
International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

109

Implementing Test Management Traceability Model To Support Test Documents

Azri Azmi, Suhaimi Ibrahim

Advanced Informatics School (UTM AIS)

Universiti Teknologi Malaysia

54100 Kuala Lumpur, Malaysia

{azriazmi, suhaimiibrahim} @utm.my

ABSTRACT

Documentation is one of the key quality

factors in software development. However,

many developers are still putting less effort

and less priority on documentation. To them

writing documentation during project

development is very tedious and time

consuming. As a result, the documentation

tends to be significantly out-dated, poor

quality and difficult to access that will

certainly lead to poor software maintenance.

Current studies have proved that the key

point to this problem is software traceability.

Traceability relates to an ability to trace all

related software components within a

software system that includes requirements,

test cases, test results and other artefacts.

This research reveals some issues related to

current software traceability and attempts to

suggest a new software traceability model

that focuses on software test documentation

for test management. This effort leads to a

new software test documentation generation

process model based on software

engineering standards.

KEYWORDS

Software Traceability, Software

Documentation, Software Testing, Software

Maintenance, Test Management.

1 INTRODUCTION

Nowadays software is becoming more

complex. It consists of diverse

components with distributed locations,

complex algorithms, on varieties of

platforms, many sub-contractors with

different kind of development

methodologies and rapid technology

innovation. The cost and risk will

become higher in software development

project with this kind of complexity as

reported by Boehm [1]. It is vital to

ensure the reliability and correctness the

software being developed. Such aims

can be reached using documentation as

tools. Documentation is a detailed of

descriptions of particular items and used

to represent information such model,

architecture, record artefacts, maintain

traceability of requirement and serial

decisions, log problems and help in

maintaining the systems.

Software developers rely on

documentation to assist them in

understanding the requirement,

architecture design, coding, testing and

details of intricate applications. Without

such documentation, engineers have to

depend only on source code. This will

consume time and lead to make mistakes

[2] especially when developing large

scale systems. As reported by Huang

and Tiley [3] and Sommerville [4], there

are several shortcomings in current

documentation such as out-of-date,

inconsistency between source code and

documentation, poor quality and others.

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

110

The key point solution to the above

problems is software traceability.

Traceability is defined as the ability to

link between various artefacts in

software development phases linking

requirements, design, source code and

testing artefacts. In the early seventies,

requirements traceability was driven

mainly obligatory policy such

DoD2167A for US military systems [5].

Later, many institutions recommended

traceability IEEE Standard, SPICE,

CMM/CMMI have gathered more

awareness. Today, software traceability

has become one of the key attributes to

software quality. Unfortunately, many

organizations failed to implement

effective traceability due to difficulties

in creating, assessing, using and

maintaining traceability links [6, 7]. The

accurate traceability practices can help

in maintaining software. Having an

accurate documented traceability links

between software artefacts is essential

for a various software maintenance

activities including impact analysis.

Thus it will improve the quality of

system as well as the software process.

On the other hand, neglecting

traceability can lead to reduce the quality

of the software product. The quality of

the software product cannot be achieved

when it is not fully tested and traced

with the requirements.

In this paper, we present an

implementation of software traceability

model that support test management in

generating software testing

documentation base on software

engineering standards.

2 RELATED WORKS

As development becomes complex, the

task of connecting between requirements

and various artefacts becomes tedious

and sophisticated. The IEEE Standard

Computer Dictionary [8] defines

traceability as “The degree to which a

relationship can be established between

two or more product of the development

process, especially products having a

predecessor-successor or master-

subordinate relationship to one another;

for example, the degree to which the

requirements and design of a given

software component match”. Meanwhile

[9] defines traceability in much broader

definitions. Aizen defined traceability as

any relationship that exists between

artefacts that involved the software

development life-cycle.

There are many benefits of software

traceability. Most commonly, it is

claimed to help in change management

[10-12], system verification [7, 13], help

in performing impact analysis [12], reuse

of software artefacts[14] and meets the

need of the stakeholders [7, 15, 16].

With support of sophisticated tool that

capable to store and retrieve links,

traceability still facing several issues

such [17]: (i) the process of tracing is

still done manually, (ii) missing of

information to be traced, (iii)

engineering issues that could arise later,

so the trace information may be

insufficient. Traceability is referenced

in many software development and

standards, however specific

requirements or guidelines on how it

should be implemented are rarely

provided.

The IEEE Standard Computer

Dictionary [8] defines model as “An

approximation, representation, or

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

111

idealization of selected aspects of the

structure, behaviour, operation, or other

characteristics of a real-world process,

concept, or system”. Meanwhile, a

broader definition from Microsoft

Computer Dictionary [18] stated that

model as “A mathematical or graphical

representation of a real-world situation

or object -for example, a mathematical

model of the distribution of matter in the

universe, a spreadsheet (numeric) model

of business operations, or a graphical

model of a molecule. Models can

generally be changed or manipulated so

that their creators can see how the real

version might be affected by

modifications or varying conditions.” In

summary, model is a hypothetical

description of complex entity or process.

Software traceability model is an

obligation for an organization before any

development begins. It arises from the

complexity of development such

varieties of platforms, distributed

locations, tools and technology used,

organizational structure, different

organizations, policies, standards, and

development methodologies.

As discussed in previous section,

traceability is crucial to verify and

validate the completeness and

consistency with the requirements. It

can provide significant benefits, if it is

properly implemented. Therefore, a

strategy for implementation of software

traceability must be carefully defined.

Different organizations or projects will

have different set of traceability model

depending on business/organizational,

domain, project, product or technology

[19]. The key point of implementing

efficacious software traceability includes

linkage of data and artefacts, semantic

content, and automation capability.

Traceability will be able to be achieved

when all these aspects are addressed.

After performing analysis of the existing

model, a number of findings and

limitations of existing software

traceability models were identified.

(Detailed of comparative study is

tabulated in Table 1). There are several

software traceability model discussed by

researchers and next subsections will

discussed them.

Narmanli [20] presents a traceability

model to support requirements-to-

requirements traceability known as Inter

Requirements Traceability Model (IRT).

The model consists of three types of

software requirements such as use cases

(GUI, test data, qualification), business

rules (business-rule engine, test data,

qualification test procedures) and data

definitions (entities, database, test data).

Figure 1 depicted the model. The

traceability model proposed bidirectional

traces of these types. The model tries to

minimize the effect and the workload of

change requests on implementation and

tests to satisfy both customers and

development teams. The contribution

for this model is that it support for

change request impact analysis.

Advantages of using this model are: i)

minimize the effect and the workload of

change requests on implementation and

tests when constructing the software

design, ii) ease in make-buy-reuse

analysis, iii) effective tests, where every

business rule is ready to become a test

procedure. Meanwhile, the drawback of

this model is that it only supports

traceability between requirements only.

.

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

112

Table 1. Comparative Study of Traceability Model

Model

/Item
IRT TT CPRT ETET TW TMT

Tracing

Item

Business

Rule, Use

Case and

Data

Definition

Method,

Class,

Package

Source

Code,

Requirem

ents

Documents,

artefacts

repository

Artefacts at

different level

of granularity

Requirement,

Design, Code, Test

Documents

Tracing

Type

R-R R-D-C-TC R-C MR-UC-R-TC R-D-C-T R-D-C-P-TA

Tool

Support

n/a Yes,

CATIA

n/a Yes, no name

given

Yes,

combination

of TMS,

APXTMS,

HWTMS

Yes,

Implementation

Phase

Case Study Change

request of

SRS (no

name

given)

OnBoard

Automobile

(OBA)

Not

conducted

yet

Real project at

Wonderware

(small s/w

development

company)

Real project

at Alcatel-

Lucent

OnBoard

Automobile

(OBA)

Support Change

Impact

Analysis

- Software

Maintenanc

e from

system

documentati

on

- Change

Impact

Analysis

Improve

Software

Quality by

validating

and

verifying

requireme

nts

Prescriptive

workflow

Notification

mechanisms

and

configurable

control

-Test document

generation based

on SE standard

-Test Management

Strength - Support

traceability

through

SDLC

Efficient

way of

tracking

and

tracing

requireme

nts

Post-

requirements

traceability

supporting

SDLC

-Effortless

change

impact

analysis

-simpler

maintenance

for large

volume data

-pre and post

requirements

traceability

-support whole

SDLC

Limitation Tracing

only on

requirement

to

requirement

No tracing

for pre-

requirement

s

Tracing

only on

requireme

nt to

source

code

-no tracing in

maintenance

phase and pre-

requirement

-tracing text-

base artefacts

only

Applicable to

small team

(agile

methodologie

s)

-

C=Code D=Design MR=Marketing requirements R=Requirements T=Testing TC=Test Cases

UC= Use Cases P=Plan

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

113

Figure 1. Inter-requirements Traceability Model

Figure 2. Total Traceability Model

Ibrahim et at.[21] introduced a model

that derived requirement traceability

from system documentation. This model

is called a Total Traceability Model

(TT). It provides links of different

artefacts that include requirements,

design, test cases and source code. It

uses horizontal traceability and vertical

traceability to make up a total

traceability. The model capture

relationships across different levels of

artefacts before an impact analysis can

be implemented. The process of tracing

and capturing these artefacts is called

hypothesizing traces. Figure 2 describes

the traceability model. The horizontal

relationships can occur at the cross

boundaries as shown by the thin solid

arrows, while the vertical relationships

can occur at the code level and design

level respectively. The thick doted lines

represent the total traceability that need

to implement in either top down or

bottom up tracing. Tools such McCabe

and Code Surfer were used to help in

capturing the dependencies. The tracing

type is between requirement-test cases,

test case-code, method-method and

class-class. A prototype CATIA has

been developed to demonstrate the

model. A significant contribution of this

model is that it ability to support top

down and bottom up tracing from a

component perspective.

Meanwhile, Salem [22] in his research

established a traceability model that

provides an intuitive and dynamic way

of requirements traceability during

software development process. This

model is named as Coding Phase

Requirements Traceability Model

(CPRT). The model composed of a

Traceability Viewer Component (TVC),

a Traceability Engine Component (TEC)

and Quality Assurance Interface (QAI)

as illustrated in Figure 3. The TEC is

used to help developers to link source

code element with the software

requirements. Meanwhile, TVC acts as

viewing medium to view links between

requirements and source code. It

provides software engineer with a

distinctive way to scrutiny all the

information that TEC has gathered.

Lastly, QAI is the component that

validates and verifies of requirements.

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

114

A flagging procedure is designed using

Requirement Flags to provide

traceability between requirements and

source code. The preliminary model

provides a simple interface that allows

developers to seamlessly locate the

correct requirements and link them to the

correct source code elements.

Limitation of the model is that only trace

links between requirements and source

code.

Figure 3. Coding Phase Requirements

Traceability Model

Asuncion et al. [23] proposed end-to-end

traceability model (ETET). This

process-oriented model achieves

comprehensive traceability and supports

the entire software development life

cycle (SDLC), from the requirements

phase to the test phase by focusing on

both requirements traceability and

process traceability. It emphasized on

process traceability as an important

facet of effective requirements

traceability. Three main goals were set

to be achieved by using this traceability

model. First, minimize overhead in trace

definition and maintenance, followed by

preserve document integrity and lastly to

support SDLC activities. A successful

prototype tool has been developed to

demonstrate the model. It used

bidirectional updates between

documents and the artefact repository to

guarantee the document integrity.

Figure 4 describes the end-to-end

traceability model. A tool has been

developed at Wonderware, a mid-sized

software development company.

Limitation of the model is that only

support for post-requirements

traceability. The boxes at the top

represent the global trace artefacts and

solid lines represent their requirements

trace links. Meanwhile, the users of the

system shown at the bottom of diagram

and all of them are consumers of trace

information.

Figure 4. End-to-End Traceability Model

Finally, TraceabilityWeb model (TW)

was introduced by Kirova et at. [19].

They have examined the traceability

problem-solution in the context of

multiple aspects such business

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

115

/organization, project, product,

development model and technology. A

tool called TraceabilityWeb has been

developed to demonstrate the feasibility

and the benefits of integrated tools

environments, which automate the

creation and maintenance of traceability

information. It also provides enough

content to start test in early phase

compared to traditional approach. These

include test planning, test creation and

design specification efforts. The model

also established benefits such as

effortless change impact analysis,

simpler maintenance of large volumes of

data, flexible levels of granularity when

creating links, metrics and reporting.

Figure 5 illustrates the traceabilityWeb

model. It integrates multiple artifact

repositories, including requirements

management systems, test management

system and databases. It also auto

generates a significant portion of artifact

mappings and supports most functional

areas such system engineering,

architecture, development, test, product

management and test management. The

drawback of this model is that it only

capable to small teams such agile

methodologies.

Figure 5. TraceabilityWeb Model

Documentation is a written material that

serves as a record of information and

evidence. Software engineering

documentation encompasses not only

source code, but also all intermediate

work products associated to the code and

its validation and operation, such as

contracts, design architectures and

diagrams, reports, configurations, test

cases, maintenance logs, design

comments, and user manuals.

According to Wang [24] documentation

is a software engineering principle that is

used to embody system design and

architectures, record work products,

maintain traceability of serial decisions,

log problems and maintenance solutions,

and enable post-mortem analysis. While

Forward [25] in his thesis defined

software documentation as an artefact

whose purpose is to communicate

information about the software system to

which it belongs. From the Agile

perspective, a document is any artefact

external to source code whose purpose is

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

116

to convey information in a persistent

manner [26].

Software engineers need to rely on

documentation to aid in understanding

the software systems. Regrettably, the

artefacts available for them usually are

out of date and therefore cannot be

trusted [2]. Developers need to depend

solely on source code because of

unavailability of such documentation.

Thus, the process becomes an error

prone and time consuming, especially

when dealing with manual tracing the

traceability link for large scale systems.

Sulaiman et al. [27] in her survey stated

three main reasons why software

documentation were not produce during

software development; time constraint,

commercial pressures and not requested

by supervisors. Other reasons are not

requested by customers, tedious task, too

costly to keep updated, boring task, and

more.

3 EVALUATION OF SOFTWARE

TRACEBILITY MODEL

Before a new model can be proposed, an

evaluation on existing models needs to

be investigated and evaluated.

Therefore, the way of assessment needs

to be determined. The software

evolution taxonomy [28] has been used

in order to evaluate the traceability

model together with perspectives

introduced by Hazeline[29]. The

taxonomy of software evolution is based

on multiple dimensions characterizing

the process of change and factors that

influence these mechanisms while the

perspectives discuss on economic,

technical and social perspectives. The

evaluation criteria are based on

accessibility (mapping between

artefacts), capturability (degree of

automation), tool supportability,

temporality (when to trace) and

scalability. The results of evaluation are

tabulated in Table 2. The rational of

choosing the criterion is explained in

details in next paragraphs.

The accessibility criterion is evaluated to

determine whether a model can be

mapped between various artefacts in

software development life cycle. Such

documents are requirements

specification, software design, source

code, and test suits. Of the observations

made, it appears that the entire models

are capable to link requirements to

design, source code and test suits except

for IRT and CPRT. For CPRT, tracing

is between requirements and source code

only. While the IRT, the link is between

the requirements and requirements.

Meanwhile, the criterion capturability is

to help in analyzed, managed, control,

implement or measure changes in

software. The mechanisms for this case

can be automated, semi-automated or

manual. Result of the comparison made

shows for all models, links are formed in

a semi-automatic and there is no link

made manually. For TT, ETET, TW and

TMT, links can be generated

automatically.

Table 2. Evaluation of Software Traceability Model

Features IRT TT CPRT ETET TW TMT

Accessibility

(i) Requirement

(ii) Design

√

√

√

√

√

√

√

√

√

√

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

117

(iii) Source Code

(iv) Test Suits

√

√

√ √

√

√

√

√

√

Capturability

(i) Automatic

(ii) Semi

(iii) Manual

√

√

√

√

√

√

√

√

√

√

Tool Supportability √ √ √ √

Temporality

(i) Development

(ii) Maintenance

√

√

√

√

√

√

√

√

Scalability √ √

As for the next criterion is tool

supportability, which is evaluating

whether the model provides tool support

to accommodate links between artefacts.

The purpose of the tool support is to help

in visualizing and managing traceability.

On this criterion, the entire model can be

supported using tool except IRT and

CPRT. The next criterion is temporality.

Temporality refers to time and when a

link is created or updated. TW and TMT

allow links in both development phase

and maintenance phase. Meanwhile,

other models such IRT, CPRT and

ETET only in the development phase. In

addition, the TT model dedicated in

maintenance phase. Finally is the

scalability criterion. This criterion is to

analyze whether the model can be

applied to large-scale projects. The

result showed that TT and ETET models

can be applied to large-scale systems

compared to others only to small and

medium-sized projects.

4 RESULTS

This research is intended to create a

traceability model that will be used in

order to generate a software testing

documentation based on Software

Engineering Standards. As such, a

preliminary study was conducted in

finding an approach that can suite the

traceability within software testing

artefacts that lead to establish a

repository. Software traceability has

been used by many researchers and

practitioners and it is a key factor for

improving software quality. There are

numerous benefits of using traceability

such as to keep documentation updated

and consistent within artefacts, enabling

requirements-based testing, early

revision of requirements testing, and

improve in management of change

impact analysis etc. Despite these

advantages, traceability is hard to

implement in software development.

There are weaknesses in current

approaches and models [23]. There is a

lack of research on traceability in finding

relationships between software testing

artefacts.

Several tools and research prototypes

have been analyzed and compared in

order to find the similarities and

differences in previous paper [30, 31].

Out of all, there is only one prototype

was closely similar to this proposed

study. PROMETUE [32] is a prototype

tool that was developed to introduce or

improve the software testing process of a

small software company. The artefacts

and information elements to trace are

based on IEEE829-1998. However,

PROMETUE was developed to support

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

118

traceability within artefacts such of

documents and requirements only. Our

proposed research is to establish a

traceability model that governs various

artefacts such source code, documents,

testing tools files, requirements, legacy

systems and stakeholders.

5 DISCUSSION

Figure 6 shows the proposed model

(Test Management Traceability - TMT)

that will generate software testing

artefacts based on Software Engineering

Standards. There are four main

components namely Traceability Engine,

Analyzer, Extractor/Parser and

Document Generator. The proposed

model illustrates that all the data are

gathered and stored in a repository.

Firstly, the tool will analyze the

information to be stored and will create a

repository of traceability links. The

stored data in the repository may come

from a variety of sources and format

such as: (i) source code (Java and C++),

(ii) software documents such as

Software Development Plan (SDP),

Interface Requirements Specification

(IRS), Software Requirements

Specification (SRS), Software Design

Descriptions (SDD), Software Test

Result (STR), Software Test

Descriptions (STD), (iii) legacy systems,

(iv) stakeholders/users, (v) output files

from testing tools, (vi) requirements and

(vii) experts.

Extractors/Parsers as agents will be used

in order to extract the desired

information to be converted into

eXtensible Markup Language (XML) as

a raw format. The XML files will be

used by analyzers to create the

traceability among artefacts and the

output will be saved into a repository

called a traceability repository. This

repository then will be used as an input

to the process of generating software

testing document. The document

generator will be developed in an

integrated environment with the template

repository to produce a software testing

documentation. The next paragraphs

will explain in more detail of the

proposed model components.

Parser task is to analyze continuous flow

of input and breaks into constituent

parts. Several parsers will be used to

convert multiples format of input data

into XML format. It will support the

capture, summarization and linking of

software artefacts information. This

support for extracting information from

wide variety of source artefacts, viewing

it in summarization form, manages

changes to the artefacts in different

representations. Software information

sources may include format of Microsoft

Word
TM

, Excel
TM

, modeling application

such Rational Rose
TM

, testing

application such SpiralTeam
TM

,

TestSuite
TM

 and Robot
TM

. It also may

include of an email files, data from

legacy systems or a text files (.txt). The

goal is to gather all artefacts that

available into one central repository to

streamline test management approach.

All the data stored in the raw repository

will be in XML format. XML is

designed to transport and store data and

is acknowledged as the most effective

format for data encoding and exchange

over domains ranging from internet to

desktop applications. The hierarchical

nature of XML documents provides

useful structuring mechanisms for

program artefacts. It is chosen because

of easily processed by commonly

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

119

available third-party tools such editors,

browsers or parsers.

In order to generate documentation from

an artefact, an analyzer is needed to

analyze the data. There are some

existing approaches being made

available to analyze the data, such

lexical analysis, syntactic analysis,

island grammars, and parse tree

analysis. The most appropriate approach

will be determined during the

implementation phase. Meanwhile, the

input data for traceability engine will be

a traceability repository or corpus. In

this repository, relationships or link

across artefacts will be kept. A unique

key will be given to each requirement

related to it. Several items or artefacts

such test cases, design item (module,

class, packages), and codes may refer or

link to one requirement. In order to

define this repository, a structure must

first be defined. Traceability link meta-

model will be used as shown in Figure. 7

that inspired by Valderas [33].

According to the meta-model,

traceability link presents as Identifier

and will be develop using relational

database. MS SQL will be used as

database to store all artefacts. Before the

data is stored in the database, we need to

trace and capture their relationships

among artefacts. The process of tracing

and capturing these artefacts is called

hypothesizing traces that was introduce

by Ibrahim [21]. Figure 8 depicted one

way of hypothesizing traces. It can be

described in the following sequence.

For a selected requirement, choose a test

case. One requirement might have

several test cases. Then clarify with

other documentations such plan, design

and codes followed by observe traces

with code. From this, link can be

generated.

Figure 6. Test Management Traceability Model

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

120

An information retrieval (IR) method

will be utilized to drive the traceability

link. A distinct advantage of using this

traceability method is that it does not

rely on a predefined vocabulary or

grammar for the documentation. As a

consequence, this method can be applied

without large amount of pre-processing

of the input. A method of IR so called

Latent Semantic Indexing (LSI) will be

used. A traceability engine involves

with task of setting traceability elements

specifically designed to link with other

artefacts to constitute some traceability

links in a repository. In order to create

this repository, a specific structured must

be defined first. This structure must be

used to store information relating to

traceability links.

Figure 7. Traceability link meta-model

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

121

Figure 8. Hypothesized traces

Document generator is a process of

generating documentation based on

Software Engineering Standards. It will

generate document such STD and STR

based on the template repository.

Existing artefacts and documents are

also used as input to the data gathering

process. Generate documentation is a

process of collecting data and

information, analyzes it, combining this

information with other resources,

extrapolate new facts, and generating

updated documentation. By generating

documentation when it is needed,

software engineers can simply acquire

documentation when they need it

without worry about cataloguing, storing

or sharing a repository of

documentation. The generated

documents need to preserve its integrity.

It is carried out by using bidirectional

updates between documents and the

traceability repository.

5.1 Case Study : OBA

The On Board Automobile (OBA)

system will be used in order to validate

the proposed model. OBA is a final year

project for masters student at Advanced

Informatics School (UTM AIS),

Universiti Teknologi Malaysia

International Campus, Kuala Lumpur

and widely used worldwide such Thales

Universitè (France), Institute Teknologi

Bandung - ITB (Indonesia), Thailand,

Brunei, UEA and others. OBA is a

simulation system which interacts with

actor to activate the auto cruise

functionality such as operate cruise

control, calculate fuel consumptions,

calculate average speed and perform car

maintenance. It is written in C++ or

Java and used UML notation throughout

the entire SDLC. The project was built

with complete set of documentations

(artefacts) such SDP, IRS, SRS, SDD,

STD and STR based on DoD2167A

standards and MIL-STD-498. The

documents provided us with some useful

information on artefacts traceability

between the documents and

requirements. Figure 9 reflects the

notion of our traceability architecture

that establishes relationships between

various software artefacts. The dashed

thick arrows indicate the relationship

between artefacts while the thin arrows

shows the relationship between one

requirement in every phase from

planning phase until the testing phase.

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

122

Figure 9. Traceability Architecture

We believe that there exists some

relationships among software artefacts in

OBA system. Therefore, we need to

map out and capture their links not only

within the same level but also across

different level of phases and artefacts.

The process of tracing and capturing

these artefacts is called hypothesizing

traces. Figure10 represent an example

of mapping one requirement in OBA

system so called Cruise Control in

different phases and different artefacts.

Firstly, use cases are indentified based

on technical documents, contractual

documents and letters from client or

stake holders. In this case, the Cruise

Control is given a reference number as

SRS_REQ-03-00 or so called

requirements number. The reference

number will be stored in traceability

matrix table and will be used to trace its

origin sources. From use case to test

cases of Cruise Control, we can trace the

relationship forward and backward and

in each phases and artefacts, it will be

given a unique reference number for the

purpose of tracing. For instance, in the

SDD the reference number will be

SDD_REQ-04-00 and STD_REQ-02 in

the STD, etc.

STD/STR

Package Diagram

Technical Documents,

Contractual Documents,

Letters, Experts

Class Diagram

Context Diagram

Use Case

Diagram

Sequence Diagram

SDP

SRS

Class Diagram

Component Diagram Deployment Diagram

Traceability

Matrix

SDD

Traceability

Matrix

CODE

Traceability

Matrix

IRS

Traceability

Matrix

Traceability

Matrix

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

123

Figure 10. Control Cruise Traceability from Use Case to Test Cases

5.1 Expected Findings

This research is expected to establish a

software testing documentation process

model using a traceability approach.

The findings include: (i) Defining

documentation features based on

software engineering standards. (ii) an

evaluation result on existing approaches

and models, (iii) established a new

comprehensible process of integrated

system as a proposed solution, (iv) a tool

to be developed to support test

management for software testing

activities.

6 CONCLUSION

Software documentation is vital for

software engineers to help them in

producing a good quality of system

software. Without such aid, they are

solely relying on source code that leads

to error prone and time consuming. A

Test Cases

Class Diagram

dD

Use Case

Diagram

dD
Sequence

Diagram

Package

Diagram

Component

Diagram

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

124

key point here is to establish a workable

traceability model and approach to meet

the demand of software documentation.

The correct traceability use can help a

lot of activities within the development

process. It can improve the quality of

the product as well, as the software

process. Traceability practices in

general are far from mature and a lot of

researches need to be done. A new

traceability model is expected to support

software testing documentation that will

certainly be useful in software

maintenance activities.

7 REFERENCES

1. Boehm, B.: Value-based software

engineering: reinventing. ACM SIGSOFT

Software Engineering Notes. 28, 3 (2003).

2. Thomas, B., Tilley, S.: Documentation for

software engineers: what is needed to aid

system understanding? Proceedings of the

19th annual international conference on

Computer documentation. p. 236 (2001).

3. Huang, S., Tilley, S.: Towards a

documentation maturity model. Proceedings

of the 21st annual international conference

on Documentation. pp. 93-99. ACM, San

Francisco, CA, USA (2003).

4. Sommerville, I.: Software engineering, vol

2: the supporting process. Addison-Wesley.

ISBN 0-321-31379-8 (2002).

5. Albinet, A., Boulanger, J.L., Dubois, H.,

Peraldi-Frati, M.A., Sorel, Y., Van, Q.D.:

Model-based methodology for requirements

traceability in embedded systems. 3rd

ECMDA workshop on traceability, June

(2007).

6. Knethen, A., Paech, B.: A survey on tracing

approaches in practice and research. IESE-

Report No. 095.01/E. 95, (2002).

7. Ramesh, B., Jarke, M.: Toward reference

models for requirements traceability. IEEE

Transactions on Software Engineering. 27,

58–93 (2001).

8. Geraci, A.: IEEE standard computer

dictionary: compilation of IEEE standard

computer glossaries. Institute of Electrical

and Electronics Engineers Inc. (1991).

9. Aizenbud-Reshef, N., Nolan, B.T., Rubin,

J., Shaham-Gafni, Y.: Model traceability.

IBM Systems Journal. 45, 515–526 (2006).

10. Cleland-Huang, J., Chang, C.K., Sethi, G.,

Javvaji, K., Hu, H., Xia, J.: Automating

speculative queries through event-based

requirements traceability. Proceedings of

the IEEE Joint International Requirements

Engineering Conference (RE’02). pp. 9–13

(2002).

11. Chang, C.K., Christensen, M.: Event-based

traceability for managing evolutionary

change. IEEE Transactions on Software

Engineering. 29, 796-810 (2003).

12. Cleland-Huang, J.: Requirements

traceability : When and how does it deliver

more than it costs? 14th IEEE International

Conference Requirements Engineering. pp.

330–330 (2006).

13. Ramesh, B.: Factors influencing

requirements traceability practice. (1998).

14. Von Knethen, A., Paech, B., Kiedaisch, F.,

Houdek, F.: Systematic requirements

recycling through abstraction and

traceability. Proc. of the Int. Conf. on

Requirements Engineering. pp. 273–281

(2002).

15. Antoniol, G., Canfora, G., Casazza, G., De

Lucia, A., Merlo, E.: Recovering

traceability links between code and

documentation. IEEE Transactions on

Software Engineering. 970–983 (2002).

16. Marcus, A., Maletic, J.I.: Recovering

documentation-to-source-code traceability

links using latent semantic indexing.

Proceedings of the 25th International

Conference on Software Engineering. pp.

125–135 (2003).

17. Egyed, A., Grünbacher, P.: Automating

requirements traceability: Beyond the

record & replay paradigm. Proceedings of

the 17th IEEE international conference on

Automated software engineering. p. 163--

171 (2002).

18. Aiken, P., Arenson, B., Colburn, J.:

Microsoft computer dictionary. Microsoft

Press (2002).

19. Kirova, V., Kirby, N., Kothari, D.,

Childress, G.: Effective requirements

traceability: Models, tools, and practices.

Bell Labs Technical Journal. 12, 143-158

(2008).

20. Narmanli, M.: A business rule approach to

requirements traceability, (2010).

International Journal of Digital Information and Wireless Communications (IJDIWC) 1(1): 109-125
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2225-658X)

125

21. Ibrahim, S., Idris, N.B., UK, M.M.,

Deraman, A.: Implementing a document-

based requirements traceability: A case

study. IASTED International Conference on

Software Engineering. pp. 124-131 (2005).

22. Salem, A.M.: Improving software Quality

through requirements traceability models.

Computer Systems and Applications, 2006.

IEEE International Conference on. pp.

1159-1162 (2006).

23. Asuncion, H.U., François, F., Taylor, R.N.:

An end-to-end industrial software

traceability tool. Proceedings of the the 6th

joint meeting of the European software

engineering conference and the ACM

SIGSOFT symposium on The foundations

of software engineering. pp. 115-124. ACM,

Dubrovnik, Croatia (2007).

24. Wang, Y.: Software engineering

foundations: A software science

perspective. AUERBACH (2008).

25. Forward, A.: Software Documentation–

Building and Maintaining Artefacts of

Communication, (2002).

26. Ambler, S.W., Jeffries, R.: Agile modeling:

effective practices for extreme programming

and the unified process. Wiley New York

(2002).

27. Sulaiman, S., Idris, N.B., Sahibuddin, S.:

Production and maintenance of system

documentation: what, why, when and how

tools should support the practice. (2002).

28. Buckley, J., Mens, T., Zenger, M., Rashid,

A., Kniesel, G.: Towards a taxonomy of

software change. Journal of Software

Maintenance and Evolution. 17, 309–332

(2005).

29. Asuncion, H., Taylor, R.N.: Establishing

the Connection Between Software

Traceability and Data Provenance. (2007).

30. Azmi, A., Ibrahim, S., Mahrin, M.N.: A

software traceability model to support

software testing documentation. Proc. 10th

IASTED International Conference on

Software Engineering. pp. 152-159.

IASTED, Innsbruck, Austria (2011).

31. Azmi, A., Ibrahim, S.: Test Management

Traceability Model to Support Software

Testing Documentation. Communications in

Computer and Information Science. pp. 21-

32. Springer-Verlag, Dijon, France (2011).

32. da Cruz, J.L., Jino, M., Crespo, A.:

PROMETEU-a tool to support documents

generation and traceability in the test

process. (2003).

33. Valderas, P., Pelechano, V.: Introducing

requirements traceability support in model-

driven development of web applications.

Information and Software Technology. 51,

749-768 (2009).

