
Issues and Challenges of Secure Policy Specification Languages

Sailaja Arsi1, Venkata N. Inukollu1, Joseph E. Urban2

Computer Science Department1
Industrial Engineering Department2

Texas Tech University
Lubbock, Texas 79409 USA

{sailaja.arsi, narasimha.inukollu, joseph.urban}@ttu.edu

Abstract - Security policies which describe the
behavior of a system through specific rules
are becoming an increasingly popular
approach for static and dynamic environment
applications. The SANS top 20 critical
controls are a de facto standard in the
software industry to protect against cyber
crime. This paper shows the importance of
applying the SANS critical controls to a
product for producing effective results. This
paper provides a policy framework, issues
that a secure policy specification language
faces, and challenges for secure policy
specification languages.

Keywords - Secure Specification Language,
Policy, Policy Specification Language,
Software Development Life Cycle (SDLC),
SANS Critical Controls.

1 INTRODUCTION

A security policy can be defined as a set of
rules that specifies the specific behavior of a
system [1] and includes all the constraints
within. There is a need to represent the
security policies in a formal/informal
specification language. Software engineering
is an application of engineering to software,
which is indeed a significant, methodical,
and disciplined approach to representation,
development, performance, and maintenance
of software. Security is a component of
software engineering. Due to advancements
in technology, secure software engineering

[2] has become an important aspect/asset of
software quality. In the software
development life cycle [3] (SDLC), for
effective software development, security as a
process should be considered at the same
priority as the life cycle phase’s
functionalities. The idea of incorporating
security into software from the beginning of
development has gained acceptance. Secure
software engineering is required throughout
the software development life cycle.

A main goal of secure software engineering
is the gathering of security requirements,
design, development, maintenance,
verification, and validation of secure and
functioning software. In secure software
engineering, during the life cycle phases,
from the initial phase to deployment phase,
confidentiality, integrity, and availability
objectives are specified.

There is a need to add security in the
requirements phase itself in order to reduce
the time, cost, quality, and resources at the
end of the deployment phase, if any problem
occurs. For specifying the secure
requirements, there should be a medium for
writing the secure requirements in a formal
specification language that is understandable
by both stakeholders and developers.
Designers/developers should follow the
secure policy specifications for further
development of the software. Risk

ISBN:978-0-9891305-8-5 ©2014 SDIWC 171

management [4] is well handled if industries
follow the secure policy specifications,
especially in secure engineering aspects.

There are several specification languages
which consider policy specifications at a
primary level, but ignore some of the issues
that might be considered to have a crucial
role in the industry. A secure policy
specification language has a major role for a
successful product, if industries neglect
secure policy specification languages and
start the product development, then the
product can lead to problems at the
deployment phase, which increases cost,
time, risk, and resources and reduces quality
and scope. The specification languages have
different models that may not have the
proper structure to express the given system
policy details or may have some unspecified
important aspects.

In this paper, the main focus is on explaining
the issues of secure policy specification
languages and proposing some of the
challenges of secure policy specification
languages. Based on the literature, the issues
of policy specification language can be
addressed by user defined security policies.
This paper covers the motivation behind user
defined security policies, advantages, and
implementation methods.

2 RELATED WORK

In order to develop a complete functioning
system, an organization, project, or business
should effectively use an SDLC process. The
SDLC has five phases’ requirements,
specification, design, testing, and
deployment, which includes a minimum
requirement of security tasks that are
required to integrate security in a software
development process. In order to protect the

critical assets and infrastructure, every
organization must and should follow the
SANS critical controls [5] to improve cyber
security. Some of the specification languages
developed earlier and the constraints
associated with those languages have been
reviewed briefly.

Garcia Clemente et al. [6] defined policy
framework requirements and also defined
semantics that are applied to web
information systems protection. The authors
worked on comparing a non-semantic
security policy framework (Ponder and
XACML) with the semantic security policy
frameworks (Rei, KAoS, and SWRL). The
paper listed the advantages of a semantic
security policy framework over a non-
semantic security policy framework based on
approach, specification language, tools used
for specification, and enforcement.

An executable specification policy language
S-Promela was explained by Abbassi et al.
[1]. This model handles an authorization
rule, obligation rule, and prohibition rule in
detail with structured representation. S-
Promela is an executable specification
language that supports the validation task.
The paper did not have a structured
representation for the delegation rule. A
disadvantage is that S-Promela is a high level
specification language, which could be
difficult for a stakeholder to understand.

Damianou et al. [7] focused on the non-
semantic based policy specification language
called, Ponder, which is a declarative,
strongly-typed, and object oriented language.
Ponder has a rich set of policies. The Ponder
policy specification language paper
explained the policy rules of authorization,
obligation, refrain, delegation, and
information filtering. The policy rules are in
a high level language.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 172

XACML (Extensible Access Control
Markup Language) is a declarative access
control policy language that has been
implemented in XML [8]. XACML follows
a syntax that is defined in a schema, which is
associated with the XML namespace. Not all
stakeholders have familiarity with the XML
language and it can be considered as a
downside for having XACML as a
specification language.

Rei was implemented by Kagal [9], a
semantic based policy specification
language, which provides certain constructs
based on the concepts concerning duties or
obligations. Rei has defined policy objects,
action specifications, constraint
specifications, speech acts, and meta
policies. The Rei specification language has
domain independent ontologies and has a
flexible framework.

More recently, Finn et al. [10] studied the
relationship between the Web Ontology
Language (the authors named it as OWL)
and the Role Based Access Control (RBAC)
model. OWL is not designed to express an
authorization policy because it is a web
ontology language. The authors took the
challenge to build a security framework for
open and dynamic environments with a
primary goal of defining OWL ontologies.
The OWL ontology can be used to represent
the RBAC security model and to show the
specifications and implementation of access
control systems, in order to identify the
systems part of portions for which RBAC
can be modeled with description logic and
the other parts with logical reasoning.

There are 20 critical security controls
popularly called as SANS Critical Controls
that are published by the Center for Strategic
International Studies (CSIS) to improve
cyber security and are prioritized mitigation
steps [11]. Tracking and precise automation

of these top 20 critical controls has
demonstrated more than a 90% reduction
[11] in measured security risk within the
U.S. State Department. A product which
follows these 20 critical controls is
successful and handles risk and real-time
vulnerabilities in a system. The top 20
critical controls have different levels of
impact on attack mitigation ranging from
very high to low (see table). If the software
or the product ignores handling any control,
the impact of risk is more effective on the
product. SANS critical controls are the
industry standards for reducing cybercrime.

3 POLICY LANGUAGE FRAMEWORK

A policy specification language should be
able to represent and maintain policies
effectively. A policy specification language
uses different entities, such as subject/source,
object/target, actions, and
constraints/conditions/restrictions. A policy
needs to be defined in such a way that, the
policy can handle security issues, such as
confidentiality, availability, and integrity
[12]. A policy specification language should
be:

• well-defined with clear and
unambiguous syntax and
structure;

• flexible to represent new policies
in the future;

• able to detect conflicts;
• able to provide extensibility

features for the future policies of
the same language version; and

• able to validate the existing
policies.

The following are some commonly used
policies [1, 6, 7, 8, 9, 10] in specification
languages (authorization, prohibition,
obligation, delegation, information filtering,
and refrain policies):

ISBN:978-0-9891305-8-5 ©2014 SDIWC 173

a) Authorization policy: An

authorization policy grants access to
resources by evaluating and
validating a given request. For
example, consider ATM transactions.
A client requesting to either
withdraw or deposit money. The
request will be served only when the
client provides a valid pin number.
For this transaction, an authorization
policy is applied.

b) Prohibition policy: A prohibition
policy is the negation of the
authorization policy. A prohibition
policy prevents access to the
resources by validating the set of
attributes. For example, when a client
requests the account details of other
clients or tries to perform
unauthorized operations, such as
withdraw, then the request will be
denied.

c) Obligation policy: An obligation
policy performs certain immediate
actions that are forced to perform to
the occurrence of a specific event in a
system. For example, in ATM
banking, users should change their
PIN/password on the beginning of
the month to protect from fraud.

d) Delegation policy: A delegation
policy grants privileges/rights from a
higher level to a lower level
hierarchy. For example, in a
company, when a team member
wants to read and write certain
security files, the team member needs
to get permission from the team
manager.

e) Information filtering policy: An
information filtering policy [7] is
needed to transform the information
either input or output parameters in
an action. For example, a payroll
clerk is only permitted to read

personnel records of employees
below a particular grade.

f) Refrain policy: A refrain policy [7]
rejects the actions that a subject
needs to perform on target even
though they are permitted to perform
the action. For example, in a
development team, test engineers
must not disclose the test results to
developers or analysts when the
testing is in progress. Analysts and
developers would probably not object
to receiving the results.

Almost all the specification languages which
are in existence use the above defined
common policies and apply these policies to
the systems environment.

4 ISSUES OF SECURE POLICY
SPECIFICATION LANGUAGES

Policies are applied to a wide range of fields
from web applications to real-time
embedded applications. There are certain
issues related to secure specification
languages. Some of the issues are described
below.

a) Policy Representation: From the six

specification languages [1, 6, 7, 8, 9,
10] the security policies defined, have
almost the same semantics, but the
representations differ. Specification
languages [6, 7, 9] use a high level
language syntax for defining the
specifications and all the security-
aware semantic specifications are in a
high level language. The access control
policy rules in the Ponder specification
language are defined in a high level
object oriented language, which can
create a barrier between a developer
and customer, as customers might not
be aware of the language, thus resulting

ISBN:978-0-9891305-8-5 ©2014 SDIWC 174

in a customer not understanding the
requirements. A specification language
should be defined in such a way that
the secure specifications are
understandable by both stakeholders
[13] and developers. To produce a
successful product, developers or the
organization should consider a
stakeholder’s interest. Therefore, the
representation of the requirements
should be understandable by the
stakeholder in the first place.
Representation of requirements is a
main issue in specification languages,
so as to define the requirements in a
language that can be understandable by
a customer, as well as a development
team.

b) Define Policies: A policy language

should be well-defined with clear and
unambiguous syntax and structure. A
policy architecture [5] also needs to
have a well-defined independent
interface. For some scenarios,
specification languages do not provide
any policy, which implies that the
policies given by specification
languages are not all sufficient enough
for any environment. For some specific
behaviors of a system, developers of
various specification languages could
not categorize what are the objects for
a system, how to maintain a subject,
what are the actions to perform, and
how to define and implement
constraints of a systems behavior.

c) Validation of Policies: Defining a

policy is an easy aspect compared to
other aspects of policy specification
languages. Each entity in a policy
needs to be validated. In order to
validate the policy, policy specification
frameworks need to collect all the facts
and figures of policy data. The

validation of constraints / restrictions /
conditions is the critical phase in
validation of policies. The REI and
Ponder policy specification languages
[7, 9] partially support validation of
polices.

d) Policy Extendibility: Policy

extendibility is an important issue as
the feature defines the new policy
definitions and implementations. When
the specification languages are taken
into consideration, an important feature
to look at is - how far the specification
languages are extendable in terms of
adding a new policy to its behavior.
Most of the specification languages
have almost the same common policies
(authorization, prohibition, and
obligation) and some languages have a
few more policies in addition to the
common policies that are in use. Even
though specification languages defined
policies, not all of the policies are
applicable to every environment. For
the above discussed reason,
extendibility becomes an important
issue in specification languages.

e) Portability of Policy: There are usually

several languages that can be used in
different domains to express similar
policies. Portability can be defined as
an ease of the policy that is being
applied to different domains. For
example, consider a delegation policy.
In the S-Promela specification
language, Abbassi et al. [1] did not
focus on applying the delegation rule to
the environment. Simply, the policy
loses the portability functionality.
When specification languages provide
policies, then the policies should
possess the portability functionality
within the language.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 175

f) Policy Conflicts: Specification
languages should have a conflict
detection technique, which should be
able to check that a given policy does
not conflict with any other existing
policy. Most of the specification
languages ignore this functionality. For
example, in an organization, if an IT
team wants to restrict the “controlled
use of administrative privileges (SANS
critical control 12) [4]” then the IT
technicians may get confused as to
which policy needs to be assigned to
get the task done, i.e., either
authorization, prohibition, or
delegation raises a policy conflict
issue.

g) Priority of Policies: Prioritizing the

policy is another feature to consider.
When specification languages do not
handle policy conflicts, then at least
there should be prioritization of
policies. There is no implication that, if
policies do not handle policy conflicts
then policies handle policy
prioritization. Specification languages
should handle both policy conflicts and
policy priorities. When some situation
like checking the inventory of
authorized and unauthorized
devices/software [4], which policy
needs to be applied, authorization or
prohibition. For scenarios such as
above, we need to have a prioritization
of policies.

5 CHALLENGES OF SECURE
POLICY SPECIFICATION
LANGUAGES

The challenges of secure specification

languages are described below. These

challenges are the observations from the
related work and literature review.

a) Representation of Non Functional

Aspects:

Security is one of the critical components
of non-functional requirements. A secure
policy represents a non-functional aspect
of a system. Elicitation and analysis of
non-functional requirements still have
considerable challenges [14, 15]. The
specification, analysis, trade-off, and the
documentation of security requirements
has been an area which is left almost
unexplored by software and requirements
engineering research [16].

b) Dynamic Behavior Representation:

A specification is represented with
various technologies based on syntax,
semantics, and diagram representations
[6, 7, 8, 17]. Static behavior of a system
is a simple and straight forward approach
for any specification language,
irrespective of the technology.
Complexity increases by the introduction
of dynamic behavior. Dynamic
representation involves several
challenges because of the following
reasons:

• policy description consists of
both functional and non-
functional requirements;

• policy is abstract information
which will not provide detailed
information about the behavior of
a system; and

• unpredictable behavior of a
system for a given policy.

c) Secure Policy Representation of

Distributed Systems:
A distributed system is a collection of
different components over a network to
carry a single task by communicating

ISBN:978-0-9891305-8-5 ©2014 SDIWC 176

with different components using various
communications methods. Functional
specification of a distributed system is
represented with various specification
languages [18, 19, 20]. Secure policy
representation of distributed systems are
challenging because of the following
reasons:

• a distributed system is a hybrid
system which contains various
components, such as web clients
and network applications, hence
defining a single secure policy
that describes an entire
distributed system is difficult;

• handling of policy priorities and
resolution of policy conflicts are
good research challenges if there
exists a policy specification
language that specifies distributed
systems; and

• dynamic behavior of distributed
systems are unpredictable and
open many challenges.

d) Different Specification Languages for

Security and Privacy:

The policy specification languages given
by [5, 6, 7, 9] are for security. Rei,
Ponder, and S-Promela are applied to
environments with security as main
aspects and thus called as secure policy
specification languages. Security and
privacy are closely related technologies,
but both are two different areas. Security
is about protection. Security specifies
how information is being protected from
malicious actors or other unwanted
parties that are trying to exploit the
security of a system. Privacy is about
governance, informational self-
determination, and use. Privacy
specifically makes sure the policies and
rules are in place to ensure the
information is being collected, shared,
and used in appropriate ways. Moreover,
security is necessary, but not sufficient
for addressing privacy. There has been
limited research on applying
specification languages for privacy
aspects.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 177

Table I : The SANS 20 critical controls applied to respective policies of specification languages

SANS Critical Controls

Impact on

Attack
Mitigation

[11]

Policy Specification Languages

S-

Promela

Ponder

Rei

1) Inventory of authorized and unauthorized
devices.

Very high ü

ü ü

2) Inventory of authorized and unauthorized
software.

Very high

ü ü ü

3) Secure configurations for h/w and s/w on
mobile devices, laptops, work stations, and
servers.

Very high × × ×

4) Continuous vulnerability assessment and
remediation.

Very high × × ×

5) Malware defenses. High/Medium ü ü ü

6) Application software security. High × × ×

7) Wireless device control. High ü ü ü
8) Data recovery capability. Medium ü ü ü

9) Security skills assessment and appropriate
training to fill gaps.

Medium × × ×

10) Secure configurations for network devices
such as firewalls, routers, and switches.

High/Medium
ü

ü

ü

11) Limitation and control of network ports,
protocol, and services.

High/Medium
ü

ü

ü

12) Controlled use of administrative privileges. High/Medium Handles
Partially

ü ü

13) Boundary defense. High/Medium ü ü ü

14) Maintenance, monitoring, and analysis of
audit logs.

Medium

× ü ×

15) Controlled access based on the need to
know.

Medium × × ×

16) Account monitoring and control. Medium ü ü ü

17) Data loss prevention. Medium/Low ü ü ü

18) Incident response and management. Medium ü ü ü
19) Secure network engineering. Low × × ×

20) Penetration test and red team exercises. Low × × ×

ü - The SANS critical control is handled by the specification language.
× - The SANS critical control that is not handled by the specification language.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 178

6 SUMMARY AND FUTURE WORK
The policy specification languages describe
the security policies in the requirements and
specification phase of the software
development life cycle. The Policy
specification languages are based on syntax,
semantics, and are model driven. The policy
specification languages have un-resolved
issues and challenges due to the language
constructs and constraints. Secure policy
specification languages have issues, that can
be resolved by adding a common policy
with dynamic functionalitites. The future
work is on defining a dynamic common
policy for handling the issues of security
policy specification languages and satisfying
the challenges of secure policy specification
languages, that are mentioned in this paper.
Security has a vital role in policy
specifications and defining a new policy for
each environment in the system would be
inappropriate. So, the future is on defining a
user defined security policy with dynamic
functionalities. As the name specifies a user
is given the main responsibility for
maintaining security and privacy of the user.

ACKNOWLEDGMENTS
This research was partially supported by the
National Science Foundation (Grant No.
1241735). Opinions, findings, and
conclusions/recommendations are those of
the authors and do not necessarily reflect the
views of the NSF.

REFERENCES
[1] Abbassi R. and El Fatmi S. G., "S-
promela: An Executable Specification
Security Policies Language," Proceedings of
the First International Conference on
Communications and Networking, 2009,
Hammamet, November 3-6, 2009, pp. 1-8.

[2] Essafi M., Labed L., and Ben Ghezala
H., "Towards a Comprehensive View of
Secure Software Engineering," Proceedings
of the International Conference on
Emerging Security Information, Systems,
and Technologies, 2007, Valencia, October
14-20, 2007, pp. 181-186.

[3] Yu W. D. and Le K., "Towards a Secure
Software Development Lifecycle With
SQUARE+R," Proceedings of the IEEE
36th Annual Computer Software and
Applications Conference Workshops
(COMPSACW), 2012, Izmir, July 16-20,
2012, pp. 565-570.

[4] Ebert C., Murthy B. K., and Jha N. N.,
"Managing Risks in Global Software
Engineering," Proceedings of the IEEE
International Conference on Global
Software Engineering, 2008, Bangalore,
August 17-20, pp. 131-140.

[5] SANS Critical Security Controls. Critical
Security Controls for Effective Cyber
Defense:
http://www.sans.org/critical-security-
controls
accessed June 12. 2014.

[6] Garcia Clemente F. J., Perez G. M., Botía
Blaya J. A., and Gómez Skarmeta A. F.,
“Representing Security Policies in Web
Information Systems,” Proceedings of the
14th International World Wide Web
Conference on Policy Management for the
Web Workshop, Chiba, Japan, May 10-14,
2005.

[7] Damianou N., Naranker D., Emil L., and
Morris S., "The Ponder Policy Specification
Language," POLICY '01 Proceedings of the
International Workshop on Policies for
Distributed Systems and Networks,

ISBN:978-0-9891305-8-5 ©2014 SDIWC 179

Springer-Verlag London, UK, 2001, pp. 18-
38.

[8] eXtensible Access Control Markup
Language 3 (XACML) Version 2.0, OASIS,
February 1, 2005.

[9] Kagal L., Rei: A Policy Language for the
Me-Centric Project, HP Labs Technical
Report, September 30, 2002.

[10] Finin T., Joshi A., Kagal L., Jianwei N.,
Sandhu R., William H. W., and
Thuraisingham B., "ROWLBAC -
Representing Role Based Access Control in
OWL," Proceedings of the 13th Symposium
on Access Control Models and
Technologies, Estes Park, Colorado, USA,
June 11-13, 2008.

[11] Real-Time Auditing for the 20 Critical
Security Controls, Tenable Network Security
Report, 2014.

[12] Nunes F. J. B., Belchior A. D., and
Albuquerque A. B., "Security Engineering
Approach to Support Software
Security," Proceedings of the 2010 6th
World Congress on Services (SERVICES-1),
Miami, FL, July 5-10, 2010, pp. 48-55.

[13] van Lamsweerde, A., "Requirements
Engineering: from Craft to
Discipline", Proceedings of the 16th ACM
SIGSOFT International Symposium on
Foundations of Software Engineering, pp.
238-249.

[14] Ullah S., Iqbal M., and Khan A. M., "A
Survey on Issues in Non-Functional
Requirements Elicitation," Proceedings of
the 2011 International Conference on
Computer Networks and Information
Technology (ICCNIT), Abbottabad, July 11-
13, 2011, pp. 333 - 340.

[15] Bajpai V. and Gorthi R. P., "On Non-
Functional Requirements: A
Survey," Proceedings of the 2012 IEEE
Students' Conference on Electrical,
Electronics and Computer Science
(SCEECS), Bhopal, March 1-2, 2012, pp. 1-
4.

[16] van Lamsweerde A., "Elaborating
Security Requirements by Construction of
Intentional Anti-Models," Proceedings of the
ICSE'04: 26th International Conference on
Software Engineering, Edinburgh, ACM-
IEEE, 2004.

[17] Booch G., Jacobson I., and Rumbaugh
J., The Unified Modeling Language
Reference Manual, Essex, UK, Addison-
Wesley Longman Ltd, 1999.

[18] Jorge Cortes G., and Felipe Rolando
Menchaca G., "Graphical Specification
Language for Distributed
Systems," Proceedings of the 15th
International Conference on Computing,
2006, Mexico City, November, 2006, pp.
385-390.

[19] Lambiri C., and Ionescu D., "Models
for Distributed Systems
Specification," Proceedings of the Canadian
Conference on Electrical and Computer
Engineering, 1995, Montreal, Quebec,
September 5-8, 1995, pp. 813-816.

[20] Mikolajczak B., and Ottlik A.,
"Specification of Distributed Systems with
Actors Using Object-Oriented Petri Nets,"
Proceedings of the IEEE International
Conference on Systems, Man, and
Cybernetics, Nashville, TN, Volume 4, Oct
8-11, 2000, pp. 3134-3140.

ISBN:978-0-9891305-8-5 ©2014 SDIWC 180

