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ABSTRACT 

 
A measure of information diffusion in real complex 

networks is the degree of diffusion. In this work, we 

assess the effect of information diffusion of seven 

different directed and undirected real complex 

networks and for several undirected generated 

networks; random, small world, and scale-free 

networks. The degree of diffusion α has been used to 

measure the diffusion and the adoption rates of 

different complex networks. It is defined as the 

percentage between the adopters and non-adopters in a 

network during the diffusion process. The results 

showed that the degree of diffusion α of undirected 

networks is different than directed networks. All the 

obtained results showed that in real networks, 

randomization does not exist. The behavior of these 

networks is determined based on the network's 

members and the interactions between them. 

Therefore, most of the real networks should be 

classified as small-world, scale-free networks, or what 

we defined as small-world random, small-world scale-

free networks.  
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1 INTRODUCTION AND BACKGROUND 
 

Nowadays, information diffusion in real networks 

is taking the researchers’ attention in many areas 

such as biological, technological, and sociological. 

Diffusion is the process of spreading information 

through a network. Many techniques have been 

proposed to discover the diffusion and innovation 

in different networks. Several studies were 

conducted to analyse the diffusion in business area 
[1][2][3]. Floortje and Carolina studied in [1] the 

spread of information in a social network where 

the network consists of agents (consumers) that 

are introduced to a new product and they should 

take a decision to buy or not the new product 

depending on their interests and their neighbours’ 

decisions in social networks. Another consumer 

decision-making diffusion model has been 

introduced in [2] where the diffusion and the 

adoption probability were taken based on the 

external marketing activities and the impact of the 

internal influence of the individuals (consumers) 

in their personal networks. Moreover, a brand-

level competition diffusion model was suggested 

in [3] and applied on the China Mobile 

Communication Industry markets. The subscribers 

of China Mobile and China Unicom companies 

have been involved in the study. The researchers 

investigated the competition’s impact of brand 

diffusion on China Mobile and China Unicom. A 

Predictive Model for the temporal dynamics of 

information diffusion was developed in [4] to 

predict the diffusion in online social networks. 

This model applied on a Twitter dataset and 

showed that the model is useful and effective in 

determining the diffusion value in online social 

networks. 

On the other hand, some researches proposed 

genetic techniques to determine the diffusion in 

networks as in [5][6]. A Genetics-based Diffusion 

Model (GDM) has been proposed in [5], which 

have the ability to create various objects with 

different relationships distributed in social 

networks. In GDM, the nodes represented as 

chromosomes and the communications between 

the nodes represented as genes. Another genetic 

technique has been introduced in [6], which is 

called Genetic Algorithm Diffusion Model 

(GADM). GADM has been used to show the 

information flow for large dynamic social network 

produced from e-mail headers. 

The degree of diffusion α has been used to 

determine the diffusion of information in social 
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networks [7]. It has been determined by the 

calculation of the percentage of adopters and non-

adopters in the network through different 

penetration depths during the diffusion process. 

We selected our previously developed techniques 

in this work and applied it on different types of 

generated and real networks.  

In general, the networks are divided into three 

types of models depending on the network 

structure and characteristics: Random, Small 

world, and Scale-free network models. Erdos and 

Renyi proposed in 1959 an important model for 

random networks [8][9][10]. This model is a 

probabilistic method, which discusses the random 

network behaviour based on probability. It can be 

used to generate a network of any size. The model 

consists of N nodes. A pair of nodes is connected 

in this model based on a probability p. The 

resultant network is a simple network. 

Small-world networks have been characterized 

between regular networks, with high clustering 

and high diameter, and random networks, with 

low clustering and small diameter. But in (Watts 

and Strogatz, 1998), Watts & Strogatz analysed 

the small-world networks in 1998 and 

characterized them as networks with high 

clustering as the regular networks and low 

diameter as the random networks. In [11], Watts 

and Strogatz showed that natural networks, such 

as neural network of the worm Caenorhabditis 

elegans network, and artificial networks, such as 

the power grid of the western United States 

network, are highly clustered and have very low 

average shortest path between two nodes (low 

diameter). To generate a WS small-world network, 

if the network consists of N nodes, each node will 

be linked to a certain number of neighbouring 

nodes (2k). Then in the next level, with a rewiring 

probability P, each link will be rewired to a 

random node in the network. 

In some real networks, the nodes have different 

degrees and that is because some nodes have more 

connections with other nodes than others. This 

type of network is called scale-free network where 

the number of nodes increased throughout the 

lifetime of the network. This what Barabasi and 

Alberts proved in their work [12].  Barabasi and 

Alberts defined scale-free networks as networks 

which has an initial population M0 and where the 

new nodes are added and connected to the initial 

population. Pc is the probability of a new node to 

have a connection with an existing node in the 

network. Real networks can be of different sizes 

and connectivity. Real networks, such as 

biological, sociological, and technological 

networks also can be considered as one of the 

three described networks models.  For instance, 

yeast protein-protein interaction network is a 

random network [13], dolphin social network 

[14][15] is a scale-free network, and 

Caenorhabditis elegans worm’s neural network 

[11], us power grid [11], and positive sentiment 

social network [16] are small-world networks. 

In our previous works [7][17], we studied the 

degree of diffusion to calculate the adoption rate 

and applied it on different types of complex 

networks. In [7], we used several directed 

networks whereas in [17], we used different 

directed and undirected real networks and 

different generated undirected networks: random 

network, scale-free network, and small-world 

network. Then the results in [17] have been 

compared with the results obtained in [7]. The 

results showed that the degree of diffusion α of 

undirected networks is different than directed 

networks. For instance, the average number of 

degree of diffusion was 148 for directed random 

network where it was 1.9705 for undirected 

random network. All the obtained results showed 

that in real networks, randomization does not 

exist. The behaviour of those networks is 

determined based on the network's members and 

the interactions between them. Therefore, most of 

the real networks should be classified as small-

world, scale-free networks, or what we defined as 

small-world random, small-world scale-free 

networks.  

The rest of the paper is organized as follows: the 

entropy and cyclic entropy is presented in section 

2. The degree of diffusion model is explained in 

section 3 along with the explanation of diffusion 

and reverse diffusion process, the experiments, 

and the results. Then, in section 4, the real 

networks used in this paper are explained in 

details with their network graphs. Section 5 shows 

the results and a discussion about the results. 

Section 6 and section 7 contain the conclusion and 

the future work respectively. 
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2 ENTROPY AND CYCLIC ENTROPY 
 

The information-theoretical definition of entropy 

is "the minimum number of bits you need to fully 

describe the microscopic configuration and 

detailed state of the system" [18]. This definition 

of entropy is related to the traditional 

thermodynamic definition of entropy. 

Although the concept of entropy originated in 

thermodynamics and statistical mechanics, it has 

found applications of numerous subjects such as 

communications, economics, information science 

and technology, linguistics, music, etc. The 

probability characteristic of entropy leads to its 

use in communication theory as a measure of 

information. The absence of information about a 

situation is equivalent to an uncertainty associated 

with the nature of the situation. This uncertainty is 

the entropy of the information about the particular 

situation. 

Let k be a set of discrete random variable that 

takes the following values k={1…k…N} with 

probabilities p={P(1),…,P(i),…P(N)} respectively 

such that P(k) ≥ 0 and P(k) = 1
k=1

N

å . There exists a 

measure of randomness, heterogeneity and 

uncertainties known as entropy, H defined as 

 

H (p) = - p(k)ln(p(k))
k=-1

N

å    (1) 

 

In a complex network context, P(k) may represent 

the degree distribution of links or the remaining 

degree (outward links) or cycles of size k in the 

network. Degree distributions of links are the most 

common representation of P(k) in the literature. 

Different models of networks such as random, 

small-world, scale-free, exponential, uniform and 

many others are usually represented and 

constructed as degree distribution models of actual 

networks; such as software, social, biological, 

circuits ... etc. network. Simple degree distribution 

describes the connectedness of the network; hence 

the entropy will be a measure of heterogeneity, 

uncertainty of network connectedness [19].  

 

 

3 DEGREE OF DIFUSSION MODEL 

 

This section contains the explanation of the degree 

of diffusion model. The diffusion and the reverse 

diffusion processes are described in part A and 

part C respectively. The results that were obtained 

in [7][17] are summarized in Section 3.4. 

 

3.1 Diffusion Process 
 

The adoption process in a network consists of 

several levels where in each level there will be 

new adopters. A single adopted/infected node 

starts the nodes adoption/infection operation in the 

diffusion process. This node will spread the 

infection to its direct neighbours and they will 

become adopters. Then, the new adopters will also 

infect their direct neighbours in the next 

level…etc. This process will stop when all the 

nodes become adopters or when there are no more 

nodes that can be reached. 

 

3.2 Penetration Depth and Adoption Rate 
 

Each level in the diffusion process is called 

penetration depth (n) that represents an 

equilibrium level between the adopter phase and 

the non-adopter phase in the diffusion process. 

Penetration depth is the first parameter that should 

be considered in the process of determining the 

diffusion in a network. The maximum number of 

penetration depth nmax has been defined as the 

maximum distance between the selected source 

node and the last adopter node in the diffusion 

process [7]. The value of nmax is differs depending 

on the selected source node. Figure 1 illustrates 

the diffusion process for 8 nodes with maximum 

penetration depth = 4. In the example, Node 1 is 

selected as the start infected source node at level 

0. Then node 1 infects its neighbour, node 2, 7, 

and 6 at level 1. Then each infected node will 

infect its neighbours at the next level. The 

diffusion process stopped at level 3. Node three is 

considered as an isolated node because it has no 

relations with the other nodes. Therefore, node 3 is 

kept as a non-adopter node. If node 3 is selected as 
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a source node, then the penetration depth will 

equal to 0 because no nodes are connected to it.  

 

Figure 1.  The diffusion process for a network with 8 nodes 

and maximum number of penetration depth=4. 

 

The second important parameter in the diffusion 

process is the degree of diffusion α. The degree of 

diffusion has been calculated in [7] as a ratio 

between the current adoption rate (Yn) to the 

predicted future adoption rate (Yn+1) as shown in 

equation (2). Then, from (2), the future adoption 

rate can be calculated as (3). 

 

a =
Yn+1

(1-Yn+1)

Yn
(1-Yn )

   (2) 

 

Yn+1 =
aYn

1+a (1-Yn )
    (3) 

 

In order to calculate the degree of diffusion in a 

network, the following steps should be taken as set 

in [7]: 

 Construct a network. 

 Select a source node. The selection process 

could be random. 

 Calculate the percentage of adopter nodes. 

There is an assumption that has been set 

for this step. The assumption is that any 

node connected to the source node will 

become an adopter. Then the diffusion 

proceeds to the next penetration level. At 

each penetration level, the adoption rate is 

calculated. 

 Then, the obtained results will be fitted in 

equation (4) to get the value of alpha. 

 

Minimize (Yn+1 -
aYn

1+ (a -1)Yn
)2

n=0

N-1

å   (4) 

 

The equation (2), (3), and (4) have been 

constructed in [7]. Figure 2 shows the algorithm 

that represents the diffusion process to obtain the 

degree of diffusion α. 

 

3.3 Reverse Diffusion 
 

Reverse diffusion process is defined in [7] as an 

opposite process of diffusion process. In reverse 

diffusion, all the nodes in the network have been 

assumed to be adopters. Then, a source node will 

be selected and its status will be changed to non-

adopter. After that, in the next level (penetration 

depth) all the source node neighbours that have 

outgoing links towards the source node will be 

infected and become non-adopters. Similar to 

diffusion process, reverse diffusion will stop if all 

the nodes become non-adopters or no more nodes 

can be reached. 

 

 

Figure 2.  Algorithm for calculating α, Yn, and n for a 

selected source node S [7]. 

 

3.4 Diffusion and Reverse Diffusion Results 
 

Diffusion and reverse diffusion processes have 

been applied in [7] on different types of directed 
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networks: random network, scale-free network, 

small-world network and virtual friendship social 

network. In [17], we applied diffusion and reverse 

diffusion processes on directed real networks to 

verify the work done in [7]. Then, we generated 

random, scale-free, and small-world undirected 

networks and applied diffusion and reverse 

diffusion processes on them to obtain the average 

degree of diffusion for undirected networks. 

Finally, we applied both processes on undirected 

real network in ordered to categorize them. 

Several outcomes have been founded. All the 

results related to the real networks shows that 

those networks should be classified as small-world 

or scale-free networks. This is rational since the 

relations and the behaviour of these types of 

networks should not be random. This is different 

than the results obtained using the classical 

classification techniques of networks. On the other 

hand, the results of applying the diffusion and 

reverse diffusion processes on the undirected 

networks illustrates that the average degree of 

diffusion is equal since the links were treated as 

outgoing and ingoing links at the same time. 

Therefore, both algorithms will function similarly. 

 

4 REAL COMPLEX NETWORKS 

The term Degree of Diffusion α defines each 

network type along with predicting the proportion 

of future adopters over non-adopters at any given 

penetration level through the diffusion process 

while, in reverse diffusion, it is assumed that all 

nodes are adopted the information and then the 

process starts by choosing a single node (non-

adopter) to be a source of the reverse diffusion 

process. In the next penetration level, all 

neighbouring nodes with outgoing links to the 

source will be infected and become non-adopters. 

To experiment the above-explained Diffusion and 

Reverse Diffusion processes, seven different real 

networks have been chosen. The networks vary in 

type (directed & undirected) and model with 

different parameter as shown in Table 1. The 

chosen networks are described below. 

 

4.1 Collaboration Network in Science of 

Networks 
 

The network NetScience contains a coauthor ship 

network of scientists working on network theory 

and experiment, as compiled by M. Newman in 

May 2006. An edge is drawn between a pair of 

scientists if they co-authored one or more articles 

during the same time period [25]. The network 

was compiled from the bibliographies of two 

review articles on networks, M.E.J. This network 

is considered as a collaboration network and 

contains 1589 scientists working together as 

shown in Figure 3.  

The work in [20] elaborates on the degree of 

distribution in networks and defines it to be the 

fraction of vertices that have degree k. 

Equivalently, it is the probability that a vertex 

chosen uniformly at random has degree k [20]. 

Networks with power-law degree distributions are 

referred as scale-free networks [20]. The study in 

[20] also argues that real-world networks unlike 

the random graphs do not have Poisson 

distribution for their degree of distributions. 

Instead, they are highly right-skewed, meaning 

that their distribution has a long right tail of values 

that are far above the mean. The work done in [20] 

shows that NetScience network has an exponential 

form of degree of distribution and thus it is 

considered as a scale-free network. 

 

Figure 3.  NetScience network. 

 

4.2 Bottlenose Dolphin Social Network 
 

This network is constructed from observations of a 

community of 62 bottlenose dolphins over a 

period of seven years from 1994 to 2001 as shown 

ISBN: 978-0-9891305-4-7 ©2014 SDIWC                                                                                                   125



 

in Figure 4. Nodes in the network represent the 

dolphins and ties between nodes represent 

association between dolphin pairs occurring more 

often than expected by chance. In [14] the 

bottlenose dolphin social network is considered a 

scale-free network with complex power-law 

distribution for large k. 

 

 

 

Figure 4.  Bottlenose Dolphin Social network. 

 

4.3 US Power Grid Network 
 

This network is the high-voltage power grid in the 

Western States of the United States of America. 

The nodes are transformers, substations, and 

generators, and the ties are high-voltage 

transmission lines. This network was originally 

used in [11]. In [11] this network is classified as a 

small-world network based on the structural 

properties of this network. Figure 5 shows the 

network. 

 

 

Figure 5. US Power Grid network. 

 

4.4 Open Flights 

 

The dataset contains flights in 8056 different 
airports around the world including two airports in 

the US. The data belongs to OpenFlights.org. The 

work in [21] has categorized it as a small-world 

network. Figure 6 shows the network. 

 

Figure 6.  Open Flights network. 

 

4.5 Extraction, Visualization & Analysis of 

Corporate Inter-relationships (EVA)  

 

The EVA is a prototype system developed by [14] 

for extracting, visualizing, and analysing corporate 

ownership information as a social network. The 

information has been retrieved from sources on 

online text including corporate annual reports 

within the United States. The network contains 

8343 companies as vertices with 6727 

relationships among those companies as shown in 

Figure 7. According to [14], the network is highly 

clustered with over 50% of all companies 

connected to one another in a single component. 

An arc (X,Y) from company X to company Y exists 

in the network if in the company X is an owner of 

company Y. [14] has analysed the characteristics 

of the network such as degree, betweenness, cut 

points and cliques. Analysis reveals power law 

distributions for two important network metrics, 

namely component size (number of companies 

connected together) and company degree (number 

of ownership relationships in which a company is 

involved) [14]. This information is for [14] 

enough to consider the network as a scale-free 

network. 
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Figure 7.  Extraction, Visualization & Analysis of Corporate 

Inter-relationships (EVA) network. 

 

4.6 Gnutella Peer-2-Peer Network 

 

A sequence of snapshots of the Gnutella peer-to-

peer file-sharing network from August 2002. 

There are total of 9 snapshots of Gnutella network 

collected in August 2002. Nodes represent hosts in 

the Gnutella network topology and edges represent 

connections between the Gnutella hosts. Gnutella 

peer-to-peer network is a scale-free network 

[22][23]. Figure 8 represents sample of the 

network. 

 

 

Figure 8.  Gnutella Peer-2-Peer network. 

 

 

4.7 US 500 Busiest Airports 

 

It is a network of the 500 busiest commercial 

airports in the United States as shown in Figure 9. 

The data has been collected in year 2002 and a tie 

between two airports implies a flight scheduled 

between them. The work in [24] studies the 

behaviour of basic Reaction-Diffusion (RD) 

process on networks with heterogeneous topology. 

According to analysis of phase diagram and 

critical threshold properties of diffusion process of 

particles done by [24], the US 500 network is 

considered a scale-free network. 

 

 

Figure 9.  US 500 Busiest Airports network. 

 

5 EXPERIMENTS AND RESULTS 

The experiment section is divided into two parts. 

First, the diffusion and reverse diffusion processes 

have been applied and analysed on three different 

undirected networks, Collaboration network in 

science of networks, US power grid network and 

US 500 busiest airports, explained in section 5. 

Second, the same process and analysis have been 

applied to four different directed networks, 

dolphins network, US open flights network, 

extraction – visualization and analysis of corporate 

inter-relationships network and Gnutella Peer-to-

Peer network. Then the average degree of 

diffusion and average degree of reverse diffusion 

for each network has been obtained. This section 

explains in details the two parts of the experiment 

with their results and a discussion about the 

results.  

 

5.1 Part 1: Diffusion and Reverse Diffusion 

Processes on Undirected Real Networks 

 

As stated in section IV part B, the same steps have 

been taken to calculate the average alpha for each 

network. Table 2 shows the results of applying 

both diffusion and reverse diffusion processes on 

Collaboration network, US power grid and US 500 

busiest airports. Figure 10 and Figure 11 show the 

adoption rate for three randomly selected nodes in 

US 500 busiest airports and US power grid 

network respectively. In US 500 airports, they all 

converge to 100% at the same penetration depth 

(6). But, in US power grid network the penetration 
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depth varies based on the selected network from 

30 to 37. Obviously, the node with the least 

penetration depth is the node that can help in 

propagation of information faster than the others. 

In general, in any network there are some nodes 

that are the best candidates for adoption of 

information. 

 

The degree of diffusion for US 500 airports as 

shown in Table 2 suggests that this network is a 

random network. In Figure 10 it is obvious that 

with a small number of hops (penetration depths), 

the entire airports network can be covered. 

Observing the results of ᾱ for US power grid 

shows that although [11] has classified it as small-

world network, our results show that it is a scale-

free network. As stated in [17], that a large 

number of networks that are usually classified 

using regular characterization techniques are in 

fact networks that are close to small-world or what 

we named small-work scale free networks. Also, 

the results for the Collaboration network indicate 

that it is a small-world network rather than a scale-

free network as stated in [25] for the same reasons 

mentioned above. Since the studied networks are 

undirected, the average degree of diffusion and the 

average degree of reverse diffusion are the same. 

That is because in undirected networks the 

incoming and outgoing links are no different from 

each other. Figure 12 illustrates both diffusion and 

reverse diffusion on the same node in each 

network. 

 

5.2 Part 2: Diffusion and Reverse Diffusion 

Processes on Directed Real Networks 

 

In the second part, the networks that were 

inspected were real directed networks. Table 2 

shows the results of applying the diffusion and 

reverse diffusion processes on Dolphins network, 

US open flights network, Extraction-Visualization 

and analysis of corporate inter-relationships 

(EVA) network, and Gnutella Peer-2-Peer 

network. Figure 13 shows the adoption rate of 

three different nodes in Gnutella network and US 

Open Flights network. They follow an S-shape 

curve where all reach to the same level adoption at 

the end. In Gnutella network as shown in Figure 

13(a), the curves show that the adoption rate is 

around 97% of the whole network which is an 

indication of a strongly connected Peer-to-Peer 

network with a small number of isolated nodes. 

Usually, in Peer-to-Peer networks the clients 

(peers) are connected to a big number of other 

clients to share files between each other. The 

average degree of diffusion for Gnutella network 

is in the scale-free network range. Figure 13(b) 

illustrates that the adoption rate in US Open 

Flights network is around 36% of the whole 

network since most of the nodes in the network 

are isolated. The degree of diffusion for this 

network is in the small-world network range, 

which agrees with what [21] has earlier 

categorized it. 

 

 

Figure 10.  Adoption rate for three different nodes in US 

500 busiest airports network. 

 

 

Figure 11.  Adoption rate for three different nodes in US 

power grid network. 
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(a) 

 

(b) 

 

(c) 

Figure 12.  Adoption rate curves for diffusion and reverse 

diffusion processes for selected nodes for: (a) US 500 

airports (b) US Power Grid (c) Network of Sciences. 

In Figure 14, a graph for calculated alphas (α) for 

different nodes have been plotted. Those values 

have been calculated using the minimization 

equation (4). In Figure 14(a) the different values 

of Dolphins network have been plotted. As shown 

in the plot in Figure 14(b), most of the first 100 

nodes of the network have adoption rate of zero 

indicating that they are isolated nodes. On the 

other hand, one node is observed to have a very 

high adoption rate, which indicates that this node 

is a very good candidate to be used for 

information adoption.  

 

 

 

(a) 

 

(b) 

Figure 13.  Adoption rate vs. penetration depth n for 

selected nodes for: (a) Gnutella (b) US Open Flights. 

 

(a) 

 

(b) 

 

Figure 14.  The degree of diffusion values for: (a) Dolphins 

network (b) EVA first 100 nodes. 

 

For the sake of comparison between diffusion and 

reverse diffusion, one node has been chosen for 
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each network. Figure 15 shows the result of a 

sample node chosen to illustrate the adoption rate 

in diffusion and reverse diffusion processes. In 

Figure 15(a), it is shown that the reverse diffusion 

process curve is different than that of diffusion 

curve which matches the results in [7]. In Figure 

15(b), there is a slight small difference between 

the diffusion and reverse diffusion curves. This is 

a small-world behavior since every node has 2k 

neighbors and 2k outgoing links exist at each node 

[7]. 

 

 

(a) 

 

(b) 

Figure 15.  Plot for Diffusion vs. Reverse Diffusion on 

selected node for: (a) Gnutella (b) US Open Flights. 

 

6 CONCLUSION 

 

Directed and undirected real and model networks 

were studied. Information diffusion and reverse 

diffusion in real networks is used to categorize a 

network as random, scale-free, small-world, or 

mixed networks depending on a new parameter 

called the degree of diffusion α. The degree of 

diffusion α has been defined as the percentage 

between the adopters and non-adopters in a 

network during the diffusion process [7].  

 

7 FUTURE WORK 

 

For the future work, we are planning to modify the 

diffusion and reverse diffusion process used in this 

paper to be applied on weighted graphs where the 

weight represents the relations and how strong 

they are between the nodes in the network. 
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Table 1.  Illustrates the real networks characteristics and parameters. 

                                  Network Type 

Network Parameters 

NetScience 

(1589 nodes) 

Dolphin 

(62 nodes) 

US Power 

Grid (4941) 
Open Flights 

EVA 

(8348 nodes) 

Gnutella 

P-2-P 

US 500 

Airports 

Watts-Strogatz clustering coefficient 0.87820556 0.15146614 0.10653888 0.56643868 0.03130506 0.00464493 0.72645793 

Transitivity 0.69344141 0.15438787 0.10315322 0.25158444 0.00034849 0.00379897 0.35138176 

Betweenness 0.02635359 0.01384186 0.28483100 0.00918323 0.00008572 0.01168033 0.21194731 

Degree 30.28786840 3.55 16.33751772 232.77166625 550.30119983 40.40988241 133.61445783 

 

Table 2.  Experiment results: part I and II – real complex networks. 

Network Model 
Network Type 

(Obtained from other works) 

Number 

of nodes 
ᾱ 

Network Type 

(From our work) 

Range (αmin - αmax) 

α isolated nodes=0 
Reverse α 

Collaboration Network in 

Science of Networks 
Undirected / Scale-free 1589 2.42259 Small-world 1.04716 – 21.2679 2.42259 

Dolphins Directed / Scale-free 62 1.59621 Scale-free 1.10779 – 4.2069 1.55243 

US Power Grid Undirected / Small-world 4941 1.20793 Scale-free 1.02147– 1.4833 1.20793 

Open Flights Directed / Small-world 7976 1.0531 Small-world 1.03055 - 7.00527 1.04866 

EVA Directed / Scale-free 8343 3.24684 Small-world 1.00488– 299.156 1.71562 

Gnutella P-2-P Directed / Scale-free 8846 1.23081 Scale-free 1.01225 - 11.0125 1.0665 

US 500 Airports Undirected / random 500 36.343 Random 1.20243 – 157.32 36.343 

 

Table 3.  Experiment results: part III – generated complex networks. 

Network Type 
Network 

Parameters 
Number of nodes ᾱ Reverse α Entropy (S) 

Random p=0.05 

50 1.93 1.93 2.98 

100 13.37 13.37 3.25 

150 19.28 19.28 4.08 

200 37.35 37.35 4.53 

250 29.42 29.42 5.32 

300 23.80 23.80 5.51 

Scale-free M=5, M0=5 

90 4.52 4.52 3.06 

100 3.41 3.41 3.21 

110 3.19 3.19 3.08 

130 1.37 1.37 3.27 

150 6.89 6.89 3.53 

Small-world k=4, p=0.05 
100 3.35 3.35 3.24 

150 2.11 2.11 4.04 
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