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Abstract—Full-Duplex has been emerged in Cognitive Radio
Network in order to avoid the silence period of the Secondary
User (SU) during the Spectrum Sensing. SU should monitor
the Primary User (PU) activities in order to avoid any harmful
interference. The conventional Full-Duplex Cognitive Radio (FD-
CR) systems are based on the Self-Interference Cancellation,
where a problem of Residual Self-Interference and Hardware
Imperfections leads to an important loss in the detection perfor-
mance. In this paper, we develop spectrum sensing techniques
for FD-CR based on the Blind Source Separation (BSS). In BSS,
multi receiving antennas are required to detect the presence of
the Primary User (PU) signal without the need for a silence
period during the spectrum sensing. This fact enhances the data
rate of the SU. In addition, this algorithms do not require any
priori knowledge about the SU or the PU signal. Experimental
results show that in addition to eliminating the silence period,
the performance of our developed algorithms based on BSS
outperforms the classical spectrum sensing Energy Detector (ED).

Keywords—Cognitive Radio, Spectrum Sensing, Blind Source
Separation, Full-Duplex, Half-Duplex

I. INTRODUCTION

In classical Cognitive Radio (CR) system, Primary User
(PU) and Secondary User (SU) can share the same frequency
band but not simultaneously. SU can operate on this frequency
band only when PU is absent in order to avoid any interference.
For this reason, SU should monitor the PU activity continu-
ously by performing the Spectrum Sensing. Spectrum Sensing
provides CR with the PU status: active or idle. During the
Spectrum Sensing, SU stops the transmission in order to do
not affect the sensing decision by the Self-Interference (SI).
For this reason, classical CR is called Half-Duplex CR (HD-
CR) in which the activity period of SU can be divided into
two slots, the first one is allocated to the Spectrum Sensing
and the second one for the transmission. In the first slot when
SU detects a PU transmission, then SU should immediately
vacate the channel, else, SU continues to the second slot and
operates on the channel. The silent period of SU during the
Spectrum Sensing period affects the SU data rate [1], [2].
Full-Duplex Cognitive Radio (FD-CR) has been recently pro-
posed as a promising solution to cancel the silent period of
the Secondary User (SU) [1], [3], [4], [5], [6], [2]. Based on
the recent advances in the Self-Interference Cancellation (SIC)
[7], FD-CR has gained a lot of attention during the last years.
FD-CR concerns mainly the Spectrum Sensing, where this

approach is based on the elimination of the SU received signal
on the SU receiving antenna (RX ). In fact, SU has a perfect
knowledge on its signal transmitted from its transmitting
antenna (TX ). After estimating the channel between TX and
RX , SI is cancelled by regenerating an estimation of the SU
received signal using the channel estimation, and subtract it
from the overall received signal. In fact, in addition to the non-
perfect estimation of the channel, the hardware components do
not work perfectly. Many imperfections are presented in both
the transmitting and the receiving circuits. Even the residual
of SI and the hardware imperfections related to the SI signal
are of negligible power compared to SI signal, they are of
important power compared to the PU signal. This is due to the
short distance between TX and RX which implies a very high
received SI power.
In Full-Duplex communication, the residual of SI and the
hardware imperfections are assumed to be acceptable if their
power level becomes equal to that of the noise. This condition
is not sufficient in Spectrum Sensing, since such level of power
may deteriorate the Spectrum Sensing performance. In fact, in
[8], we treated the performance of the energy detector in both
HD and FD modes. In addition, we rely the performance of
ED in FD mode to that in HD mode. As results, we obtain
that for a loss of only 10 % (i.e. detection rate in FD mode
= 90 % of the detection rate in HD mode for the same false
alarm rate), the RSI should be 7 dB bellow the noise level.
Accordingly, the lower the loss the lower the RSI power.
Such level of RSI power is very difficult to be achieved,
keeping the Spectrum Sensing performance efficient in FD-CR
is very important to CR in order to remain reliable. In addition,
FD-CR using SIC means that the asymptotic performance of
Spectrum Sensing in FD mode is the performance under HD
mode.
The BSS techniques have been introduced in CR in order
to avoid the silence period during the spectrum sensing [9],
[10]. BSS consists in the separation of N independent sources
based on M observations (Generally M ≥N) [11]. Since the
PU and SU signals are independent, the BSS can be used in
this context. Once the separation is achieved, a test of kurtosis
can be carried out on the separated signal in order to make a
decision on the presence of PU [10], [12].
Unlike [10], [12], where the kurtosis test is only considered,
the separated signals are tested using different spectrum sens-
ing algorithms a Goodness of Fit (GoF) [13] and autocorrela-
tion (AC) tests [14] will be applied on the separated signals.
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On the other hand, due to the spatial diversity where a long
distance between the M receiving antennas and the transmit-
ting antenna relative to conventional FD systems, the power of
the SU received signal copies does not dominate the PU signal
power. Further, the hardware imperfections become negligible
since they are related to the SU signal power.

II. LOCAL AND DISTRIBUTED SPECTRUM SENSING

Whatever the CR is HD or FD, its architecture may be
local or distributed [15]. In local CR, Spectrum Sensing makes
the decision of the channel availability based on its individual
observation for the channel. This type of sensing is vulnerable
to several problems such as the channel fading, shadowing, etc,
which make PU hidden for SU. This fact makes local Spectrum
Sensing not reliable enough. To solve this problem, distributed
Spectrum Sensing has been proposed. In such architecture,
several SUs are cooperating in order to make a decision on
the PU status. The cooperation can be made using one of the
three following strategies: 1) Hard Combining Scheme (HCS)
[15], [16] a Fusion Center (FC) combines the decisions of
SUs on the PU activity. 2) Soft Combining Scheme (SCS)
[16]: Each SU sends to FC a Test Statistic (TS) evaluated
based on a Spectrum Sensing algorithm (All the SUs use
the same algorithm), then FC combines these TSs and then
make a decision. 3) Observation Combining Scheme (OCS)
[17]: The SUs send their observations to FC, where they are
processed an then a decision is made based on the processed
data. Distributed Spectrum Sensing may avoid the hidden PU
problem due to the spatial diversity. Since BSS needs several
observations to perform the signal separation, then it can be a
good candidate to perform the distributed Spectrum Sensing.
In BSS, SUs are not interesting by the SIC, but they send their
observations to a FC where an technique of signal separation
is done. The channel availability is examined based on the
characteristics of the separated signals.

III. BLIND SOURCE SEPARATION FOR SPECTRUM
SENSING

The use of BSS in spectrum sensing was initially proposed
in [9], the advantage of BSS techniques is their ability to
sense the channel even if the SU is operating. In addition,
those techniques don’t require any prior information about the
signals. However, BSS assumed the statistical independence of
the sources. The latter assumption can be satisfied in spectrum
sensing since the PU signal and the SU are independent.

A. Narrowband Spectrum Sensing

When saying Narrowband, we mean that the signal band-
width is less than the channel coherence bandwidth of the
channel, then the channel can be considered as flat. In BSS,
such type of channels refers to the Instantaneous Mixture, in
which, the observation at the receiving antenna is a linear
combination of the signals forming the mixture.
In [10] and [12], the BSS is applied to Narrowband Spectrum
Sensing using various BSS algorithms. One of the most widely
used criterion in BSS-based Spectrum Sensing is the test of
Gaussianity using the kurtosis of the separated signals. In our
case, the noise is assumed to be i.i.d. Gaussian, but the signals
are not.
In addition to the test of kurtosis to diagnose the status of

the channel, we propose the use of other tests instead of the
kurtosis: the autocorrelation and the Likelihhod Ratio goodness
of fit (LLR GoF) tests. Note that Energy Detector cannot be
applied in this context due to the scaling issue effected by
BSS on the separated signals. However, let us consider the
following model for Narrowband mixture:

Y (n) = GX(n) (1)

where Y (n) = {y1(n), y2(n), ..., yM (n)}T is the observed
signal vector, X(n) = {x1(n), x2(n), ..., xN (n)}T is the
vector of the N source signals, and G represents the mixing
matrix. It is well known, see [18], that the separation of a
mixture can be done up to a permutation and a scalar. In
the Spectrum Sensing context the permutation of the de-mixed
signals is not a serious problem since the detector is looking
only for the presence of the PU signal.
In our application, there are three sources, the PU signal,
the SU signal and the Gaussian noise. Hence Y (n) is the
mixture received on M antennas with M ≥ 3, and X(n) =
[x(n), s(n), w(n)]T .

B. BSS algorithms

In [10], [12], the Multi-User Kurtosis (MUK) and Fast
Independent Component Analysis (FastICA) were used, where
it was proved than MUK in more reliable than FastICA to
perform the Spectrum Sensing. However, other algorithms will
be test in this context to show their robustness. This may lead
to enhance the Spectrum Sensing performance. A brief descrip-
tion of the well known Joint Approximation Diagonalisation of
Eigenmatrices (JADE) algorithm and Generalized Eigenvalue
Decomposition (GED) algorithm is presented.

1) JADE algorithm: It uses the Second Order Statistics
(SOS) to whiten the observed signals, and High Order Statistics
(HOS) are used to find a contrast function J satisfying the
conditions of separation, see [19].

J =
∑
i

||diag(WF (Mi)W
T )||2 (2)

where W is the separating matrix, F (Mi) is the cumulant
tensor of the matrix Mi. Mi can be chosen as the eigenmatrices
of the cumulant tensor F [20]. The maximization of J leads to
joint approximate diagonalization of F (Mi), and then to find
W : Ẑ(n) = WHY (n), where Ẑ(n) is the vector of estimated
(separated) signals.

2) GED algorithm: In [21], the BSS was formulated as a
generalized eigenvalue decomposition (GED) problem, when
the signals are non-gaussian, non stationary or non-white. In
fact, the covariance matrix RY of the observations is given by:

RY = GRXG
H (3)

Where RX is the covariance matrix of the sources, which is
assumed to be diagonal thanks to the independence property
of the sources. For non-Gaussian, non stationary or non-white
signals, the authors of [21] proved that there exist another
cross-correlation matrix QY of the same diagonalization prop-
erty of RX :

QY = GQXG
H (4)
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Based on equations (3) and (4) and by exploiting the relation
of the ideal separation: X(n) = WHGX(n) = WHY (n), one
can obtain the following relation:

RYW = QYWΛ (5)

where Λ = RXQ
−1
X is a diagonal matrix [21]. Equation

(5) constitutes a generalized eigenvalue equation, which can
determine the unmixing matrix W .

C. Test performed on the estimated sources

Once the separation is achieved, a test of existence should
be carried out on the estimated signals to perform the spectrum
sensing. The sensing of the channel can be done under two
situations according to the SU state during the Spectrum
Sensing period: SU is transmitting, or SU is inactive.
In our study, we consider that the sensing can be performed
while the SU is active.
In this paper, we assume that PU exists if the following
equation is satisfied:

3∑
i=1

I(ξi > T ) ≥ 2 (6)

Where I is the logic test function that outputs 1 if the test
is true and 0 elsewhere, the metric ξi, i = 1, 2, 3 is obtained
after applying a test T that aims to distinguish between noise
signal or modulated signal, and T is a threshold to be fixed
according to T . Equation (6) means that at least two of the
three separated signals satisfy the test T . In this paper, we
introduce two new tests, the autocorrelation test, and the LLR
GoF test. The previously proposed Kurtosis test is well detailed
in [10].

1) Autocorrelation test: Instead of using the Gaussianity,
the autocorrelation tests the whiteness of the separated signals.
The autocorrelation test can be applied on baseband signals.
Based on the fact that the PU and SU use the same carrier, the
spectrum sensing can be performed using the baseband signals.
The PU and SU signals are assumed to be over-sampled with
a factor T0 [14], therefore s(n) can be formulated as follows:

s(n) =
∑
k

skq(n− kT0) (7)

Where q(n) is the emission filter, {sk} are the symbols to
be modulated, which are assumed to be i.i.d., and T0 is the
symbol period. This fact makes the autocorrelation ρs(m) of
s(n) non zero for a lag m < T0 (the same for x(n)). The
autocorrelation ρs(m) can be written as follows [22]:

ρs(m) = E[s(n)s∗(n−m)] = σ2
s(1−m/T0) (8)

When the test of equation (8) is applied on the noise, we obtain
ρw(m) = σ2

wδ(m), since the noise is assumed to be white.
The test of autocorrelation ρi(m), m > 0, is applied on
each of the three estimated signals after the BSS process, if∑3
i=1 I(ρi(m) > Tρ) ≥ 2, where Tρ is a predefined threshold,

then we have at least two modulated signals (SU and PU
signals), and then PU exists.
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Fig. 1. Performance under two situations : a) the noise is not considered as
a signal, and b) the noise is considered as a signal

2) LLR χ2 goodness of fit test: Since the noise is sup-
posed to be Gaussian and complex in general, and w(n) =
wr(n)+jwi(n), the norm two of w(n) ||w(n)||2 follows a χ2

distribution of degree of freedom 2. In [13], a LLR GoF test
based on χ2 (LLR χ2) is proposed in spectrum sensing, this
algorithm requires a silence period. In our context, we would
like to apply this test on the three separated signals by finding
the metric Θi [13] for each of the estimated signals.

Θi = −
P∑
i=1

(
ln(F0(ẑi(n)))

P − i+ 1/2
+
ln(1− F0(ẑi(n)))

i− 1/2

)
(9)

where ẑi(n) is the ith separated signal, and F0 is the CDF of
χ2 distribution. A value of Θi that is greater than a predefined
threshold means that a non-Gaussian signal is presented. If∑3
i=1 I(Θi ≥ TΘ) ≥ 2, then the PU exists, where TΘ is a

predefined threshold.

D. Number of required receiving antennas

According to the number of existing sources, s(n), x(n)
and w(n), a BSS technique has to separate three signals.
In [10] and [12], the noise is not taken in account, and the
number of signals is assumed to be two: PU signal and SU
signal. In fact, this assumption affects the BSS performance in
spectrum sensing. Figure 1 shows the result of the simulations
under the two situations: a) Without the noise and b) when
the noise is considered as a third signal. In (a) the number
of required receiving antennas is two at least, whereas under
(b) the number is three. The MUK algorithm is used, and a
test of autocorrelation is carried out on estimated signals. It is
clear that the performance under situation (b) outperforms that
under situation (a). For example, under situation a) pd = 0.9
is acheived for pfa = 0.25; whereas under (b), this probability
is achieved for pfa = 0.47.

E. Wideband Spectrum Sensing

For Wideband signals, the channel is no longer flat, and
the instantaneous mixture do not reflect the combination of
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the signals at the receiving antennas. In this situation, the
received mixture at each receiving antenna is composed from
filtered copies of the signals to be detected, where the channel
plays the role of a filter. In this case the mixture is called
convolutive. The algorithms that can perform the BSS for
convolutive mixture are much more complicated than those
performing BSS of instantaneous one. In general, when the
mixture becomes convolutive, the robustness of the separation
process decreases. In addition, the test of a wideband as a one
frequency portion may lead to loss spectrum opportunities
since white space may exist inside an occupied wideband. An
example on this situation is the sparse frequency bands. In
addition, many technologies based on Multicarrier modulation,
such as WiFi and WiMax left some subcarrier without data
allocation. These subcarriers can be used by SU without
causing interference to PU. Consequently, we advise to divide
the Wideband into several Narrowbands on which the signal
separation is performed. This divisions operations makes CR
more aware to the white space in its radio environment and
allows it to exploit efficiently the white spaces. Of the BSS
point of view, the instantaneous mixture is now applicable,
since the division of the Wideband into Narrowband makes
the channel flat relative to each Narrowband.
In OFDM-based transmission, the FFT operation at the
receiver provide the BSS system with the ability to sense
each sub-band as narrowband. In fact, when assuming that
the OFDM symbol is composed from Ns subcarrier, the
FFT operation results in Ns samples, in which the ith one
represents the data transmitted at the ith subcarrier. After
receiving N OFDM symbols, the BSS is then applied on the
sub-band Bi containing N samples. Applying BSS on each
Bi results on detecting the spectrum holes even if a SU is
active on that Bi. For that reason, we assume that a Fusion
center (FC) performs the BSS based on the observation of M
SUs, with M ≥ 3. SUs involved in the BSS are not active, so
they receive the PU signal, the SU signal and the noise.

IV. SIMULATION RESULTS

In order to test the efficiency of our proposed algorithms,
Monte-Carlo simulations were conducted to show the ROC
curve of various techniques proposed in this paper. The
channels between PU base station and the SU transmitting
antennas, from one hand, and the SU receiving antennas, from
other hand, are assumed to be flat fading Rayleigh channel.

The simulations are done with a SNR of SU of -10 dB.
PU signal is assumed to have the same power as SU signal
at the receiving antenna.
Regarding SIC-based FD-CR, the residual power of the SU
signal is assumed to be as the same as the noise power.

Figure (2) shows the performance of the classical energy
detector under FD and HD modes. Under FD mode, the
energy detector performance is highly degraded due to the
residual SI power.

On the other hand, figures (3), (4) and (5) show the
simulations results of the proposed BSS algorithms, MUK,
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JADE and GED, for N = 1000 samples, and a number of
receiving antennas M = 3. For the various algorithms, the
autocorrelation and LLR χ2 tests outperform the existing kur-
tosis test. In addition, JADE outperforms GED and MUK for
the various tests used in this paper, whereas GED outperforms
MUK for the autocorrelation test, and it has approximately the
same performance as MUK when the LLR χ2 and the kurtosis
tests are used.
On the other hand, JADE with autocorrelation detector out-
performs the classical energy detector in HD mode, thus fact
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Fig. 6. Performance of JADE algorithm for different numbers of receiving
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means that BSS leads to enhance the detection performance as
well as the data rate of SU (performing the spectrum sensing
and the transmission simultaneously).
Figure (6) shows the performance of JADE algorithm with
autocorrelation and LLR χ2 tests for different number of
antennas M. The number of samples is set to P = 500.
The simulation results show that the performance of both
autocorrelation and LLR χ2 tests becomes more robust while
M increases. Under all these situations, the autocorrelation test
outperforms the LLR χ2 test.

V. CONCLUSION

In this paper, Blind Source Separation (BSS) is proposed to
perform the Full-Duplex Cognitive Radio (FD-CR) in order to
enhance the Secondary User data rate. Several BSS algorithms
have been tested with several detections algorithms in order to
illustrate the BSS performance in FD-CR. Even though BSS
algorithms need multi-antenna system, their performances for
the different tested algorithms show their robustness where the
silent period of SU is avoided. In addition, an enhancement of
the detection is gained compared to the energy detector in
Half-Duplex mode which is considered as the asymptotic case
of the conventional Full-Duplex mode.
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