService_Name Nominal RPC Accessed Service Name

9 DceRpcServiceop_name Nominal RPC Operation Service Name

10 DceRpcServiceop_Vuln Nominal Microsoft Security Report Name

11 Download_URL Nominal Download URL

12 Download_MD5_Hash Nominal MD5 Hash from downloaded binary

13 Offer_URL Nominal Attackers Offer URL

14 Connection_Date Date Date of Attack in format YYYY-MM-DD retrieved from TimeStamp

15 Connection_Time Time Time of Attack in format HH:MM:SS retrieved from TimeStamp

Table 2: (a) Protocols Frequency Distribution of Attacks Against Honeypot. (b) Frequency Distribution of Protocols Type.

Connec-

tion_Protocol Quantity

Relative Fre-

quency (%)

smbd 18567380 93,99

httpd 877879 4,44

epmapper 186660 0,94

TftpClient 86686 0,44

TftpServerHandler 24139 0,12

emulation 9126 0,05

ftpd 1396 0,01

remoteshell 1255 0,01

ftpctrl 436 0,00

ftpdata 366 0,00

Total 19755323 100,00

(a) (b)

The analysis gave rise to several interesting

facts about the data set. For example, when

analyzing the attribute dcerpcserviceop_name it

can be observed that vulnerabilities were ex-

ploited in three DCERPC services with an iden-

tical frequency of 22.57%, which together rep-

resent 67.71% of the data set: NetPathCanoni-

calize, NetPathCompare and NetShareEnum.

The rest is divided into five classes: EMPTY

with 31.99%, which is related to attacks that

1

10

100

1000

10000

100000

1000000

10000000

100000000

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 101

had not explored DCERPC services and there-

fore are with EMPTY value; class RemoteCre-

ateInstance with 0.23%; class RemoteActiva-

tion with 0.06%; DsRo-

lerUpgradeDownlevelServer class with 0.01%;

and NetAddAlternateComputerName class with

0%.

Along with these data it could be observed that

45.14% of the exploited vulnerabilities refer to

the Microsoft Security Bulletin MS08-67, in

which it is informed that the vulnerability could

allow remote code execution on the server. An-

other vulnerability pointed out by the analysis

is provided by the Microsoft Security Bulletin

MS04-12 with frequency of 0.23%, followed by

the MS03-26 security bulletin with 0.06% and,

finally, the bulletin MS04-11 security with

0.01% frequency.

It is noteworthy that the honeypot was not able

to relate 22.57% of the attacks reported to a

known security bulletin. This can occur because

the honeypot is not targeted at the vulnerabili-

ties captured because they are new vulnerabili-

ties or variations of vulnerabilities documented

in Microsoft security bulletins. These records

have been named as Not_Identified. The rest of

the analyzed objects (31.99%) did not explore a

DCERPC failure and, thus, have been identified

by the EMPTY class.

After the descriptive analysis it was found that

the attacks on the honeypot were directed to

Windows services and, therefore, IDS rules

were designed to identify attacks on equipment

with Microsoft OS.

3.3 IDS based on Decision Trees

The use of Decision Trees (DT) as a model to

classify malicious activity is interesting because

of both their classification performance and the

possibility to extract rules that identify each

type of attack. Moreover, once generated the

decision tree it can be used to identify anoma-

lous malicious activity [18].

According Markey [18] decision trees are tech-

niques that help in the analysis of large sets of

data for intrusion detection, being able to an-

swer questions like, "What rules should be used

to distinguish malicious traffic from legitimate

one?" or "What are the most common features

of a scanning activity when compared to other

data traffic?". In the experiments performed in

this paper, it was chosen the software

RapidMiner to implement the DT [19]. To

evaluate the selected attributes and the decision

tree it was defined the

DceRPCServiceop_Name as the class attribute,

because Microsoft releases the Remote Proce-

dure Call Protocol Extension [20], which indi-

cates which calls and which subscriptions lead

to remote procedures (attribute

DceRPCService_name).

A k-fold cross validation, with k = 10, was used

to estimate the classification performance of

decision trees. The first difficulty to run the

algorithm was the number of existing objects in

the database (nearly 20 million). Even running

experiments on a computer with 32GB RAM

and 128Gb swap, the machine could not handle

all the data. Given this difficulty, it was decided

to sample the data based on time periods. For

the Paris data, the honeypot was active for a

period of 8 days and, therefore, it were created

8 data subsets sampled from the total set, each

subset relating to one day of collection. For

each subset a decision tree was generated.

When analyzing the trees it was noted that three

different ones were created, which can be seen

in Figure 2.

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 102

(a)

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 103

(b)

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 104

(c)

Figure 2: Decision Tree Generated From Paris Dataset. (a) Subset 1. (b) Subset 2, 4, 5, 6, 7 e 8. (c) Subset 3.

3.3.1 Extracting Rules from the Decision

Trees

To analyze the decision trees one must follow

the path between the root and the leaf nodes.

Each path between the root and a leaf generates

one decision rule. For the tree of Figure 2(a)

starting from dcerpcserviceop_vuln attribute

with value MS04-11, the connection_protocol

attribute is SMBD, connection_transport is

TCP, dcerpcbind_uuid is Not_Identified and the

dcerpcbind_transfersyntax attribute splits in

two, with Not_Identified and 8a885d04-1ceb-

11c9-9fe8-08002b104860 values. If we follow

the left side of the leaf, the value is NetAd-

dAlternateComputerName. This rule can be

interpreted as follows: a connection that ex-

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 105

ploits the vulnerability described in the MS04-

11 report used the SMBD protocol on a TCP

connection and has not had a DCERPC inter-

face identified neither a transfer syntax, trying

to run a call to add an alternative computer

name. The resulting rule the right hand side can

be interpreted as: a connection that exploits the

vulnerability described in the MS04-11 report

used the SMBD protocol on a TCP connection,

has not had a DCERPC interface identified, the

identified transfer syntax was 8a885d04-1ceb-

11c9 -9fe8-08002b104860, trying to run a call

to change a permission of a domain server. In

both cases the Microsoft report says that it is a

Buffer Overflow vulnerability, allowing the

remote execution of arbitrary commands.

The right hand side branches lead to the exploi-

tation of the vulnerabilities described in MS08-

67 and can be interpreted as follows: an attack-

er exploiting the vulnerabilities described in

MS08-67 used the SMBD protocol on a TCP

connection to a DCERPC interface 4b324fc8-

1670- 01d3-1278-5a47bf6ee188 and a transfer

syntax 8a885d04-1ceb-11c9-9fe8-

08002b104860 using the SRVSVC service at-

tempted to run the NetPathCanonicalize to con-

vert a path into a canonical name.

3.3.2 Quantitative Analysis

Each of the decision trees generated for each of

the eight data subsets was evaluated using a k-

fold cross validation method, with k = 10. The

percentage accuracy was calculated for each

subset, together with the false positive rate

(FPR) and the false negative rate (FNR). The

values in Table 3 are the average of k-fold for

the test set. The results of each subset showed

average accuracy values around 75%, average

FPR around 3% and average FNR around 14%.

Only one set had a lower result with an accura-

cy of 45%, FPR = 9.74% and FNR = 71.42%.

Table 3: Decision Tree Performance For Each Subset.

Subset 1 2 3 4 5 6 7 8

Accuracy (%) 77.53 76.72 45.42 77.73 77.75 77.56 78.15 75.31

False Positive Rate (FPR) 0,0281 0,0385 0,0974 0,0318 0,0317 0,0320 0,0312 0,0472

False Negative Rate (FNR) 0,3750 0,1428 0,7142 0,1428 0,1428 0,1428 0,1428 0,1666

Table 4: Decision Tree Performance Average From Subsets in Table 3.

Average Median Standard Deviation C. of Variation

Accuracy (%) 73,27 77,55 11,29 0,15

FPR 0,0422 0,0319 0,0215 0,5110

FNR 0,2462 0,1428 0,1921 0,7804

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 106

Table 5: Confusion Matrix of Subset 3 from Paris Dataset.

N
et

S
h

a
re

E
n

u
m

A
ll

N
et

P
a

th
C

a
n

o
n

ic
a

li
ze

N
et

C
o

m
p

a
re

E
M

P
T

Y

R
em

o
te

C
re

a
te

In
st

a
n

ce

R
em

o
te

A
ct

iv
a

ti
o

n

N
et

A
d

d
A

lt
er

n
a

te
C

o
m

-

p
u

te
rN

a
m

e

NetShareEnumAll: 607351 0 0 844406 6046 2027 4

NetPathCanonicalize: 0 485880 485881 0 0 0 0

NetCompare: 0 121471 121470 0 0 0 0

EMPTY: 0 0 0 0 0 0 0

RemoteCreateInstance: 0 0 0 0 0 0 0

RemoteActivation: 0 0 0 0 0 0 0

NetAddAlternateComputerName: 0 0 0 0 0 0 0

Table 6: Class Analysis of Subset 3 from Paris Dataset.

dcerpcserviceop_name Quantity Relative Frequency

NetAddAlternateComputerName 4 0,00015

RemoteActivation 2027 0,07579

RemoteCreateInstance 6046 0,22606

NetCompare 607351 22,70865

NetPathCanonicalize 607351 22,70865

NetShareEnumAll 607351 22,70865

Empty 844406 31,57206

Total 2674536 100,00000

The analysis of the results shows that subset 3

had the worst performance. To understand this,

the Confusion Matrix was evaluated. Table 5

shows that there was a great confusion among

the classes and some were not mapped by the

decision tree rules. For instance, the classes

EMPTY, Remote-CreateInstance, RemoteActi-

vation and NetAddAl-ternateComputerName

were not covered by the rules.

Besides the confusion matrix, the distribution

of the objects in subset 3 was investigated, as

shown in Table 6. It can be seen that: 1) the

Net-Compare, NetPathCanonicalize and Net-

ShareE-numAll classes have the same number

of objects; 2) the model was not able to proper-

ly separate the objects in their classes; and 3)

when individually analyzing the objects of each

class it is found that they have similar charac-

teristics in different classes, which makes it

impossible to suitably separate them.

Despite the poor performance for subset 3, in-

teresting features of the attacks reported can be

observed. When browsing the tree nodes it can

be seen that the algorithm was able to identify

that the attacks to the SMBD protocol occurred

in non-standard ports (ports> 290 and 290).

This feature raises the hypothesis that the at-

tackers were seeking to compromise other sys-

tems or a system configured not to use the de-

fault SMB service doors. This may indicate that

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 107

the attackers have a knowledge of the network

structure in which the honeypot was installed.

3.4 Building IDS Rules Using the Deci-

sion Trees

There are many intrusion detection systems on

the market and each has specific characteristics

for the generation of custom rules. This work

presents, as an example, the gereration of a rule

for the Snort intrusion detection system. This

system was chosen because it has a module

capable of processing DCERPC information,

which is the main information obtained from

the set of honeypot data. Despite that, the trees

presented here can be used to generate rules for

other systems, such as firewalls or IPS.

To obtain the rule it will be used the tree shown

in Figure 3. Vulnerability Exploited

(dcerpcserviceop_vul attribute): MS08-67, Pro-

tocol used: SMBD, DCERPC Interface

(dcerpcbind_uuid attribute): 4b324fc8-1670-

01d3-1278-5a47bf6ee188, Sin-tax transfer:

(Attribute dcerpcbind_transfersyntax):

8a885d04-1ceb-11c9-9fe8-08002b104860, Ser-

vice Used (Attribute dcerpcservice_name):

SRVSVC, and Not_Identified. Service call

used: (dcerpcserviceop_name attribute)

NetPathCanonicalize.

The rule generated has the following infor-

mation obtained from the decision tree:

alert tcp -> The SMBD protocol Works with

the TCP protocol

[135,139,445,593,1024:] -> SMBD Ports

(msg:" MS08-67 Vulnerability Attack") ->

Message that will be logged in the IDS, this

message is based on the vulnerability identifyed

by the honeypot.

dce_iface: 4b324fc8-1670-01d3-1278-

5a47bf6ee188 - > Interface DCERPC used in

the attack, obtained from dcerpcbind_uuid at-

tribute.

alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593,1024:] \

(msg:"MS08-67 Vulnerability Attack"; flow:established,to_server; \

dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6ee188; dce_opnum:0-11; dce_stub_data; \

byte_jump:4,-,relative,align,dce;byte_test:4,>,256,4,relative,dce; reference:\

bugtraq,20081026;reference: CVE,2008-4250; classtype:attempted-admin; sid:1000068;)
Rule 1: Generated Snort IDS Sample Rule.

dce_opnum: 0-11 -> Number of DCERPC Call,

this information can be obtained after a re-

search about the DCERPC bind interface, and

the DCERPC transfer syntax, the service at-

tacked and the procedure call used. The search

is necessary due the information required are

unique of each interface and transfer syntax.

Each service call has received an operation

number (opnum).

reference:bugtraq,20081026; -> IDS logged

information that reference the MS08-67 vulner-

ability on BugTraq system.

reference: CVE,2008-4250; - > IDS logged

information that references MS08-67 vulnera-

bility on CVE system.

The others parameters are default, and must be

changed when need.

4 Discussion and Future Work

Honeypots generate vasts amounts of infor-

mation, making it difficult to quickly analyze

the data. Thus, the application of data mining

techniques becomes necessary to extract

knowledge that can assist the network adminis-

trators to protect their assets. The application of

the decision tree algorithm was efficient for the

generation of intrusion detection rules, since the

data is reduced allowing an analytic under-

standing of the attacks recorded by the honey-

pot.

The decision trees generated allowed a fast and

clear identification of important features for the

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 108

creation of intrusion detection rules. In addi-

tion, they analytically represent a data set with

almost 20 million objects in just 3 different

trees, facilitating the analysis.

Besides the possibility of generating intrusion

detection rules, the trees show clearly the attack

profiles that the honeypot cannot handle, allow-

ing the administrator to identify and protect

against these attacks by changing other subsys-

tems of the network.

There are many other data mining techniques

that can be employed to obtain IDS rules, and

to assess the network health as a whole. A pos-

sible extension of this work is to create an ap-

plication to obtain rules automatically, as well

as the testing and validation of these rules at

any IDS tool.

REFERENCES

[1] Cisco System. Cisco Visual Networking Index:

Global Mobile Data Traffic Forecast Update.

[Online] Feb. 2013. [Last view: 2014-11-20.]

http://www.cisco.com/en/US/solutions/collateral

/ns341/ns525/ns537/ns705/ns827/white_paper_c

11-520862.html.

[2] Kaspersky Lab. Informe de Kaspersky Lab:

Evaluacion del nivel de amenaza de las

vulnerabilidades en programas. Viruslist.com.

[Online] Feb. 2013. [Last view: 2014-11-20.]

http://www.viruslist.com/sp/analysis?pubid=207

271202.

[3] Ponemon Institute. The Impact of Cybercrime

on Business: Studies of IT practitioners in the

United States, United Kingdom, Germany,.

Ponemon. [Online] May 2012. [Last view:

2014-11-20.]

http://www.ponemon.org/local/upload/file/Impa

ct_of_Cybercrime_on_Business_FINAL.pdf.

[4] Denning, D.E. An Intrusion-Detection Model.

2s.l. : IEEE, Feb. 1987, IEEE Transactions on

Software Engineering, Vols. SE-13, pp. 222-

232. ISSN: 0098-5589 DOI:

10.1109/TSE.1987.232894.

[5] Cohen, Fred. The Deception ToolKit. Risks

Digest. 19, March 1998.

[6] Provos, Niels. A Virtual Honeypot Framework.

s.l. : USENIX Security Symposium, 2004.

[7] Provos, Niels e Holz, Thorsten. Virtual

Honeypots: From Botnet Tracking to Intrusion

Detection. [ed.] Addison-Wesley. s.l. : Pearson

Education, Inc., 2007. p. 440. Vol. 1.

[8] Wicherski, Georg. Medium interaction

honeypots. German Honeynet Project. 2006.

[9] The Honeynet Project. Know Your Enemy:

Learning About Security Threats - The

Honeynet Project. Second. s.l. : Pearson

Education, Inc, 2004.

[10] Dionaea Catch Bugs. Dionaea Catch Bugs.

[Online] April 2013. [Last view: 2014-11-20.]

http://dionaea.carnivore.it/.

[11] Van Rossum, Guido. Python Programming

Language. s.l. : USENIX, 2007. USENIX

Annual Technical Conference.

[12] Deering, Stephen E. Internet protocol, version 6

(IPv6) specification. Request for Comments.

[Online] IETF.org, 1998. [Last view: 2014-11-

20.] https://tools.ietf.org/html/rfc2460.

[13] Dierks, Tim. The transport layer security (TLS)

protocol version 1.2. Request For Comments.

[Online] IETF.org, 2008. [Last view: 2014-11-

20.] https://tools.ietf.org/html/rfc5246.

[14] Buffington, Jason. Microsoft SQL Server. Data

Protection for Virtual Data Centers. s.l. : Wiley

Publishing, Inc., 2010, pp. 267-315.

[15] Rosenberg, Jonathan, Henning Schulzrinne,

Gonzalo Camarillo, Alan Johnston, Jon

Peterson, Robert Sparks, Mark Handley, and

Eve Schooler. SIP: session initiation protocol.

Vol. 23. RFC 3261, Internet Engineering Task

Force, 2002. [Last view: 2014-11-20.]

http://www.hjp.at/doc/rfc/rfc3261.html.

[16] Post it yourself. Carnivore News. [Online] 08 de

12 de 2009. [Last view: 2014-11-20.]

http://carnivore.it/2009/12/08/post_it_yourself.

[17] Hipp, D. Richard, and D. Kennedy. SQLite.

SQLite. may de 2007.

[18] Markey, Jeff e Atlasis, Dr. Antonios. SANS

Intitute Infosec Reading Room. SANS Institute

Reading Room. [Online] 2011-06-05. [Last

view: 2014-11-20.]http://www.sans.org/reading-

room/whitepapers/detection/decision-tree-

analysis-intrusion-detection-how-to-guide-

33678.

[19] Mierswa, I., Wurst, M., Klinkenberg, R.,

Scholz, M., & Euler, T. (2006, August). Yale:

Rapid prototyping for complex data mining

tasks. In Proceedings of the 12th ACM

SIGKDD international conference on

Knowledge discovery and data mining (pp. 935-

940). ACM. DOI: http://doi.acm.org/10.1145/

1150402.1150531.

[20] Microsoft Corporation. [MS-RPCE]: Remote

Procedure Call Protocol Extensions. Microsoft

Developer Network. [Online] Microsoft

Corporation, January 2013. [Last view: 2014-

11-20.] http://msdn.microsoft.com/en-

us/library/cc243560.aspx.

The Proceedings of the International Conference in Information Security and Digital Forensics, Thessaloniki, Greece, 2014

ISBN: 978-1-941968-03-1 ©2014 SDIWC 109

