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1 INTRODUCTION 
 

Finite field arithmetic operations, 

especially for the binary field GF(2
m
), 

have been widely used in the areas of 

data communication and network 

security applications such as error-

correcting codes [1,2] and cryptosystems 

such as ECC(Elliptic Curve 

Cryptosystem) [3,4]. The finite field 

multiplication is the most frequently 

studied. This is because the time-

consuming operations such as 

exponentiation, division, and 

multiplicative inversion can be 

decomposed into repeated 

multiplications. Thus, the fast 

multiplication architecture with low 

complexity is needed to design dedicated 

high-speed circuits. 

 

Certainly, one of most interesting and 

useful advances in this realm has been 

the Montgomery multiplication 

algorithm, introduced by Montgomery 

[5] for fast modular integer 

multiplication. The multiplication was 

successfully adapted to finite field 

GF(2
m
) by Koc and Acar [6]. They have 

proposed three Montgomery 

multiplication algorithms for bit-serial, 

digit-serial, and bit-parallel 

multiplication. They have chosen the 

Montgomery factor, R=x
m
 for efficient 

implementation of the multiplication in 

hardware and software. 

 

Wu [7] has chosen a new Montgomery 

factor and shown that choosing the 

middle term of the irreducible trinomial 

G(ω)= ω
m
+ω

k
+1  as the Montgomery 

factor, i.e., R=x
k
, results in more efficient 

bit-parallel architectures. In [8], MM is 

implemented using systolic arrays for 

all-one polynomials and trinomials. Chiu 

et al. [9] proposed semi-systolic array 

structure for MM which uses R=x
m
. 

Hariri and Reyhani-Masoleh [10] 

proposed a number of bit-serial and bit-

parallel Montgomery multipliers and 

showed that MM can accelerate the ECC 

scalar multiplication. Recently, in [11], 

they have considered concurrent error 

detection for MM over binary field. 
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Recently, various finite field arithmetic 

structures are introduced for VLSI circuit 

implementation on cryptosystems and error 

correcting codes. In this study, we present 

an efficient finite field arithmetic 

architecture based on cellular semi-systolic 

array for Montgomery multiplication by 

choosing a proper Montgomery factor which 

is highly suitable for the design on parallel 

structures. Therefore, our architecture has 

reduced a time complexity by 50% 

compared to typical architecture. 
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Three different multipliers, namely the 

bit-serial, digit-serial, and bit-parallel 

multipliers, have been considered and 

the concurrent error detection scheme 

has been derived and implemented for 

each of them. 

 

Chiou [12] used the recomputing with 

shifted operands (RESO) to provide a 

concurrent error detection method for 

polynomial basis multipliers using an 

irreducible all-one polynomial, which is 

a special case of a general polynomial. 

Lee et al. [13] described a concurrent 

error detection (CED) method for a 

polynomial multiplier with an 

irreducible general polynomial. Chiou et 

al. [9] also developed a Montgomery 

multiplier with concurrent error 

detection capability. Bayat-Sarmadi and 

Hasan [14] proposed semi-systolic 

multipliers for various bases, such as the 

polynomial, dual, type I and type II 

optimal normal bases. They have also 

presented semi-systolic multipliers with 

CED using RESO. 

 

Recently, Huang et al. [15] proposed the 

semi-systolic polynomial basis 

multiplier over GF(2
m
) to reduce both 

space and time complexities. Also they 

proposed the semi-systolic polynomial 

basis multipliers with concurrent error 

detection and correction capability. 

Various approaches adopt semi-systolic 

architectures to reduce the total number 

of latches and computation latency 

because of permitting the broadcast 

signals. However, almost existing 

polynomial multipliers suffer from 

several shortcomings, including large 

time and/or hardware overhead, and low 

performance. 

 

In this paper, we consider the 

shortcomings that the typical 

architectures have, and propose a semi-

systolic Montgomery multiplier with a 

new Montgomery factor. We show that 

an efficient multiplication architecture 

can be obtained by choosing a proper 

Montgomery factor, and reduces time 

complexity.  

 

The remainder of this paper is organized 

as follows. Section 2 introduces 

Montgomery multiplication over finite 

fields. In Section 3, we propose a 

Montgomery multiplication architecture 

based on our algorithm which is highly 

optimized for hardware implementation. 

In Section 4, we analyze and compare 

our architecture with recent study. 

Finally, Section 5 gives our conclusion. 

 

2 MONTGOMERY 

MULTIPLICATION ON FINITE 

FIELDS 
 

GF(2
m
) is a kind of finite field [16] that 

contains 2
m
 different elements. This 

finite field is an extension of GF(2) and 

any A  GF(2
m
) can be represented as a 

polynomial of degree m−1 over GF(2), 

such as 

 

01

1

1 axaxaA m

m  

  , 

where ai {0,1}, 0  i  m−1.  

 

Let x be a root of the polynomial, then 

the irreducible polynomial G is 

represented as a following equation. 

 

01 gxgxgG m

m   ,           (1) 

where gi  GF(2), 0  i  m−1. 

 

Let  and  be two elements of GF(2
m
), 

then we define  =  mod G. Also, let 

A and B be two Montgomery residues, 

then they are defined as A = R mod G 

and B =R mod G, where GCD(R,G) = 
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1. Then, the Montgomery multiplication 

algorithm over GF(2
m
) can be 

formulated as  

 

,mod1 GRBAP   

where R
−1

 is the inverse of R modulo G, 

and  RR−1
+GG=1 [17]. Thus, by the 

definition of the Montgomery residue, 

the equation can be expressed as 

follows. 

 

GR

GRRRP

mod

mod)()( 1



 




 

 

It means that P is the Montgomery 

residue of . This makes it possible to 

convert the operands to Montgomery 

residues once at the beginning, and then, 

do several consecutive multiplications/ 

squarings, and convert the final result to 

the original representation. The final 

conversion is a multiplication by R
−1

, i.e., 

 = P∙R
−1 

mod G. The polynomial R 

plays an important role in the complexity 

of the algorithm as we need to do 

modulo R multiplication and a final 

division by R. 

 

3 PROPOSED ARCHITECTURE 

 

This section describes the proposed 

Montgomery multiplication algorithm 

and architecture. 

 

3.1 Proposed Algorithm 
 

Based on the property of parallel 

architecture, we choose the Montgomery 

factor,  2/m
xR  . Then, the 

Montgomery multiplication over GF(2
m
) 

can be formulated as  

 
  GxBAP
m

mod
2/

          (2) 

 

We know that x is a root of G and mg  

and 0g  have always ‘1’ over all 

irreducible polynomials. Thus, the 

equations can be rewritten as follows. 

 

1

mod

1

1

1  

 xgxg

Gx

m

m

m


           (3) 

1

2

1

1

1 mod

gxgx

Gx

m

m

m  








       (4) 

 

Meanwhile, (2) is represented by 

substituting A and B as follows. 

 

   

   

   

    ]

[

mod

12/

1

22/

2

12/2/

2/

0

12/

1

2

22/

1

12/





























m

m

m

m

mm

mm

mm

AxbAxb

AxbAb

AxbAxb

AxbAxb

GP





        (5) 

 

Now, it expresses that P can be divided 

into two parts. One is based on the 

negative powers of x and the other is 

based on the positive powers of x. (5) 

can be denoted by P = C+D, where 

 

   

    ,mod]

[

2/

0

12/

1

2

22/

1

12/

GAxbAxb

AxbAxbC

mm

mm













 
 

   

    .mod]

[

12/

1

22/

2

12/2/

GAxbAxb

AxbAbD

m

m

m

m

mm













 

 

Meanwhile, let )(iA  and )(iA  be 

GAx i mod  and GAx i mod , 

respectively. Then, based on (3) and (4), 

the equations can be expressed as 
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,)(

)(

mod)

(

mod

1)1(

0

2

1
)1(

0

)1(

1

1
)1(

0

)1(

1

1)1(

1

2)1(

2

)1(

1

)1(

0

1

)1(1)(
































mim

m
ii

m

ii

mi

m

mi

m

ii

ii

xaxgaa

gaa

Gxaxa

xaax

GAxA





 

,)(

)(

mod)

(

mod

1

1

)1(

1

)1(

2

1

)1(

1

)1(

0

)1(

1

1)1(

1

2)1(

2

)1(

1

)1(

0

)1()(











































m

m

i

m

i

m

i

m

ii

m

mi

m

mi

m

ii

ii

xgaa

xgaaa

Gxaxa

xaax

GxAA





 

 

where 




















,1,

20,

)1(

0

1

)1(

0

)1(

1

)(

mja

mjgaa

a

i

j

ii

j

i

j

   (6) 
























0,

11,

)1(

1

)1(

1

)1(

1

)(

ja

mjgaa

a

i

m

j

i

m

i

j

i

j

          (7) 

 

Also, using the formulae of )(iA  and 
)(iA , the terms C and D  are represented 

as follows.  

 

   

   

   

   )2/(

0

)12/(

1

)2(

22/

)1(

12/

)0(

1

12/

2

22/

12/

1

2/

0

]

[

mod

mm

mm

mm

mm

AbAb

AbAbAz

AxbAxb

AxbAxb

GC



























      (8)  

   

   

   

    ,

]

[

mod

)12/(

1

)22/(

2

)1(

12/

)0(

2/

12/

1

22/

2

12/2/





























m

m

m

m

mm

m

m

m

m

mm

AbAb

AbAb

AxbAxb

AxbAb

GD





            (9)  

where 0z . 

 

The coefficients of C and D are 

produced by summing the corresponding 

coefficients of each term in (8) and (9), 

respectively. It means that cj and dj, for 0 

 j  m−1 are represented as 

 

   

   )2/(

0

)12/(

1

)2(

22/

)1(

12/

)0(

m

j

m

j

jmjmjj

abab

ababazc










 

 

Algorithm 1. COM_C(A,B′,G) 

Input: 

  ),,,,( 0121 aaaaA mm  ,  

  
   

),,,,(' 0122/12/ bbbbB mm  , 

  ),,,,( 0121 ggggG mm   

Output: 
   

   
GAxbAxb

AxbAxbC

mm

mm

mod]

[

1

12/

2

22/

12/

1

2/

0













 

 

;)0(

jj aa  ;0)0( jc 0z ; 

for 1i  to   12/ m  do 

for 0j  to 1m  in parallel do 

      if (j = 0) then   /* 0j */ 
)1(

0

)(

1



  ii

m aa ; 

 

)1(

012/

)1(

0

)(

0





  i

im

ii abcc  

(or )0(

0

)(

0

)1(

0 azcc i   if 0i ); 

      else   /* 1,2,,2,1  mmj  */ 

jm

ii

jm

i

jm gaaa 



  )1(

0

)1()(

1 ; 

 

)1(

12/

)1()( 





  i

jmim

i

jm

i

jm abcc  

        (or 
)1()1()( 





  i

jm

i

jm

i

jm azcc  if 

0i ); 

end if 

end for  

end for 

return C 
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   

    .
)12/(

1

)22/(

2

)1(

12/

)0(

2/















m

jm

m

jm

jmjmj

abab

ababd


 

Now, we obtain the following recurrence 

equations from the above equations. 

 

   


















,12/1,

1,

)1(

12/

)1(

)1()1(

)(

miabc

iazc

c

i

jim

i

j

i

j

i

j

i

j

  

where 0)0( jc  for 10  mj  and 

0z , and 

 

)1(

12/

)1()( 



  i

jim

i

j

i

j abdd  2/1, mi    

where 0)0( jd  for 10  mj . 

 

Algorithm 2. COM_D(A,B″,G) 

Input: 

  ),,,,( 0121 aaaaA mm  , 

  
   

),,,,(" 1212/2/  mmmm bbbbB  , 

  ),,,,( 0121 ggggG mm   

Output: 

   

    GAxbAxb

AxbAbD

m

m

m

m

mm

mod]

[

12/

1

22/

2

12/2/













 

 

;)0(

jj aa  ;0)0( jd  

for 1i  to  2/m  do 

for 0j  to 1m  in parallel do 

  if (j=0) then /* 0j */ 
)1(

1

)(

0



 i

m

i aa ; 

 

)1(

112/

)1(

1

)(

1







  i

mim

i

m

i

m abdd ; 

else  /* 1,2,,2,1  mmj  */ 

j

i

m

i

j

i

j gaaa )1(

1

)1(

1

)( 





  ; 

 

)1(

112/

)1(

1

)(

1







  i

jim

i

j

i

j abdd ; 

      end if 

end for 

end for 

return D  

 

As shown in Algorithm 1 and 2, the 

parallel computational algorithms for C 

and D are driven by the above equations. 

The proposed COM_C(A,B,G) and 

COM_D(A,B,G) algorithms can be 

executed simultaneously since there is 

no data dependency between computing 

C and D. 

 

3.2 Proposed Multiplier 
 

Based on the proposed algorithms, the 

hardware architecture of the proposed 

semi-systolic Montgomery multiplier is 

shown in Figure 1. The upper, lower, 

middle part of the array computes C, D, 

and C+D, respectively. Our architecture 

is composed of   12/ m  )(

0Û i  cells, 

  )12/()2(  mm )(U i

j  cells,  2/m  

)(

0V̂ i  cells,  2/)2( mm   )(V i

j  cells, 

and one S  cell.  
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0Û

)(
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Figure 1. The proposed semi-systolic 

Montgomery multiplier over GF(2
m
) 
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The detailed circuits of the cells in 

Figure 1 are depicted in Figure 2 thru 

Figure 4, and , , and D denote XOR 

gate, AND gate, and one-bit latch(flip-

flop), respectively. 
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Figure 2. Circuit configuration of 
)(

0Û i
 and 

)(U i

j  cell 

The latency of the proposed semi-

systolic multiplier requires m/2+1 

clock cycles. Each clock cycle takes the 

delay of one 2-input AND gate, one 2-

input XOR gate, and one 1-bit latch. The 

space complexity of this multiplier 

requires 2m
2
+m−1 2-input AND gates, 

2m
2
+2m−1 2-input XOR gates, and 

3m
2
+2m−1(for odd m) or 3m

2
+3m−1(for 

even m) 1-bit latches. 

 

Note that 
)(U i

j ( )(

0Û i ) and 
)(V i

j ( )(

0V̂ i ) 

cells in Figure 2 and 3 are functionally 

equivalent cells and the computations 

can be executed in parallel, and the 

computed results are added in S cell. In 

Figure 4, D
*
 denotes one bit latch when 

m is even, otherwise it is ignored. 
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Figure 3. Circuit configuration of  
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0V̂ i
 and 

)(V i

j  cell 

 

4 COMPLEXITY ANALYSIS 

 

In CMOS VLSI technology, each gate is 

composed of several transistors [18]. We 

adopt that AAND2 = 6, AXOR2 = 6, and 

ALATCH1 = 8, where AGATEn denotes 

transistor count of an n-input gate, 

respectively. Also, for a further 

comparison of time complexity, we 

adopt the practical integrated circuits in 

[19] and the following assumptions, as 

discussed in detail in [15], are made: 

TAND2 = 7, TXOR2 = 12, and TLATCH1 = 13, 
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where TGATEn denotes the propagation 

delay of an i-input gate, respectively. 
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Figure 4.  Circuit configuration of  S  cell 

 

Table 1.  Comparison of semi-systolic 

polynomial basis architectures 

gate/delay 
In 

[15] 

Fig. 1 

even m/odd m 

Number of 

cells 
2m  

Û :   12/ m  

U :

  )12/()2(  mm  

V̂ :  2/m  

V :  2/)2( mm   

S :1 

2-input AND 22m  12 2 mm  

2-input XOR 22m  122 2  mm  

3-input XOR 0  0  

one-bit latch 23m  
133 2  mm /

123 2  mm  

Total 

transistor 

count 

248m  
204248 2  mm /

203448 2  mm  

Cell delay(ns) 32 32 

Latency m  15.0 m / 5.05.0 m  

Total 

delay(ns) 
m32  3216 m / 1616 m  

 

A circuit comparison between the 
proposed multiplier and the related 

multiplier is given in Table 1. Although 
the proposed multiplier has nearly the 
same space complexity compared to 
Huang et al.[15], the time complexity is 
approximately reduced by 50%. 

 

5 CONCLUSION 

 

In this paper, we propose a cellular semi-

systolic architecture for Montgomery 

multiplication over finite fields. We 

choose a novel Montgomery factor 

which is highly suitable for the design of 

parallel structures. We also divided our 

architecture into three parts, and 

computed two parts of them in parallel 

so that we reduced the time complexity 

by nearly 50% compared to the recent 

study in spite of maintaining similar 

space complexity. We expect that our 

architecture can be efficiently used for 

various applications, which demand 

high-speed computation, based on 

arithmetic operations. 
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