

Web-based Learning Support System
for Recursive Decent Parsing using Haste

Kenta Ohashi and Koji Kagawa
Kagawa University

2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, JAPAN
kagawa@eng.kagawa-u.ac.jp

ABSTRACT

The Recursive descent parsing is covered in the
latter half of the “Compiler" class of our depart-
ment. It is difficult for beginners to understand
this topic in a short period because there are mul-
tiple processes for them to learn. This paper pro-
poses a Web-based learning support system for
recursive descent parsing using Haste. Haste is a
compiler that converts Haskell to JavaScript.
Haskell is a functional programming language
which is good at symbolic processing. The im-
plemented system is Web-based and therefore it is
easy for teachers to customize the user interface.
It returns the calculation result of each step of re-
cursive descent parsing to the BNF given by
learners. The number of accesses and input data
were collected and analyzed by Google Analytics.

KEYWORDS

Recursive Descent Parsing, Web, Haskell, Haste

1 INTRODUCTION

In recursive descent parsing, there is a lot of
processes to be learned such as elimination of
left recursions, calculation of the First and the
Follow sets, creation of a parsing table and
finally creation of a parser program. There-
fore, it takes a considerable time to learn for
the first time. However, in the compiler class,
the time for the exercises is often not suffi-
cient enough. In addition, it may be necessary
to install software packages on the client
computer and configure them such as setting
up the path. These things are troublesome for
the first learner, and there is a fear that this
will decrease motivation for learning. On the
other hand, it would be easy to install if the
learner can use a Web-based system. It is also
easy to update from the teacher side, and eve-

ry user can use the latest version without ex-
plicit action for updating. Therefore, in this
research, we will develop a Web-based learn-
ing support system for recursive descent pars-
ing.
There are some existing systems for support-
ing learning parsing such as JFLAP [1],
VCOCO [2] and ParseIT [3]. JFLAP is a
graphical tool used when learning basic con-
cepts of automata and formal languages.
However, in general, learners cannot intui-
tively use it without reading the instruction
manual. Furthermore, because the JFLAP it-
self and the Web page of its instruction man-
ual are in English only, it is difficult for Japa-
nese learners to understand the contents. In
order to solve these problems, our research
group has once developed a Web-based learn-
ing support system for automata where we
extracted functions from JFLAP and imple-
mented the user interface with Java Applets.
However, Java Applets are no longer availa-
ble as a Web browser plug-in. We were plan-
ning to use HTML and JavaScript for the user
interface and Java Servlets for the interface
with JFLAP. However, JFLAP is difficult to
modify in such a way because such separation
of user interface is not intended in its design.
Therefore, we will develop a new system in-
dependent of JFLAP.

The system requires a lot of symbolic pro-
cessing. Symbolic processing programs can
be easier to write using functional program-
ming languages such as Haskell than JavaS-
cript. However, programs created by Haskell
cannot be executed directly on Web browsers.
Therefore, we use Haste [4, 5], which com-
piles Haskell programs into JavaScript codes.
On the other hand, the implementation lan-
guage of VCOCO [2] and ParseIT are not

ISBN: 978-1-941968-52-9 ©2018 SDIWC 20

Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018

clearly stated in their papers. To use these
systems, learners have to use a stand-alone
GUI application or a console application. It
seems also possible to run them as server-side
Web applications.

The structure of this paper is organized as
follows. First, we will explain the Haste brief-
ly in Section 2. Then, Section 3 will explain
the internal structure of the system. Section 4
summarizes the result and Section 5 will dis-
cuss future directions.

2 HASTE

Haste is one of altJS languages and is a com-
piler that converts Haskell code into JavaS-
cript code. AltJS is a generic term referring to
languages that represent alternative to JavaS-
cript such as CoffeeScript and TypeScript.
AltJS often generates JavaScript code by
compiling. Among altJS for Haskell, Haste
can use the Haskell code without modification
and has an advantage that compilation is fast
enough. This makes it possible for us to use
programs written in Haskell for Web systems.

3 OVERVIEW OF THE SYSTEM

Figure 1 shows the structure of the system. In
this system, we use Haskell for implementing
the computational part of recursive descent
parsing.

Figure 1. System Structure

Table 1 shows the types used in the computa-
tion part, where Symbol is a data type with
two types of symbols for non-terminals and

terminals. F_rhs is a type that has First and
Follow symbols, rule numbers, and produc-
tion rules in records. Table 2 shows functions
that are used from the Web pages. After im-
plementing these functions, we implemented
I/O for HTML. The type of BNF received
from HTML is [[String]]. We cannot
call the function elim directly. Therefore we
have implemented a function to convert in-
puts to the BNF type. In addition, if the return
type of each function is not a String, it
cannot be displayed in HTML directly. There-
fore, we implemented functions to convert
types BNF, FIRST, FOLLOW, and TABLE to
the String type.

Table 1. Type Declarations

Name Definition
RHS [Symbol]
BNF [(String,[RHS])]
FIRST [(String,[F_rhs])]
FOLLOW [(String,[F_rhs])]
TABLE [(String,[(String,[Symbol])

])]

Table 2. Core Functions

Name Type Remark
elem BNF -> BNF
first BNF -> FIRST
follow BNF -> FOLLOW
table BNF -> TABLE
prog TABLE -> String

The input window of the system is shown in
Figure 2. The addition and deletion of the in-
put form is implemented by jQuery.

ISBN: 978-1-941968-52-9 ©2018 SDIWC 21

Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018

Figure 2. Startup Screen

We can add and delete a nonterminal sym-
bol to the lower side with the button on the
upper side of the form and we can add and
delete a production rule with the button on the
left side of the form. By clicking the button
written as samples learners can enter one of
the samples that teachers prepared in advance.
Figure 3 shows the screen after clicking the
sample button. The contents of the sample
BNF are contained in the array, and therefore
they can be changed simply by changing the
contents of the array. The tutorial button is
implemented using intro.js (http://
introjs.com/). Clicking it will play the
tutorial. By clicking the delete-all button, it is
possible to return to the initial state of Figure
2. By typing in the form at the bottom left
learners can use multi-character terminal
symbols. When input is finished and the cre-
ate button on the upper left is clicked, calcula-
tion is performed and the result is displayed.

Figure 3. Input Tab

The tab with the parser table displays the
result of the removal of left recursion, the
First and the Follow set, and the parser table
as shown in Figure 4. On the tab labeled Pro-
gram, the parser program in the C language is
displayed.

Figure 4. Table Tab

In addition, each time the step button on the

right side of the create button is clicked once,
calculations are carried out so as to advance
the flowchart shown in Figure 5 one by one
and the result of the step is displayed.

Start

Elimination of left
recursions

One step calculation of
the First Set

Is the First
set changed?

yes

One step calculation of
the Follow Set

no

Is the Follow
set changed?

yes

Creation of the parse table
and the parser program

End

no

Figure 5. Flowchart of the step button

When learners move the mouse cursor onto

the display part of the First and Follow set,
the system shows by which rule it is added to
the set using balloon.js (https://
kazzkiq.github.io/balloon.css/).

ISBN: 978-1-941968-52-9 ©2018 SDIWC 22

Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018

The First set is calculated as follows.
1. If X is a terminal symbol, let First(X) = X.
2. If there is a production rule A → ε, add ε

to First(A).
3. If there is a production rule A → B1 B2 ...

Bn and for all k that k < n, and B1, B2, ..., and
Bk can be ε, then add First(Bk+1) other than ε
to First(A). Furthermore, if all B1, B2, ..., and
Bn contain ε, add ε to First(A).

And the Follow set is calculated as follows.
1. For the start symbol S, add $ to Fol-

low(S). This means reading the symbol
$ which indicates the end of the input after
finishing the analysis of S.

2. If there is a production rule of A → α B β,
add all the symbols of First(β) except ε to
Follow(B).

3. If there is a production rule of A → α B β,
and if First(β) contains ε, or if there is a rule
A → α B, add all the symbols contained in
Follow(A) to Follow(B).

4 EVALUATION

In February 2017 before we introduce the step
button and the terminal symbol of multiple
characters, we asked three undergraduate the
impression of the system. As a result, the fol-
lowing opinions came up.
·Since there are tutorials and several sam-

ples, it is easy to understand the system.
·It is pleasant to create programs by just

entering production rules.
Based on these opinions, the learning sup-

port system seems to be used without much
burden of understanding the usage of the sys-
tem.

As limitations, we had the following opin-
ions.
·It is difficult to use for beginners because

it is a system based on some understanding of
parsing.
·I want to input a symbol name that has

multiple characters

·I want to select an object to be deleted in-
stead of the rightmost one.
· I do not know where I made a mistake so

I want to see the steps of calculation.
These opinions lead to the introduction of

the step button and the terminal symbol of
multiple characters.

On July, 2017, we introduced the system to
41 students of lecture “Compiler” of our de-
partment and encouraged them to use it. In
addition, we conducted a questionnaire survey
to confirm the purpose of use, whether it was
useful, why they did not use, and so on in
multiple choice forms, and to demand bug
reports and function requests in free descrip-
tion forms. As a result, 23 users answered the
questionnaire. Among them, 14 users an-
swered that they only used the system to
check the answer of the report problems. We
also used Google Analytics to obtain usage
history of each button. As a result, there were
fewer uses of the step button than the “dis-
play-all” button.

Based on this result, we fixed and added
some features to the system. The second sur-
vey was conducted for students of “Compiler”
from July 19, 2018. We collected data on us-
age until the end of the examination of the
compiler class using Google Analytics. As a
result, the unique event that executed steps
until the end was 77 cases except for the emp-
ty input. A unique event is an event that
counts only the first time in one session.
There were 49 kinds of input data other than 5
types of the prepared samples. 30 of them
were ones that were slightly changed from
past examination problems and report prob-
lems, and 19 were other data. In addition, the
first sample was used more often than the
other samples. The system was used only at a
lecture and an exercise day on one week be-
fore the examination. Upon entering the ex-
amination week, the usage increased little by
little; nine people each used the system at the

ISBN: 978-1-941968-52-9 ©2018 SDIWC 23

Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018

day before the examination and on the day of
examination.

5 SUMMARY

We have developed a Web-based learning
support system for recursive descent parsing.
The system can show the steps of eliminating
left recursions, computing the First and the
Follow sets, creation of a parsing table, and
creation of a parser program, and then can
display the results on an HTML page. By in-
putting BNF in the form, or using prepared
samples, learners can use it without knowing
the detailed usage in advance. In addition, I/O
is described in jQuery, and it is easy for
teachers to customize the user interface com-
ponent. By recording the usage using Google
Analytics, it is shown that various inputs were
executed in experiments, but most of the data
input by learners were such ones that are
slightly changed from report problems or past
examination problems.

6 FUTURE WORK

Addition of answer field: We would like
to add an answer field so that learners can en-
ter their answers. By pointing out the wrong
part of the answer, it can help learning by
making learners conscious of what are not
properly understood.

Display of errors: It is necessary to dis-
play errors more kindly for incorrect input.

Other parser topics: We would also like
to implement learning support systems on
other topics covered in the compiler class
such as regular expression, finite automata,
and bottom-up parsers.

Though it is an advantage to be able to exe-
cute without logging in the current system,
teachers cannot know how much it is used by
a certain user. Therefore, in the future we
would like to build a system that can associate
the learning record with users. This system
must be able to prove what a certain learner
achieved while maintaining anonymity. In
addition, we believe that it is necessary to in-

crease the number of samples and to create
input randomly in order for learners to en-
courage testing various kinds of inputs.

ACKNOWLEDGEMENTS

This work is partially supported by JSPS KA-
KENHI Grant Number 15K01075.

REFERENCES

[1] S. Rodger and T. Finley, “JFLAP - An Interactive

Formal Languages and Automata Package,” Jones
and Bartlett, 2006.

[2] R. D. Resler and D. M. Deaver, “VCOCO: a
visualisation tool for teaching compilers,” ACM
SIGCSE Bulletin, 30(3), pp.199-202, 1998

[3] A. Karkare and A. Nimisha, “ParseIT: A Question-
Answer based Tool to Learn Parsing Techniques,”
Proceedings of the 10th Annual ACM India
Compute Conference on ZZZ. ACM, pp. 115-120,
2017.

[4] A. Ekblad and K. Claessen, “A seamless, client-
centric programming model for type safe web
applications,” In Proceedings of the 2014 ACM
SIGPLAN symposium on Haskell (Haskell '14).
ACM, pp.79-89. DOI=http://dx.doi.org/10.1145/
2633357.2633367, 2014

[5] A. Ekblad, “Foreign exchange at low, low rates a
lightweight FFI for web-targeting Haskell
dialects,” In Proceedings of the 27th Symposium
on the Implementation and Application of
Functional Programming Languages (IFL '15).
ACM, Article 2, 13 pages. DOI: http://dx.doi.org/
10.1145/2897336.2897338, 2015.

ISBN: 978-1-941968-52-9 ©2018 SDIWC 24

Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018

