
International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

*
Institute of Media Content, Dankook University

152, Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do, 448-701, Korea
**

Dept. of Computer Engineering, Kumoh National Institute of Technology

61, Daehak-ro, Gumi, Gyeongbuk, 730-701, Korea

nirkim@gmail.com
*
, jcjeon@kumoh.ac.kr(corresponding author)

**

ABSTRACT

KEYWORDS

cellular array, finite field, semi-systolic

structure, Montgomery multiplication,

arithmetic architecture

1 INTRODUCTION

Finite field arithmetic operations,

especially for the binary field GF(2
m
),

have been widely used in the areas of

data communication and network

security applications such as error-

correcting codes [1,2] and cryptosystems

such as ECC(Elliptic Curve

Cryptosystem) [3,4]. The finite field

multiplication is the most frequently

studied. This is because the time-

consuming operations such as

exponentiation, division, and

multiplicative inversion can be

decomposed into repeated

multiplications. Thus, the fast

multiplication architecture with low

complexity is needed to design dedicated

high-speed circuits.

Certainly, one of most interesting and

useful advances in this realm has been

the Montgomery multiplication

algorithm, introduced by Montgomery

[5] for fast modular integer

multiplication. The multiplication was

successfully adapted to finite field

GF(2
m
) by Koc and Acar [6]. They have

proposed three Montgomery

multiplication algorithms for bit-serial,

digit-serial, and bit-parallel

multiplication. They have chosen the

Montgomery factor, R=x
m
 for efficient

implementation of the multiplication in

hardware and software.

Wu [7] has chosen a new Montgomery

factor and shown that choosing the

middle term of the irreducible trinomial

G(ω)= ω
m
+ω

k
+1 as the Montgomery

factor, i.e., R=x
k
, results in more efficient

bit-parallel architectures. In [8], MM is

implemented using systolic arrays for

all-one polynomials and trinomials. Chiu

et al. [9] proposed semi-systolic array

structure for MM which uses R=x
m
.

Hariri and Reyhani-Masoleh [10]

proposed a number of bit-serial and bit-

parallel Montgomery multipliers and

showed that MM can accelerate the ECC

scalar multiplication. Recently, in [11],

they have considered concurrent error

detection for MM over binary field.

122

Finite Field Arithmetic Architecture Based on Cellular Array

Kee-Won Kim
*
 and Jun-Cheol Jeon

**

Recently, various finite field arithmetic

structures are introduced for VLSI circuit

implementation on cryptosystems and error

correcting codes. In this study, we present

an efficient finite field arithmetic

architecture based on cellular semi-systolic

array for Montgomery multiplication by

choosing a proper Montgomery factor which

is highly suitable for the design on parallel

structures. Therefore, our architecture has

reduced a time complexity by 50%

compared to typical architecture.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

Three different multipliers, namely the

bit-serial, digit-serial, and bit-parallel

multipliers, have been considered and

the concurrent error detection scheme

has been derived and implemented for

each of them.

Chiou [12] used the recomputing with

shifted operands (RESO) to provide a

concurrent error detection method for

polynomial basis multipliers using an

irreducible all-one polynomial, which is

a special case of a general polynomial.

Lee et al. [13] described a concurrent

error detection (CED) method for a

polynomial multiplier with an

irreducible general polynomial. Chiou et

al. [9] also developed a Montgomery

multiplier with concurrent error

detection capability. Bayat-Sarmadi and

Hasan [14] proposed semi-systolic

multipliers for various bases, such as the

polynomial, dual, type I and type II

optimal normal bases. They have also

presented semi-systolic multipliers with

CED using RESO.

Recently, Huang et al. [15] proposed the

semi-systolic polynomial basis

multiplier over GF(2
m
) to reduce both

space and time complexities. Also they

proposed the semi-systolic polynomial

basis multipliers with concurrent error

detection and correction capability.

Various approaches adopt semi-systolic

architectures to reduce the total number

of latches and computation latency

because of permitting the broadcast

signals. However, almost existing

polynomial multipliers suffer from

several shortcomings, including large

time and/or hardware overhead, and low

performance.

In this paper, we consider the

shortcomings that the typical

architectures have, and propose a semi-

systolic Montgomery multiplier with a

new Montgomery factor. We show that

an efficient multiplication architecture

can be obtained by choosing a proper

Montgomery factor, and reduces time

complexity.

The remainder of this paper is organized

as follows. Section 2 introduces

Montgomery multiplication over finite

fields. In Section 3, we propose a

Montgomery multiplication architecture

based on our algorithm which is highly

optimized for hardware implementation.

In Section 4, we analyze and compare

our architecture with recent study.

Finally, Section 5 gives our conclusion.

2 MONTGOMERY

MULTIPLICATION ON FINITE

FIELDS

GF(2
m
) is a kind of finite field [16] that

contains 2
m
 different elements. This

finite field is an extension of GF(2) and

any A  GF(2
m
) can be represented as a

polynomial of degree m−1 over GF(2),

such as

01

1

1 axaxaA m

m  

  ,

where ai {0,1}, 0  i  m−1.

Let x be a root of the polynomial, then

the irreducible polynomial G is

represented as a following equation.

01 gxgxgG m

m   , (1)

where gi  GF(2), 0  i  m−1.

Let  and  be two elements of GF(2
m
),

then we define  =  mod G. Also, let

A and B be two Montgomery residues,

then they are defined as A = R mod G

and B =R mod G, where GCD(R,G) =

123

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

1. Then, the Montgomery multiplication

algorithm over GF(2
m
) can be

formulated as

,mod1 GRBAP 

where R
−1

 is the inverse of R modulo G,

and RR−1
+GG=1 [17]. Thus, by the

definition of the Montgomery residue,

the equation can be expressed as

follows.

GR

GRRRP

mod

mod)()(1



 





It means that P is the Montgomery

residue of . This makes it possible to

convert the operands to Montgomery

residues once at the beginning, and then,

do several consecutive multiplications/

squarings, and convert the final result to

the original representation. The final

conversion is a multiplication by R
−1

, i.e.,

 = P∙R
−1

mod G. The polynomial R

plays an important role in the complexity

of the algorithm as we need to do

modulo R multiplication and a final

division by R.

3 PROPOSED ARCHITECTURE

This section describes the proposed

Montgomery multiplication algorithm

and architecture.

3.1 Proposed Algorithm

Based on the property of parallel

architecture, we choose the Montgomery

factor,  2/m
xR  . Then, the

Montgomery multiplication over GF(2
m
)

can be formulated as

  GxBAP
m

mod
2/

 (2)

We know that x is a root of G and mg

and 0g have always ‘1’ over all

irreducible polynomials. Thus, the

equations can be rewritten as follows.

1

mod

1

1

1  

 xgxg

Gx

m

m

m


 (3)

1

2

1

1

1 mod

gxgx

Gx

m

m

m  








 (4)

Meanwhile, (2) is represented by

substituting A and B as follows.

   

   

   

   ]

[

mod

12/

1

22/

2

12/2/

2/

0

12/

1

2

22/

1

12/





























m

m

m

m

mm

mm

mm

AxbAxb

AxbAb

AxbAxb

AxbAxb

GP





 (5)

Now, it expresses that P can be divided

into two parts. One is based on the

negative powers of x and the other is

based on the positive powers of x. (5)

can be denoted by P = C+D, where

   

    ,mod]

[

2/

0

12/

1

2

22/

1

12/

GAxbAxb

AxbAxbC

mm

mm













 

   

    .mod]

[

12/

1

22/

2

12/2/

GAxbAxb

AxbAbD

m

m

m

m

mm













 

Meanwhile, let)(iA and)(iA be

GAx i mod and GAx i mod ,

respectively. Then, based on (3) and (4),

the equations can be expressed as

124

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

,)(

)(

mod)

(

mod

1)1(

0

2

1
)1(

0

)1(

1

1
)1(

0

)1(

1

1)1(

1

2)1(

2

)1(

1

)1(

0

1

)1(1)(
































mim

m
ii

m

ii

mi

m

mi

m

ii

ii

xaxgaa

gaa

Gxaxa

xaax

GAxA





,)(

)(

mod)

(

mod

1

1

)1(

1

)1(

2

1

)1(

1

)1(

0

)1(

1

1)1(

1

2)1(

2

)1(

1

)1(

0

)1()(











































m

m

i

m

i

m

i

m

ii

m

mi

m

mi

m

ii

ii

xgaa

xgaaa

Gxaxa

xaax

GxAA





where




















,1,

20,

)1(

0

1

)1(

0

)1(

1

)(

mja

mjgaa

a

i

j

ii

j

i

j

 (6)
























0,

11,

)1(

1

)1(

1

)1(

1

)(

ja

mjgaa

a

i

m

j

i

m

i

j

i

j

 (7)

Also, using the formulae of)(iA and
)(iA , the terms C and D are represented

as follows.

   

   

   

   )2/(

0

)12/(

1

)2(

22/

)1(

12/

)0(

1

12/

2

22/

12/

1

2/

0

]

[

mod

mm

mm

mm

mm

AbAb

AbAbAz

AxbAxb

AxbAxb

GC



























 (8)

   

   

   

    ,

]

[

mod

)12/(

1

)22/(

2

)1(

12/

)0(

2/

12/

1

22/

2

12/2/





























m

m

m

m

mm

m

m

m

m

mm

AbAb

AbAb

AxbAxb

AxbAb

GD





 (9)

where 0z .

The coefficients of C and D are

produced by summing the corresponding

coefficients of each term in (8) and (9),

respectively. It means that cj and dj, for 0

 j  m−1 are represented as

   

   )2/(

0

)12/(

1

)2(

22/

)1(

12/

)0(

m

j

m

j

jmjmjj

abab

ababazc











Algorithm 1. COM_C(A,B′,G)

Input:

),,,,(0121 aaaaA mm  ,

   

),,,,(' 0122/12/ bbbbB mm  ,

),,,,(0121 ggggG mm 

Output:
   

   
GAxbAxb

AxbAxbC

mm

mm

mod]

[

1

12/

2

22/

12/

1

2/

0













 

;)0(

jj aa  ;0)0(jc 0z ;

for 1i to   12/ m do

for 0j to 1m in parallel do

 if (j = 0) then /* 0j */
)1(

0

)(

1



  ii

m aa ;

 

)1(

012/

)1(

0

)(

0





  i

im

ii abcc

(or)0(

0

)(

0

)1(

0 azcc i  if 0i);

 else /* 1,2,,2,1  mmj  */

jm

ii

jm

i

jm gaaa 



 )1(

0

)1()(

1 ;

 

)1(

12/

)1()(





  i

jmim

i

jm

i

jm abcc

 (or
)1()1()(





  i

jm

i

jm

i

jm azcc if

0i);

end if

end for

end for

return C

125

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

   

    .
)12/(

1

)22/(

2

)1(

12/

)0(

2/















m

jm

m

jm

jmjmj

abab

ababd



Now, we obtain the following recurrence

equations from the above equations.

   


















,12/1,

1,

)1(

12/

)1(

)1()1(

)(

miabc

iazc

c

i

jim

i

j

i

j

i

j

i

j

where 0)0(jc for 10  mj and

0z , and

 

)1(

12/

)1()(



  i

jim

i

j

i

j abdd  2/1, mi 

where 0)0(jd for 10  mj .

Algorithm 2. COM_D(A,B″,G)

Input:

),,,,(0121 aaaaA mm  ,

   

),,,,(" 1212/2/  mmmm bbbbB  ,

),,,,(0121 ggggG mm 

Output:

   

    GAxbAxb

AxbAbD

m

m

m

m

mm

mod]

[

12/

1

22/

2

12/2/













 

;)0(

jj aa  ;0)0(jd

for 1i to  2/m do

for 0j to 1m in parallel do

 if (j=0) then /* 0j */
)1(

1

)(

0



 i

m

i aa ;

 

)1(

112/

)1(

1

)(

1







  i

mim

i

m

i

m abdd ;

else /* 1,2,,2,1  mmj  */

j

i

m

i

j

i

j gaaa)1(

1

)1(

1

)(





  ;

 

)1(

112/

)1(

1

)(

1







  i

jim

i

j

i

j abdd ;

 end if

end for

end for

return D

As shown in Algorithm 1 and 2, the

parallel computational algorithms for C

and D are driven by the above equations.

The proposed COM_C(A,B,G) and

COM_D(A,B,G) algorithms can be

executed simultaneously since there is

no data dependency between computing

C and D.

3.2 Proposed Multiplier

Based on the proposed algorithms, the

hardware architecture of the proposed

semi-systolic Montgomery multiplier is

shown in Figure 1. The upper, lower,

middle part of the array computes C, D,

and C+D, respectively. Our architecture

is composed of   12/ m)(

0Û i cells,

 )12/()2( mm)(U i

j cells,  2/m

)(

0V̂ i cells,  2/)2(mm )(V i

j cells,

and one S cell.

1mb

2mb

  12/ imb

  12/ mb

 2/mb

2c1mc
jmc  1c0c

1ma

0a

1md
1jd 0d

0p
1p
jp

2mp
1mp

S

1ma 1mg 2g0 1a0 2a 1gjmg jma  0 0 0

1mg 2ma 2mg
1jajg3ma 1g 0a

)0(z

  12/ mb

  12/ imb

0b

1b

(1)

1-Um

(1)

2-Um

(1)U j
(1)

1U
(1)

0Û

)2(

1U)2(

2U m

)2(U j
(2)

1-Um

(2)

0Û

)(

0Û i)(

2U i

m

)(U i

j
)(

1U i

m

)(

1U i

 )/2(

0Û
m  )/2(

1-U
m

m
 )/2(

U
m

j
 )/2(

2U
m

m
 )/2(

1U
m

  1)/2(

0Û
m   1)/2(

1-U
m

m
  1)/2(

U
m

j
  1)/2(

2U




m

m
  1)/2(

1U
m

2md 3md

0000 0

(1)

0V̂(1)

1V
(1)Vj

(1)

1V m

(1)

2V m

(2)

0V̂(2)

1V
(2)V j

(2)

1V m

(2)

2V m

)(

0V̂ i)(

1V i)(V i

j
)(

1V i

m

)(

2V i

m

  12/

1V
m  12/

V
m

j
  12/

1V




m

m
  12/

0V̂
m  12/

2V




m

m

  2/

1V
m  2/

V
m

j
  2/

1V
m

m
  2/

0V̂
m  2/

2V
m

m

Figure 1. The proposed semi-systolic

Montgomery multiplier over GF(2
m
)

126

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

The detailed circuits of the cells in

Figure 1 are depicted in Figure 2 thru

Figure 4, and , , and D denote XOR

gate, AND gate, and one-bit latch(flip-

flop), respectively.
)1(

0

ic

D D

)(

0

ic)(

1

i

ma 

  12/ imb

)1(

0

ia

(a)

)(
0Û
i

jmg 

)1(



i

jmc)1(



i

jma

)1(

0

ia

D D D

)(i

jmc 

)(

1

i

jma 

  12/ imb

(b)

)(U i

j

Figure 2. Circuit configuration of
)(

0Û i
 and

)(U i

j cell

The latency of the proposed semi-

systolic multiplier requires m/2+1

clock cycles. Each clock cycle takes the

delay of one 2-input AND gate, one 2-

input XOR gate, and one 1-bit latch. The

space complexity of this multiplier

requires 2m
2
+m−1 2-input AND gates,

2m
2
+2m−1 2-input XOR gates, and

3m
2
+2m−1(for odd m) or 3m

2
+3m−1(for

even m) 1-bit latches.

Note that
)(U i

j ()(

0Û i) and
)(V i

j ()(

0V̂ i)

cells in Figure 2 and 3 are functionally

equivalent cells and the computations

can be executed in parallel, and the

computed results are added in S cell. In

Figure 4, D
*
 denotes one bit latch when

m is even, otherwise it is ignored.

)1(

1





i

md

)1(

1





i

ma

)(

1

i

md 

)(

0

ia

  12/ imb

DD

(a)
)(

0V̂ i

  12/ imb

)1(

1





i

jd)1(

1





i

ja

)1(

1





i

ma

)(

1

i

jd 

)(i

ja

D D D

jg

(b)
)(V i

j

Figure 3. Circuit configuration of
)(

0V̂ i
 and

)(V i

j cell

4 COMPLEXITY ANALYSIS

In CMOS VLSI technology, each gate is

composed of several transistors [18]. We

adopt that AAND2 = 6, AXOR2 = 6, and

ALATCH1 = 8, where AGATEn denotes

transistor count of an n-input gate,

respectively. Also, for a further

comparison of time complexity, we

adopt the practical integrated circuits in

[19] and the following assumptions, as

discussed in detail in [15], are made:

TAND2 = 7, TXOR2 = 12, and TLATCH1 = 13,

127

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

where TGATEn denotes the propagation

delay of an i-input gate, respectively.

2mc1mc jc
1c0c

1d 1mdjd 0d

0p

1p

jp

2mp

1mp

2md 

















D
*

D
*

D
*

D
*

D
*

Figure 4. Circuit configuration of S cell

Table 1. Comparison of semi-systolic

polynomial basis architectures

gate/delay
In

[15]

Fig. 1

even m/odd m

Number of

cells
2m

Û :   12/ m

U :

 )12/()2( mm

V̂ :  2/m

V :  2/)2(mm 

S :1

2-input AND 22m 12 2 mm

2-input XOR 22m 122 2  mm

3-input XOR 0 0

one-bit latch 23m
133 2  mm /

123 2  mm

Total

transistor

count

248m
204248 2  mm /

203448 2  mm

Cell delay(ns) 32 32

Latency m 15.0 m / 5.05.0 m

Total

delay(ns)
m32 3216 m / 1616 m

A circuit comparison between the
proposed multiplier and the related

multiplier is given in Table 1. Although
the proposed multiplier has nearly the
same space complexity compared to
Huang et al.[15], the time complexity is
approximately reduced by 50%.

5 CONCLUSION

In this paper, we propose a cellular semi-

systolic architecture for Montgomery

multiplication over finite fields. We

choose a novel Montgomery factor

which is highly suitable for the design of

parallel structures. We also divided our

architecture into three parts, and

computed two parts of them in parallel

so that we reduced the time complexity

by nearly 50% compared to the recent

study in spite of maintaining similar

space complexity. We expect that our

architecture can be efficiently used for

various applications, which demand

high-speed computation, based on

arithmetic operations.

6 ACKNOWLEDGMENT

This research was supported by Basic

Science Research Program through the

National Research Foundation of

Korea(NRF) funded by the Ministry of

Education, Science and Technology

(2011-0014977).

7 REFERENCES

1. W. W. Peterson, and E. J. Weldon, Error-

Correcting Codes, MIT Press, Cambridge

(1972).

2. R. E. Blahut. Theory and Practice of Error

Control Codes, Addison-Wesley, Reading

(1983).

3. W. Diffie and M. E. Hellman, “New

directions in cryptography,” IEEE

Transactions on Information Theory, vol.

22, no. 6, pp. 644-654 (1976).

4. B. Schneier, Applied Cryptography, John

Wiley & Sons press, 2nd edition (1996).

128

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(2): 122-129

The Society of Digital Information and Wireless Communications, 2012 (ISSN: 2305-0012)

5. P. Montgomery, “Modular Multiplication

without Trial Division,” Mathematics of

Computation, vol. 44, no. 170, pp. 519–521

(1985).

6. C. Koc and T. Acar, “Montgomery

Multiplication in GF(2
k
),” Designs, Codes

and Cryptography, vol. 14, no. 1, pp. 57–69

(1998).

7. H. Wu, “Montgomery Multiplier and

Squarer for a Class of Finite Fields,” IEEE

Trans. Computers, vol. 51, no. 5, pp. 521-

529 (2002).

8. C. Y. Lee, J. S. Horng, I. C. Jou and E. H.

Lu, “Low-Complexity Bit-Parallel Systolic

Montgomery Multipliers for Special Classes

of GF(2
m
),” IEEE Transactions on

Computers, vol. 54, no. 9, pp. 1061–1070

(2005).

9. C. W. Chiou, C. Y. Lee, A. W. Deng and J.

M. Lin, “Concurrent Error Detection in

Montgomery Multiplication over GF(2
m
),”

IEICE Trans. Fundamentals of Electronics,

Communications and Computer Sciences,

vol. E89-A, no. 2, pp. 566-574, 2006.

10. A. Hariri and A. Reyhani-Masoleh, “Bit-

Serial and Bit-Parallel Montgomery

Multiplication and Squaring over GF(2
m
),”

IEEE Trans. Computers, vol. 58, no. 10, pp.

1332-1345 (2009).

11. A. Hariri and A. Reyhani-Masoleh,

“Concurrent Error Detection in Montgomery

Multiplication over Binary Extension

Fields,” IEEE Trans. Computers, vol. 60, no.

9, pp. 1341-1353 (2011).

12. C. W. Chiou, “Concurrent Error Detection

in Array Multipliers for GF(2
m
) Fields,” IEE

Electronics Letters, vol. 38, no. 14, pp. 688–

689 (2002).

13. C. Y. Lee, C. W. Chiou, and J. M. Lin,

“Concurrent Error Detection in a

Polynomial Basis Multiplier over GF(2
m
),”

J. Electronic Testing: Theory and

Applications, vol. 22, no. 2, pp. 143-150

(2006).

14. S. Bayat-Sarmadi and M.A. Hasan,

“Concurrent Error Detection in Finite Field

Arithmetic Operations Using Pipelined and

Systolic Architectures,” IEEE Trans.

Computers, vol. 58, no. 11, pp. 1553-1567

(2009).

15. W. T. Huang, C. H. Chang, C. W. Chiou

and F. H. Chou, “Concurrent error detection

and correction in a polynomial basis

multiplier over GF(2
m
),” IET Information

Security, vol. 4, no. 3, pp. 111-124 (2010).

16. R. Lidl and H. Niederreiter, Introduction to

Finite Fields and Their Applications,

Cambridge Univ. Press (1986).

17. J. C. Jeon and K. Y. Yoo, “Montgomery

exponent architecture based on

programmable cellular automata,”

Mathematics and Computers in Simulation,

vol. 79, pp. 1189-1196 (2008).

18. N. Weste, K. Eshraghian, Principles of

CMOS VLSI design: a system perspective,

Addison-Wesley, Reading, MA (1985).

19. STMicroelectronics, Available at

http://www.st.com/

129

